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regression tree fields (RTFs) have proven to be very successful in different image processing tasks such 

as segmentation, restoration, or de-blurring. The aim of this thesis is to analyze how RTFs can be utilized 

to improve image compression. The basic idea is to integrate the machine learning approach into an 

existing image codec by adding a prediction step. This prediction step is learned with ground truth 

computed from the uncompressed image. The idea is exemplarily studied for the JPEG-codec after the 

DCT transformation. For each DCT coefficient, an 8×8 subsampled coefficient image can be constructed 

and used to predict other coefficient images. The difference between original coefficient image and 

predicted one is then passed on to the standard coefficient coding of the JPG-codec. The results shall be 

compared to the original JPEG-codec as well as JPEG2000. 
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• Literature search on the state of the art in machine learning based image compression 
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allows prediction of coefficient images in arbitrary order 
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• Training of RTF from single image with RTFs of different complexity 

• Evaluation of compression performance on variety of grayscale images with different RTF 

complexities 
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• Optimization of prediction order 

• Support for multi-channel images 

• Training of RTFs and evaluation of compression results for image collections 

• Implementation of a compression scheme for RTFs 

• Analysis of the best trade-off between number of training images and complexity of the trained 

and to be encoded RTFs 
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Abstract 

Storing digital images is a common task in a variety of domains, ranging from family photo albums to 

medical imaging. Where many images need to be saved, efficient coding is essential. JPEG, as a well-

established codec for still-image compression, is used in a variety of use cases. This thesis analyzes 

improvements on compression performance by introducing a prediction step through regression tree 

fields. RTFs are used to predict coefficients of JPEG’s discrete cosine transform, which allows to encode 

only differences of small magnitude instead of the original coefficients. The adapted compression 

scheme’s degrees of freedom (e.g. prediction order, RTF loss function, and encoding procedure) are 

analyzed with respect to their influence on compression performance. This thesis’ results show that the 

general idea of predicting coefficient images can improve the compression performance significantly. 

Especially loss-specific optimization poses a great gain, which induced the development of an entropy-

based loss function. Furthermore, the results are evident that RTF models are not suited for predictions 

in the frequency domain with respect to compression, which suggests further work with different models 

and image representations based on the developed scheme.
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1 Introduction 

The JPEG codec is a compression method for still images that enjoys great popularity since its 

standardization in 1992 [ITU92]. Due to its nature (more in chapter 3.1) it is best suited for smooth 

images with continuously changing colors. Although a lossless mode is part of the JPEG standard, most 

implementations only support lossy compression. Throughout this thesis, JPEG’s lossless mode will not 

be examined further. 

Since its development, the JPEG codec has been extended (e.g. by variable quantization [ITU96]), it has 

been used in derived image formats (e.g. in JPS for stereoscopic images), and improved, which led to 

further standards (e.g. JPEG2000 [ITU02]). This thesis’ aim is to develop a novel compression scheme 

based on the original JPEG standard which incorporates a machine learning based prediction step during 

encoding and decoding in order to improve the compression ratio, maintaining image quality. 

1.1 Assumptions 

In designing an appropriate method, some assumptions about the codec environment were made. The 

entire process is distributed asymmetrically across encoder and decoder, which shall allow online 

decoding (i.e. in a sufficiently short time span). It is sufficient for the encoder to process offline with no 

or very weak time limits. 

The image quality is measured on a per-pixel difference basis. While most machine learning methods – 

including the RTF model – are most suited for custom loss measures (e.g. SSIM for human perception 

[ZBSS04]), this thesis focuses on a difference-based measure to assess general-purpose compression. 

1.2 General encoding and decoding procedure 

The machine learning component is responsible for predicting parts of the image. A part can be a single 

channel, an output image of the discrete cosine transform, or any other component. Supervised learning 

is used to infer a model for given input and output (more on this later). Once a prediction model has 

been learned for an image part, this part does not have to be stored with the image, because it can be 

predicted from available sources. It is possible to store the quantized differences of original and 

predicted data to achieve a desired image quality. 

In order to reconstruct the predictions, the model has to be available. Throughout this thesis, three 

different approaches for storing the model will be examined. The first approach involves saving the 

model directly in the image file (together with meta-data and differences). This is especially useful for 

single-image compression where a separate model is trained for each image. This might turn out to be 

inefficient if the trained models are very similar. In that case it is more reasonable to use a single model 

for several images, which will then be stored in a separate file. The primary use case for this method is 

the compression of image data sets where items are structurally similar. If this can be achieved 

successfully, it is possible to pre-calculate models for different image types and distribute them together 

with the codec. The encoding procedure would then include a classification step which allows to pick 

the correct model. The model itself does not need to be stored with the image data. It is sufficient to 

store a unique identifier. 



4 1. INTRODUCTION 

The decoder will successively predict missing image parts, adding the difference information from the 

image file until the entire data have been restored. The encoder has to be aware of this procedure. If 

image part B is predicted from part A, and C is predicted from B, then the encoder needs to emulate the 

decoded part B before training the model for C. The decoded part B might be different from the original 

part due to the codec’s lossy nature. If the encoder did not take this into account, an error would 

accumulate with every prediction. 

The machine learning method which will be used in this thesis is the regression tree field (RTF 

[JNSR12]), one of the most recent approaches, which combines regression trees and conditional random 

fields. More information on the details of RTFs can be found in chapter 3.2. The author of the 

aforementioned paper provides a C++ implementation, which is used for this thesis after adapting it to 

the concrete needs. 

1.3 Thesis Structure 

The thesis is structured as follows. Chapter 2 introduces related work, especially regarding machine 

learning for image compression. Theoretical fundamentals of the JPEG codec and related machine 

learning methods are explained in chapter 3. Based on these fundamentals, chapter 4 step by step 

develops a compression scheme which incorporates the machine learning step. Various degrees of 

freedom are analyzed, and the optimal instance for each degree is inferred. Chapter 5 gives a short 

overview of the implemented application and chapter 6 closes with conclusions and future work.
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2 Related Work 

Data compression is tightly coupled to machine learning. In fact, compression can be regarded 

equivalent to intelligence [Mah06]. That’s why data compression has become a widely used benchmark 

for general intelligence (e.g. in the Hutter Prize where the goal is to compress an English text [Hut06]). 

Machine learning methods – as they aim to behave intelligently – are, therefore, strongly related to 

compression. The following chapter introduces work that has been done in this field so far. 

2.1 Machine Learning for Still Image Compression 

Neural networks are one early form of machine learning. Jiang [Jia99] summarizes various methods for 

using them for image compression. The approach with the largest similarity to this thesis is the basic 

back-propagation neural network. For compression, each image is tiled with a fixed block size, and each 

block is compressed separately. The network consists of three neuron layers. Each neuron of the input 

layer represents the value of a single pixel. Therefore, this layer has as many neurons as the block has 

pixels (for single-channel images). The same correspondence is used for the third layer, the output layer. 

In between both layers a hidden layer is introduced which consists of a variable number of neurons, 

which are fully connected to each neuron of the input and output layer. The network’s weights are trained 

for a set of training images, which produces a network that can be used to map an image block to itself. 

Compression is achieved through the hidden layer, which should consist of significantly fewer neurons 

than the input and output layer. A block is compressed by applying each pixel to the input layer and 

propagating the values to the hidden layer using the trained weights. The values of the hidden layer’s 

neurons are then encoded with appropriate entropy coding. Decompression is achieved by applying the 

encoded values to the hidden layer and propagating to the output layer. Besides the values of the hidden 

layer, the decoder must be aware of the network’s weights, which makes this method only applicable 

for compression of image sets. 

More recent work utilizes support vector machines (SVM) to choose a minimum number of support 

vectors that allow to reconstruct the image. This approach has been researched in both the spatial and 

frequency domain. All methods use a similar approach. Firstly, the input image is transformed into a 

different representation (e.g. through DCT). The resulting representation usually consists of a number 

of coefficients that are used to train a regression SVM. The SVM is defined by its support vectors and 

their weights. Compression stores only these parameters instead of the original coefficients 

(significantly less). During decompression, the original coefficients are reconstructed by the SVM. 

In [RK03], SVMs are used to reconstruct an image’s discrete cosine transform (DCT). The results are 

superior to JPEG compression, yielding better image quality with a fixed compression ratio or better 

compression ratio with a fixed image quality. One specialty of this approach, which has also been 

researched in this thesis for RTF compression, is the preprocessing of the SVM’s input. Instead of 

feeding in the bare DCT coefficients, their sign is left away (making every coefficient positive) and 

stored separately as a single bit. This preprocess makes the input more homogeneous, resulting in a 

better SVM performance.  

A similar approach has been researched using discrete wavelet transform (DWT) with the haar wavelet 

by both [Ahm05] and [RYQB05]. The work of [RK03] has been improved in [GCG05] with an adaptive 
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insensitivity for the SVM, which is more appropriate for the frequency domain. This is based on the fact 

that some DCT coefficients have a smaller impact on the image quality and can thus be reconstructed 

with a lower accuracy. Although this resulted in better image quality, [CGGM08] have shown that in 

general a linear mapping from coefficients to their respective insensitivity does not satisfy statistical 

independence, suggesting non-linear mappings. 

The previous methods are based on JPEG compression. In [FTM12], the use of SVMs in combination 

with the JPEG2000 codec has been researched. JPEG2000 uses a DWT, which makes this work similar 

to [Ahm05] and [RYQB05]. However the results outrank existing compression schemes. 

2.2 Related Tasks in Machine Learning 

Apart from the previously mentioned work, machine learning methods are rarely used for image 

compression. Many use cases aim to improve image quality. Thus, algorithms for those tasks can be 

seen as some compression because they allow to store the image with a lower quality (and less space) 

using standard compression schemes. The image’s quality is then reconstructed (or at least improved) 

by post-processing steps. 

Super-resolution is the process of improving an image’s spatial resolution. Usually, this is applied where 

hardware requirements do not allow to acquire the image in a higher resolution. However, it could also 

be used to reduce an image’s storage requirements. [KAV05] is an example of solving the super-

resolution task using Markov Random Fields (MRF). 

Because JPEG compression is known for its block artefacts, another common task for machine learning 

is de-blocking, which aims to remove these discontinuities. In order to reconstruct the image, a model 

is required which is aware of the image’s structure. In [JNR12], this task was solved using a regression 

tree field. The results are still available and will be compared to this thesis’ results in section 4.11. 

When parts of an image have been lost, inpainting algorithms can reconstruct missing data. The primary 

use case for this technique is the digital processing of analogous material and data which have been 

retrieved through potentially lossy media (e.g. UDP transmissions of video). RTFs are also suitable for 

this task as shown in [JNSR12]. It is possible to systematically remove parts from the image in order to 

reduce its file size. However, the expected reduction is usually not high enough to use this technique as 

a compression scheme.
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3 Fundamentals 

The following chapter focuses on the theoretical background of involved technologies. A brief overview 

of the original JPEG codec is given, and regression tree fields are introduced. Variable steps and 

parameters which will be modified throughout the rest of this thesis will be highlighted accordingly. 

3.1 JPEG Compression 

As stated in chapter 1, this thesis does not consider the lossless specifications of the JPEG codec. Instead, 

only the lossy compression is analyzed. 

The lossy variant of JPEG consists of two parts: the encoder, which converts an RGB image into a JPEG 

stream, and the decoder, which converts the JPEG stream back into an RGB image. The standard does 

not specify how this stream is arranged in a file. This is subject to the file format’s specification, JPEG 

File Interchange Format (JFIF) being one of the most popular ones.  

In order to compress an image, various steps are executed, which may be 

either lossy or lossless. Figure 3.1 shows an overview of all involved 

steps. The following sections introduce each step in more detail. 

3.1.1 Color Space Transformation 

JPEG’s aim is to compress an image in a way that introduces the least 

possible distortion in human perception. Therefore, the first step is to 

transform the image from the artificial RGB format to the Y’CbCr 

format, which also has three channels. However, they map more closely 

to human perception than RGB. The Y’ channel represents a pixel’s luma 

value, which can be considered to be its brightness. This channel roughly 

maps to perception by rods in the human eye. The other channels (Cb and 

Cr) represent chromaticity, which roughly map to cone perception. 

For 8-bit RGB data, the conversion from to Y’CbCr can be expressed as 

a linear mapping [ITU14]: 

(
𝑌′

𝐶𝑏
𝐶𝑟
) = (

0.299 0.587 0.114 0
−0.168736 −0.331264 0.5 128

0.5 −0.418688 −0.081312 128
)(

𝑅
𝐺
𝐵
1

) 

Once the conversion has taken place, all further steps are executed 

separately for each channel. 

Assuming that these operations can be executed without loss in precision (e.g. due to floating point 

precision), this step is lossless. Since the precision loss is very small, and the input values are integer, 

the original RGB values can be retrieved by rounding the back transformation’s result without any loss. 

Color Space 

Transformation 

Downsampling 

Discrete Cosine 

Transform 

Quantization 

Entropy 

Coding 

RGB Image 

Y‘CbCr Image 

DCT Coefficients 

JPEG Stream 

Figure 3.1 Overview of the 
JPEG encoder 
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Figure 3.2 Result of color space transformation 

3.1.2 Downsampling 

Downsampling is an optional step in JPEG compression, which was introduced due to the human eye’s 

anatomy. While there are very many rods (perceptors for brightness), the spatial density of cones 

(perceptors for chromaticity) is significantly smaller. This led to the assumption that there is no need to 

store an image’s chromaticity channels in full size, but only a subsampled representation. There are 

various sampling schemes, such as 4:4:4 or 4:2:0. The numbers in this notation correspond to the luma 

sample rate, chroma sample rate in odd rows and chroma sample rate in even rows, respectively [Poy01]. 

However, because this thesis is focused on general-purpose compression, no downsampling is 

performed (which is equal to 4:4:4 sampling). 

If downsampling is performed (other than the 4:4:4 sampling), then this step is lossy. 

3.1.3 Discrete Cosine Transform 

After re-sampling, the image is split in blocks of 8×8 pixels and transformed into frequency space. This 

is performed using discrete cosine transform (DCT, [ANR74]). 

DCT is a special form of Fourier transform which decomposes a discrete real-valued function 𝑓:ℕ → ℝ 

into a sum of cosine functions of different frequencies. When the function’s domain consists of 𝑁 

elements, the re-composition (inverse DCT) can be expressed as: 

𝑓(𝑥) =
1

𝑁
𝑐0 +

2

𝑁
∑ 𝑐𝑘 ∗ cos [

𝜋

𝑁
𝑘 (𝑥 +

1

2
)]

𝑁−1

𝑘=1

 

The coefficient 𝑐𝑘 represents the weight of the 𝑘-th frequency, where 𝑐0 stands for the zero-frequency 

(constant function). They can be calculated with the forward DCT as: 

𝑐𝑘 = ∑ 𝑓(𝑥) cos [
𝜋

𝑁
𝑘 (𝑥 +

1

2
)]

𝑁−1

𝑥=0

 

It can be observed that the first coefficient 𝑐0 is the sum of all values, which is basically the unnormalized 

average. Therefore the zero-frequency coefficient represents the function’s average value over its 

domain. 

DCT’s 1D-definition can be extended to two dimensions by applying 1D DCT to columns and rows 

after each other. For JPEG’s standard block size of 8×8 pixels, 2D-DCT yields 64 coefficients, which 

can be used to re-compose the block as: 

RGB input Y Cb Cr 
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𝑓(𝑥, 𝑦) =
1

4
∑∑𝐶𝑢𝐶𝑣

7

𝑣=0

𝑐𝑢,𝑣 cos (
(2𝑥 + 1)𝑢𝜋

16
) cos(

(2𝑦 + 1)𝑣𝜋

16
)

7

𝑢=0

 

𝐶𝑢 = {

1

√2
𝑢 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐶𝑣 = {

1

√2
𝑣 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Figure 3.3 shows plots of all 64 base functions (dis-

regarding the normalization with 𝐶𝑢 and 𝐶𝑣). Before 

performing the DCT step, the pixels’ values are shifted by 

the half of their range (usually by -128). If the constant 

scaling by 0.25 is ignored, DCT yields real-valued 

coefficients in the range [64 ∗ (−128), 64 ∗ 127] =

[−8192, 8128]. In the following, the coefficients will not 

be indexed with a two-dimensional index, but with a one-

dimensional which is derived by linearizing the matrix in a 

row-major order: 

𝑐𝑢,𝑣 = 𝑐𝑢+8𝑣 

After the DCT step, each block is transformed into 64 

coefficients. Thus, the image of one channel is converted 

into 64 coefficient images with sizes scaled down by 8. If 

the original image’s size is not a multiple of 8, the missing 

pixels are filled with artificial data, e.g. by extrapolation. 

Figure 3.4 shows the result of the DCT step for the previously introduced sample image’s Y channel. 

Each of the smaller images represents the coefficients for one frequency. The top left image shows the 

coefficients for the zero frequency (𝑐0), whereas the bottom right image shows the maximum vertical 

and horizontal frequency (𝑐63). Different mappings from coefficient value to display color have been 

used in order to make relevant properties visible. 

 

Figure 3.4 The sample image's coefficient images for the Y channel using different display 
mappings 

Figure 3.3 2D-DCT's base functions. 
Horizontal frequencies 
increasing from left to right; 
vertical frequencies 
increasing from top to 
bottom. 
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It can be observed that the coefficient’s absolute values decrease as the frequencies that they represent 

increase. This is caused by the image’s overall smoothness, which is one condition for the JPEG codec 

to be efficient. 

Another observation regards the coefficients’ signs. While the signs are continuous in the zero-

frequency image (because this is the down-scaled input image), all other frequencies do not show this 

property. There are small connected regions with the same sign, however in general it changes very 

frequently across the image. 

In most implementations, both forward and inverse DCT are implemented efficiently using fast Fourier 

transform. The inverse DCT yields the original pixel values. Therefore, this step is lossless. 

3.1.4 Quantization 

The main compression step of the JPEG codec is the quantization of DCT coefficients. Each coefficient 

is scaled down by a constant factor and rounded to an integer representation. Usually, the quantization 

factors are calculated from the channel (i.e. Y channel quantization factors are different than Cb channel 

quantization factors) and the coefficient’s frequencies (i.e. higher frequencies are quantized more). This 

results in a lot of coefficients becoming zero or at least equal, which reduces the overall entropy. Due 

to its nature, quantization is a lossy step. The quantization factors heavily impact compression 

performance. 

This step is the first point at which the RTF-based approach differs from the original JPEG 

implementation. For one, instead of quantizing the DCT result, differences of predictions and original 

values are used (more on this later). Secondly, several quantization schemes are examined. 

3.1.5 Entropy coding 

The last step is to encode the quantized coefficients with the least possible amount of bits without further 

loss. Entropy coding is the tool used for this task. As a preprocessing step, a block’s coefficients are re-

arranged in a zig-zag order, beginning with low frequencies (with quite high values) and ending with 

the highest frequencies (with potentially low values due to quantization). This process has the effect that 

coefficients of similar values are situated next to each other, especially many coefficients with a zero 

value are at the end of the sequence. 

The actual encoding uses a combination of run-length encoding (RLE) and a Huffman code. RLE is 

used to efficiently encode series of zeroes while the Huffman code is used to minimize the result’s 

redundancy. More recent extensions to the JPEG standard also allow arithmetic coding instead of the 

Huffman code. However, throughout this thesis, Huffman compression is used. 

3.1.6 Decoding 

In order to decode a JPEG stream into an RGB image, all steps have to be inverted and executed in 

reverse order. 
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3.2 Regression Tree Fields 

The regression tree field is a structural model that evolved from both the Markov random field and 

regression tree. The following chapter introduces the necessary theoretical background of involved 

concepts. 

3.2.1 Gaussian Markov Random Fields 

Markov random fields (MRF) can be used to model the probability distribution of random variables 𝑌𝑖 ∈

ℝ𝑘 which are associated with a graph’s nodes. Figure 3.5 shows such a graph with vertices 𝑉 and 

undirected edges 𝐸. 

 

Figure 3.5 Sample graph with five random variables. The Markov blanket of 𝑌3 is highlighted in gray. 

In order to represent an MRF, the graph has to fulfill the local Markov property [KS80], that is for the 

probability density function 𝜋: 

𝜋(𝑌𝑖 = 𝑦𝑖|𝑌𝑘 , 𝑘 ≠ 𝑖) = 𝜋(𝑌𝑖 = 𝑦𝑖|𝑌𝑘 , (𝑖, 𝑘) ∈ 𝐸) 

This means that a variable is stochastically independent of variables that are not connected by an edge. 

The set of connected vertices (i.e. the influencing variables) for a given variable 𝑌𝑗 is called its Markov 

blanket. 

If all variables are concatenated into the vector 𝑌, the overall probability density may be expressed as a 

multivariate Gaussian [RH05]: 

𝜋(𝑌 = 𝑦) = √
|𝑄|

(2𝜋)𝑛
exp(−

1

2
(𝑦 − 𝜇)𝑇𝑄(𝑦 − 𝜇)) 

In the above definition, 𝑛 represents the number of variables, 𝑄 is the positive definite precision matrix 

with determinant |𝑄| and 𝜇 is the Gaussian’s mean vector. The Markov property forces all entries of the 

precision matrix that don’t correspond to an edge in the according graph to be zero, making the matrix 

sparse: 

(𝑖, 𝑗) ∈ 𝐸 ⇔ 𝑄𝑖,𝑗 ≠ 0 

The Gaussian’s covariance matrix Σ = 𝑄−1 is typically dense. 

Another property which is induced by the Markov property is the probability’s factorization over 

maximum cliques. A clique is a fully connected subgraph. Therefore, the maximum cliques of the 

sample graph above are 𝑐𝑙 = {{𝑌1, 𝑌2, 𝑌3}, {𝑌2, 𝑌3, 𝑌4}, {𝑌4, 𝑌5}}, yielding: 

𝑌1 

𝑌3 

𝑌2 

𝑌4 
𝑌5 



12 3. FUNDAMENTALS 

𝜋(𝑌 = 𝑦) =∏𝜙𝑐(𝑌𝑐)

𝑐∈𝑐𝑙

 

The factors 𝜙𝑐 only depend on a small subset of the graph’s variables and can be visualized in a factor 

graph. Factor graphs introduce a second form of nodes for the factors. Edges are then drawn between a 

factor and the variables it depends on. The sample graph yields the following factor graph: 

 

Figure 3.6 Sample factor graph 

Usually, not the probability densities are modeled, but energy functions, which are derived from the 

negative log likelihood: 

− log(∏𝜙𝑐(𝑌𝑐)

𝑐∈𝑐𝑙

) 

= ∑ log
1

𝜙𝑐(𝑌𝑐)
𝑐∈𝑐𝑙

 

∝ ∑ψc(𝑌𝑐)

𝑐∈𝑐𝑙

= 𝐸(𝑦) 

If the potentials 𝜓𝑐 are conditioned on an observation 𝑥, the definition transforms into a conditional 

random field (CRF) [BKR11]: 

𝐸(𝑦, 𝑥) = ∑ψc(𝑌𝑐 , 𝑥)

𝑐∈𝑐𝑙

 

𝜋(𝑌 = 𝑦, 𝑥) =
1

𝑍(𝑥)
exp(−𝐸(𝑦, 𝑥)) 

Here, 𝑍 is the partition function that normalizes the probability density. 

This model can be applied to images by associating each pixel with a separate random variable. 

Interpreting an input image as the observation 𝑥, the response image 𝑦 can be calculated as the 

probability’s maximizer: 

𝑌 = argmax
𝑦
𝜋(𝑌 = 𝑦, 𝑥) 

= argmin
𝑦
𝐸(𝑦, 𝑥) 

Such models can be defined successfully for various tasks such as image de-noising. Unary and pairwise 

factors can be computed efficiently and suffice in most cases. The image’s natural connectivity can be 

used to derive the factor graph, although every other factor definition is possible as well. Figure 3.7 

shows a sample factor graph for the standard 4-connectivity. Observations are included for reasons of 

completeness. Usually, they are omitted. 
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𝑌3 
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𝑌4 
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 Figure 3.7 Factor graph for natural 4-connectivity of an image. Dependencies of pairwise factors on 
observations are only visualized for the front-most slice for clarity reasons. 

3.2.2 Regression Trees 

Regression trees [BFOS84] are binary decision trees, which can be used for non-parametric regression 

of functions with arbitrary domains and ranges 𝑓:𝐷 → 𝑅. They consist of two node types: inner nodes 

represent feature tests and leaf nodes represent a result. 

The tree’s input is an element of the function’s domain, which is firstly processed by the root. Feature 

test nodes have two children and represent functions 𝑓𝑒𝑎𝑡: 𝐷 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}. If this function’s result 

for the tree input is 𝑡𝑟𝑢𝑒, the control flow is passed to the left child, otherwise to the right child. In most 

cases (also in the implementation used in this thesis), the feature function is a threshold test of a feature 

response 𝑟: 𝐷 → ℝ and 𝑓𝑒𝑎𝑡: 𝑖 ↦ 𝑟(𝑖) ≥ 𝑡 for an arbitrary threshold 𝑡 ∈ ℝ. 

A leaf node contains a single element of 𝑅. If the control flow reaches a leaf node, its content is returned 

as 𝑓’s result. Because the tree has a finite number of leaf nodes, there can only be a finite number of 

return values, which results in a discretization of 𝑅, even if the original range is continuous. One way to 

overcome this limitation is the usage of multiple trees with slightly different parameters, creating a 

regression forest. Each tree within this forest is evaluated separately and the results are averaged to 

produce a near-continuous range. However, regression forests are not covered in this thesis. 

Regression trees can be learned in a discriminative way by defining pairs of input and desired output. 

The tree depth significantly influences the regression’s quality. A small depth results in few leaf nodes 

which yield a coarse approximation, while a deep tree with lots of leafs can reconstruct the function 

more accurately. 

random variable 

observation 

factor 
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3.2.3 Regression Tree Fields 

Regression tree fields [JNSR12] combine regression trees and conditional random fields as introduced 

in the preceding sections. 

The likelihood of a certain result image 𝑦 for a given input x is expressed using a quadratic energy 

𝐸𝑊(𝑦, 𝑥) =
1

2
𝑦𝑇ΘW(𝑥)𝑦 − 𝑦

𝑇𝜃𝑊(𝑥) 

Here, 𝑊 describes the set of model parameters. This includes, besides others, parameters which define 

the functions ΘW and 𝜃𝑊. ΘW is a function which maps an input to an 𝑚|𝑉| × 𝑚|𝑉|-dimensional real-

valued matrix (𝑚 being the number of channels of the target image and |𝑉| being the number of pixels) 

and 𝜃𝑊 is a function which produces an 𝑚|𝑉|-dimensional vector. Throughout this thesis, output images 

always comprise a single channel, therefore 𝑚 = 1. 

As before, this total energy is split into factors, which are grouped into factor types. Every factor is then 

instantiated from a type by offsetting it by its according pixel’s position (the first pixel in the case of 

pairwise factors). In the example introduced earlier (Figure 3.7), there are three factor types: one unary 

type, one horizontal and one vertical pairwise type. This results in the following definition for the partial 

energy 𝐸𝑡,𝑓,𝑊 of a single factor: 

𝐸𝑊(𝑦, 𝑥) = ∑ ∑ 𝐸𝑡,𝑓,𝑊(𝑦𝑡,𝑓 , 𝑥)

𝑓∈𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑡∈𝑓𝑎𝑐𝑡𝑜𝑟 𝑡𝑦𝑝𝑒𝑠

 

𝐸𝑡,𝑓,𝑊(𝑦𝑡,𝑓 , 𝑥) =
1

2
𝑦𝑡,𝑓
𝑇 Θt,W(𝑥)𝑦𝑡,𝑓 − 𝑦𝑡,𝑓

𝑇 𝜃𝑡,𝑊(𝑥) 

A factor’s energy is only evaluated using a subset 𝑦𝑡,𝑓 of the target image. For unary factors, these are 

𝑚-dimensional vectors which represent a single pixel (the pixel which the factor is instantiated for). 

Θt,W yields an 𝑚 ×𝑚-dimensional matrix, and 𝜃𝑡,𝑊 returns an 𝑚-dimensional vector. For pairwise 

factors, the vectors of the two corresponding pixels are concatenated into a 2𝑚-dimensional vector 

(which also increases the matrix’ dimensionality). 

Every factor of the same type shares the same functions Θt,W and 𝜃𝑡,𝑊 with the rest of the type’s factors. 

Both functions are represented by a single regression tree 𝑋 → ℝ𝑚 × ℝ𝑚×𝑚 or 𝑋 → ℝ2𝑚 × ℝ2𝑚×2𝑚 

for unary and pairwise types, respectively, where 𝑋 represents the set of input pixels. The set of model 

parameters 𝑊 essentially contains the parameters of these trees, including feature tests and leaf values. 

The steps to calculate a factor’s local energy are therefore: 

1. Identify the according input pixel 𝑥 

2. Identify the according factor type 𝑡 

3. Identify the output vector (i.e. by concatenating two pixel vectors for pairwise factors) 

4. Propagate 𝑥 down the 𝑡-th regression tree to get matrix Θ and vector 𝜃 (note that these are not 

functions anymore) 

5. Evaluate 𝐸 =
1

2
𝑦𝑇Θ𝑦 − 𝑦𝑇𝜃  

The total energy’s minimizer with respect to output vectors Y is then the RTF’s response for a given 

input image 𝑋. This minimizer can be calculated efficiently using iterative optimization methods, which 

are beyond the scope of this thesis. 
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Discriminative training of RTFs combines regression tree learning and parameter optimization.  An RTF 

can be trained to minimize a custom loss-function, where the loss is a function 𝑙: 𝐺 × 𝑌 → ℝ which 

evaluates a prediction’s quality with respect to a ground truth 𝐺. In most cases it is desirable to minimize 

the distance of predictions and ground truth images (the prediction should match the ground truth as 

closely as possible), which suggest the usage of distance functions, such as mean squared error (MSE) 

or mean absolute error (MAE) , as loss functions. However, because parameter optimization uses quasi-

Newton methods, the loss function should be continuously differentiable while twice continuous 

differentiability is desirable. 

RTF training is performed iteratively in several rounds, starting with a single root node for each factor 

type’s regression tree and all factor instances are associated with this node. At the beginning of a round, 

the parameters (matrix Θ and vector 𝜃) of all leaf nodes are optimized to minimize the loss function. 

During this process, the eigenvalues of Θ are bounded by a custom range, which can be used to regularize 

the RTF (i.e. to prevent over-fitting and to allow the RTF to generalize). Furthermore, this constraint 

results in the local precision matrices to be positive-definite (cf. section 3.2.1). 

The next step in RTF training is the split of leaf nodes. A number of available feature tests are sampled 

and evaluated with respect to their contribution to the loss function’s gradient’s norm (again projected 

in such way that the resulting matrices’ eigenvalues are bounded). Assuming that a high gradient norm 

results in a quick optimization of the overall loss, the feature test which induces the highest projected 

gradient norm is chosen for the leaf node, making it a feature test node. The node’s parameters are 

copied into its new children, which does not change the RTF’s prediction. Higher prediction accuracy 

is achieved during parameter optimization in the next round. The factors contained in the node are then 

sorted in either of its children, based on the feature test’s response. 

This procedure is executed until a maximum tree depth is reached or until there are no more leafs which 

can be split (e.g. which contain only a single factor). A final parameter optimization finishes the RTF’s 

training. 

During training, there are essentially three parameters that can be used to control prediction quality: the 

loss function, the eigenvalue bounds, and the tree depth. All three parameters will be examined for their 

most appropriate values for image compression in the next chapters. The set of available feature tests 

and the number of sampled features also influence the prediction quality. However, these parameters 

are considered constant. 

3.2.4 Available implementations 

The authors of [JNSR12] provide full C++ code for their RTF implementation [MSR13], which will be 

used in this thesis. It is structured as a framework with various variation points for the previously 

introduced parameters, such as loss functions, image data sets, eigenvalue boundaries, etc. Minor 

adaptations were necessary, which will be explained in detail later. 

When all variation points are assigned, the framework’s two main functionalities are RTF training (for 

given pairs of input and ground truth images) and regression / prediction (given an input image).
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4 Improving JPEG with RTFs 

Figure 4.1 shows an overview of the modified 

codec. While in the original JPEG codec DCT’s 

results go straight to quantization, the modified 

approach uses them to train an RTF model. This 

training must be aware of the decoding procedure 

and adapt input images accordingly. However, 

during development, this awareness has been 

removed for fast evaluation. Training RTFs is a 

very time-consuming task and by changing 

successive steps (e.g. quantization parameters) 

already calculated RTF models would be 

invalidated. Instead, training is considered a stand-

alone step which is performed once, knowingly 

that the results will only approximate the actual 

codec performance. This allows adaptions of other 

steps without the need to re-train the model every 

time some parameters are changed. During 

development, which aims to find the most 

appropriate strategy for every step, this is 

considered a valid simplification. This behavior is 

consistent for every configuration and is unlikely 

to change the relative compression performance of 

different strategies compared to each other (i.e. the 

best configuration with this simplification is most 

likely the best configuration without it). When 

transferring development results into an actual 

codec, the code has to be changed slightly in order 

to incorporate the decoder awareness into the 

encoder. 

The difference calculation’s result, which is equal 

to the prediction step’s loss, is then passed on to coding. Because the coefficient differences may have 

different properties than the original coefficients, the coding methods may need to be adapted to these 

new properties. 

Each of the following sections focuses on a separate step in the above scheme, closing with the resulting 

optimal strategy. Through this greedy approach, an overall configuration is gained which is considered 

to have an optimal compression performance in means of decoded image quality and necessary storage 

size. 
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4.1 General Setup 

In order to optimize the compression strategy, a utility program has been developed that allows to 

exchange steps in the general compression scheme. This program is intended for development purposes 

and therefore keeps more data in memory than is necessary for compression, which allows a flexible 

utilization. After an image is loaded, it is converted into a 24 bit RGB representation (if the original data 

are in a different format) and cropped to a multiple of eight size. This avoids the need of filling in 

artificial data in the last row and column, allowing to focus on the actual compression. For the first two 

steps (color space transformation, DCT), code from libjpeg [IJG14] has been extracted and simplified. 

The remaining steps are custom implementations and can be chosen arbitrarily. 

4.2 RTF Definition 

One very distinctive property of RTFs is the definition of factors. The chosen RTF implementation 

supports both unary and pairwise factors, but no higher-order factors. In this thesis, their layout are 

defined by the integer parameter 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡𝑦𝑝𝑒 𝑐𝑜𝑢𝑛𝑡. Starting with a single unary factor type, each 

increment of the factor type count augments the factor graph with a pairwise factor type up to a densely 

8-connected graph. Figure 4.2 shows this correlation. 

 

Figure 4.2 Definition of factor types based on the factor type count. Vertices represent pixels (random 
variables + unary factors). Edges represent pairwise factors.  

The regression trees mainly use the features shipped with the RTF code. These are the following: 

 Unary feature: 

Returns the value of a single pixel at the coordinate of the factor, translated by the feature’s offset 

vector. Uses the channel specified by feature parameters. 

 Pairwise feature: 

Returns the difference of two pixels’ values. The first pixel is located at the factor position, 

translated by an offset. The second pixel is located either at the factor position, translated by a 

second offset (for unary factors) or at the factor’s second pixel location translated by the second 

offset (for pairwise factors). 

Additionally, two features have been implemented which return the factor’s x or y coordinate. These 

two features are only activated in single-image compression because they are not discriminative when 

processing multiple images. E.g. in an image set with a single motive, viewed from multiple 

perspectives, the same local structure may appear at several image locations. Therefore, a factor’s 

position is not expressive at all, leading to a loss in generality if used. 

RTF training and prediction works best if all pixel values are normalized, i.e. they are in the range 

[−1, 1] or [0, 1]. The process of normalizing input images will be discussed in a subsequent section. For 

1 2 3 4 5 
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now it may be assumed that the normalization of pixel value 𝑥 is achieved by dividing by the greatest 

absolute value of the entire image: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒: ℝ → ℝ:𝑥 ↦
𝑥

𝑑
 

𝑑 = max
𝑥 ∈ 𝑖𝑚𝑎𝑔𝑒

‖𝑥‖ 

4.3 Predictive Dependencies of Coefficient Images 

When predicting a coefficient image, some images might be more suitable as the prediction’s input than 

others. This can be caused by statistical correlation or higher-order relationships. In order to determine 

such dependencies, an experiment was conducted where every coefficient image of the Y channel (cf. 

Figure 3.4) was used to predict every other image. The prediction quality is measured with the peak 

signal to noise ratio (PSNR) which is defined as follows [ITU01]: 

𝑃𝑆𝑁𝑅 [𝑑𝐵] = 10 log10 (
𝑚𝑎𝑥2

𝑀𝑆𝐸
) 

= 20 log10𝑚𝑎𝑥 − 10 log10𝑀𝑆𝐸 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑝𝑥 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑝𝑥)

2

𝑝𝑥

 

Here, 𝑚𝑎𝑥 is the range of pixel values. For 8 bit channels, this is usually 255. In the experiment, the 

actual ranges of original pixel values have been used. If the prediction results in an error of 1 for all 

pixels of an 8 bit channel, the resulting PSNR is 20 log10 (
255

1
) ≈ 48.1 𝑑𝐵. An average error of 0.5, 

which is perfectly re-constructible by rounding, yields a PSNR of 20 log10 (
255

0.52
) ≈ 60.2 𝑑𝐵. Generally, 

higher values represent better prediction qualities with a perfect prediction resulting in an infinite PSNR. 

In the experiment a single RTF with a maximum tree depth of 10 is trained for every prediction. MSE 

loss is used during training, which automatically also optimizes for PSNR [JNR12]. Figure 4.3 shows 

the experiment’s results. 

 

Figure 4.3 Results of the predictive dependencies experiment for different RTF complexities. Every 
pixel stands for a pair of input coefficient image (vertical axis) and target image (horizontal 
axis). The pixel color represents the prediction quality. 
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The first observation that can be made is that some coefficient images can be predicted more easily than 

others (the according columns are brighter). In the case of a single unary factor, this applies especially 

to high-frequency coefficients. 

The second observation refers to single columns. Most columns produce uniform prediction qualities 

with only few irregularities. This leads to the conclusion that the choice of the respective prediction 

source does not (or only slightly) affect the prediction quality for the majority of coefficient images. 

However, there are some irregular columns or irregular pixels within a single column which this 

conclusion cannot be applied to. The irregularities’ appearances do not follow a strict rule across images 

and finding them would require a full search, which is extremely time-consuming. Therefore, the above 

hypothesis is extended to all image pairs, ignoring irregularities. 

These results are consistent across channels and images (i.e. not only specific for this sample image), 

allowing to set up an initial prediction scheme for compression: For every channel, the first coefficient 

images (zero-frequencies) are stored unchanged. For each remaining coefficient image, an RTF is 

trained which uses the three zero-frequency images as input (resulting in a three-channel input image). 

With this scheme, 3 ∗ 63 = 189 RTFs are used for prediction and three coefficient images have to be 

stored, along with the differences for predicted images. 

4.4 Quantization and Entropy Coding 

In order to evaluate the compression performance, initial methods for the last two steps are necessary. 

This section focuses on their initialization, as well as their optimization.  

As introduced in chapter 3.1, the JPEG standard uses a combination of RLE and Huffman coding, which 

may be used directly for encoding coefficient differences. This scheme’s suitability is assessed 

approximately by interpreting the coefficient differences (for coefficients 1 thru 63) and the source 

coefficients (for coefficients 0) as DCT coefficients. Through inverse DCT, an image is generated which 

is then encoded with an implementation of the JPEG encoder (in this case with the Microsoft .Net CLR 

implementation). This is possible because the differences are in the same range as the original 

coefficients. Because the zero-frequency coefficients are unchanged and differences are very small, it is 

very likely that the resulting image’s pixels do not exceed the range of possible pixel values. The work-

around of re-constructing an image through IDCT introduces another lossy quantization step, which has 

the effect that the coefficients and coefficient differences are changed slightly before being passed to 

JPEG’s internal quantization and entropy coder. Therefore, the result can only approximate the actual 

performance of the original encoder. However, a quick evaluation is possible because it is not necessary 

to extract the relevant code from a JPEG implementation. 

After encoding the image, it is immediately decoded to an RGB representation and the difference to the 

original is evaluated. Two measures are used to evaluate the image quality: PSNR (as introduced before 

with a peak signal of 255) and root mean squared error (RMSE, [RK03]), which is defined as the MSE’s 

root: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

Both measures have different advantages. PSNR can visualize changes of errors which are already very 

small. I.e. the PSNR raise of halving an error is a constant, independently of the error value. For RMSE 

those changes are smaller the smaller the original error value is, which makes them barely recognizable 
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for very small errors. On the other hand, the RMSE of a perfect reconstruction is 0, which is 

representable in a diagram. The according PSNR of ∞ 𝑑𝐵 is not suitable for visualization. 

In the assessment, RTFs for each non-zero-frequency coefficient image of the already introduced sample 

image are trained for MSE loss. Figure 4.4 and Figure 4.5 show the results of this procedure. 

 

Figure 4.4 Results of using JPEG encoding after prediction. (a) The re-assembled image from 
coefficient differences that is sent to the JPEG encoder. (b-d) Decoded images for different 
quality levels (b) 1 (c) 15 (d) 100. 

 

Figure 4.5 Rate distortion diagrams of using JPEG encoding after prediction. The rate represents the 
storage size which is needed in average to store a single pixel. Raw data require a rate of 3 
bytes per pixel. 

These results show that the compression ratio can be increased significantly, especially for low bitrates. 

However, the rate does not contain the storage required for saving the RTF models, which would require 

about additional 80 bytes per pixel for the chosen RTF complexity, thus making this scheme highly 

unsuitable for compression. Minimizing the size of RTFs is subject to other parts of the algorithm (most 

of all to the prediction strategy). Therefore, the additional size which arises from those models is ignored 

during the quantization and encoding’s optimization. 
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4.4.1 Adapted Quantization and Encoding 

Although the previous method yielded promising results, this section focuses on a custom 

implementation of quantization and encoding which is more suited for differences. Data quantization is 

performed similarly to JPEG’s approach, which involves dividing the data by a quantization factor and 

rounding it, which produces a 16-bit signed integer: 

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑓(𝑑) = 𝑟𝑜𝑢𝑛𝑑 (
𝑑

𝑓
) 

JPEG uses different quantization factors for different coefficients and channels in order to remove 

irrelevant (for a human eye) high-frequency contents. This contradicts the general-purpose nature of this 

thesis. Furthermore, experiments have shown that the differentiation of quantization coefficients based 

on the coefficient frequency leads to a decrease in compression performance (in means of storage size 

and image quality). Instead, this differentiation is based on whether a coefficient image is stored as 

original values (for the zero-frequency images) or differences (all other images). The reason for that 

decision is the assumption that the overall error which results from an error in a difference image is far 

less than from an error in a non-difference image because difference images are only used to correct the 

predictions slightly. Non-difference images do not have predictions and should, therefore, be re-

constructible as accurately as possible. 

Both quantization factors are expressed as bit depths using the following formula: 

𝑓(𝑏𝑖𝑡𝑑𝑒𝑝𝑡ℎ) = 214−𝑏𝑖𝑡𝑑𝑒𝑝𝑡ℎ 

The provided bit depth represents the number of bits that are needed to represent the full range of 

possible values after quantization. The DCT coefficients’ original range [−8192 , 8128] (cf. section 

3.1.3) requires 14 bits if rounded to integers. Therefore, a bit depth of 14 yields a quantization factor of 

1. This change of representation is not necessary but makes parameterizing the algorithm more 

convenient. 

After quantization, the entire data are passed into per-symbol RLE and Huffman coding [Huf14]. While 

the original JPEG applies these coding schemes to single blocks, this custom implementation encodes 

the entire data in a single pass. This allows to arrange data more efficiently (with respect to RLE), but 

comes with the requirement to hold the entire image in memory, which is already the case because a 

single DCT step yields pixels for all coefficient images. Therefore, the calculation of a single complete 

coefficient image has the side-effect that all other images are calculated as well. 

Figure 4.6 visualizes this scheme’s results. It achieves yet better compression ratios than the previous 

JPEG-based encoding scheme. High bit depths even allow perfect reconstruction of the input image. 

However, the visualized data does include neither the size of RTF models nor the Huffman tree which 

are both needed for decoding. 

In the remainder of this thesis, such families of encoding schemes will be referred to with a single 

representative data line (e.g. the 10-bit line in Figure 4.6) for reasons of clarity. Usually, 

parameterizations with lower non-difference bit rates yield a better compression performance at low 

rates, whereas higher bit rates achieve better results at high rates, which has to be kept in mind when 

interpreting such diagrams. Furthermore, because PSNR diagrams allow a cleaner visualization (except 

their inability to visualize perfect reconstructions), RMSE diagrams will only be used if necessary.  
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The suggested encoding scheme has been optimized with respect to several factors, such as quantization 

factor calculation and the order in which the coefficients are serialized into a stream. The final stream 

order serializes coefficient images according to their channel and then in a zig-zag order according to 

their index (i.e. channel/index order starts with: 0/0, 1/0, 2/0, 0/1, 1/1, 2/1, 0/8, 1/8, 2/8 …). Coefficient 

images are serialized row-wise. This roughly sorts coefficients in descending order, which is optimal 

for RLE. 
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Figure 4.6  Rate distortion diagrams for custom encoding scheme. Data points with equal bit depth for 
non-difference images are connected by dotted lines. These interpolation lines are only 
used to connect the data points visually; they are not based on actual data. 
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4.4.2 Encoding RTF Models 

The decoder needs to perform a prediction step, which requires the complete RTF model. Most model 

parameters can be considered constant (e.g. feature definitions) or can at least be stored in the file header 

with very little space requirements (e.g. factor type count). Regression trees do not fall within either 

class. The following section focuses on encoding such trees efficiently. 

The used RTF implementation allows to serialize the trained RTF model in ASCII form, which is 

obviously not efficient. This text serialization is parsed back into an internal tree representation which 

only contains necessary data. Such representations can be re-serialized into the original ASCII form in 

order to send them to the RTF implementation for prediction. Additionally, the internal representation 

can be serialized in a dense binary form which is appropriate for storage. 

Regression trees contain two node types: inner nodes and leaf nodes. Although the ASCII serialization 

contains the same data for all nodes, these are not necessary for prediction. Inner nodes only require 

feature information and leaf nodes only require the parameters of the local quadratic model as follows: 

 Inner nodes: 

 Feature Type (one of four possible types) 

 Channel 

 Offset 1 (2D-vector in the integer range [−15, 15]) 

 Offset 2 (2D-vector in the integer range [−7, 7]) 

 Threshold (real-valued number) 

 Leaf nodes: 

 𝜃 (real-valued vector; 1D for unary types, 2D for pairwise types) 

 Θ (real-valued matrix; 1×1 for unary types, 2×2 for pairwise types) 

Trees are serialized using a depth-first traversal. In that procedure, all nodes require an additional field 

which specifies if the node is an inner node or leaf node. This field is serialized as the first bit of a node. 

For inner nodes, the first offset is only necessary if the node represents a unary or pairwise feature, the 

second offset is only necessary in the case of pairwise features. Therefore, the size of serialized inner 

nodes varies between five and seven bytes, which is visualized in Figure 4.7. 

0 1 3 6 11 16 20 24 … 57 

1 Type Channel Offset1.X Offset1.Y Offset2.X Offset2.Y Threshold 

Figure 4.7 Data layout of inner nodes 

Integer components that allow negative values are encoded with a shift bias of half their range. Real-

valued components are encoded as 32 bit floating point numbers (IEEE 754 [IEEE87]). 

Leaf nodes consist completely of real-valued components (two for unary trees and six for pairwise trees), 

which are encoded as 32 bit floating point numbers as before. However, the first bit, which defines if 

the node is a leaf, must be zero. According to IEEE 754, a float’s first bit is its sign, which is zero for 

positive numbers. Due to this, any leaf’s first number must be forced to be positive. This is achieved by 

adding a small amount to every leaf’s first component. This number is determined in a pre-processing 

pass as the minimum of all leaves’ first components. It is rounded off to an integer value and stored in 

the stream before the actual tree serialization as a single byte. On deserialization, this bias is read back 

and reverted for every leaf.  
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For RTFs with a single unary factor type, this scheme can be reduced further. There are no inter-

dependencies of random variables in the resulting field, and each variable is influenced only by its own 

unary energy which is defined in the form of a one-dimensional quadratic function [JNSR12]: 

𝐸𝑡,𝑓,𝑊(𝑦, 𝑥) =
1

2
Θt,W(𝑥)𝑦𝑡,𝑓

2 − 𝜃𝑡,𝑊(𝑥)𝑦𝑡,𝑓 

The minimizer of the overall energy (with respect to 𝑦) can be calculated locally as follows: 

0 = 𝐸𝑡,𝑓,𝑊′(�̂�) = Θ𝑡,𝑊�̂� − 𝜃𝑡,𝑊 

𝜃𝑡,𝑊
Θ𝑡,𝑊

= �̂� 

Predictions are always the result of the division of the leaf’s vector and matrix (both 1-dimensional for 

unary trees). Therefore, it is not necessary to store both components, but only their quotient. On 

deserialization, this quotient is used as the vector component, setting the matrix to 1. This changes the 

RTF but preserves its solution. This procedure cannot be applied to RTFs with pairwise factors because 

their solutions cannot be calculated locally. 

An RTF may contain more than one unary factor type. This can be used to mimic regression forests. In 

this case (still without pairwise types), the local energy and minimizer is calculated as follows: 

𝐸(𝑦) =∑(
1

2
Θ𝑖𝑦

2 − 𝜃𝑖𝑦)

𝑖

 

𝐸′(𝑦) = 𝑦∑Θ𝑖
𝑖

−∑𝜃𝑖
𝑖

 

�̂� =
∑ 𝜃𝑖𝑖

∑ Θ𝑖𝑖
 

This implies that it is not sufficient to store only quotients for those trees. 

If serializations constructed in such way are processed by gzip for further compression, the result is 

bigger than the original input. This suggests that the developed scheme produces a very dense packing 

of the data with little redundancy. 

Huffman trees are encoded likewise. Inner nodes contain a single bit; leaf nodes contain the has-children 

bit along with their according code words, rendering the bias shift superfluous.  

4.5 Loss Functions 

Specific loss functions are used in the RTF training phase. They evaluate a prediction’s quality with 

respect to a ground truth with a single scalar value. The chosen function influences the training process 

in two ways. When the parameters of leaf nodes are optimized, the loss function is the objective to 

minimize. Additionally, when selecting the split feature, the loss function’s gradient is evaluated. This 

allows the loss function to influence prediction results significantly. An optimal loss function produces 

coefficient differences that require the least possible amount of storage to encode. The following section 

discusses a variety of functions and their applicability for compression. 
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4.5.1 Distance Functions 

Two loss function families have been examined. The first one is the family of distance functions. With 

these functions, optimization is performed with the ultimate goal to predict the original image as 

accurately as possible. They have their minimum at the point of zero-difference, i.e. where prediction 

and ground truth match exactly. This optimization objective is coherent with compression because zero-

differences can be encoded efficiently. Even if most differences are non-zero but very small, efficient 

encoding is possible through quantization. Deviations from the ground truth are penalized differently by 

each loss function. Difference functions are evaluated separately per pixel. The overall result is 

computed as the average of pixel differences. Through normalization, all pixel values are in the range 

[−1,1], allowing differences in the theoretical range [−2, 2]. 

MSE (mean squared error) is used very frequently in image 

processing because of its mathematical properties (efficiently 

computable, continuously differentiable). Furthermore, its 

optimization can be performed efficiently, using the average of 

differences. Near-zero differences yield a very small penalty, 

while big differences are penalized more strongly. This loss 

function is already implemented in the RTF distribution. 

While MSE loss is appropriate to prevent outliers (through their 

large penalty), a uniformly increasing penalty might be more 

desirable for compression. The MAE (mean absolute error) would 

be a good choice for this. However, the absolute value function is 

not continuously differentiable at the point of zero-difference, 

making it unsuitable for optimization. To overcome this 

shortcoming, [TCAF07] proposed to introduce a small 𝜖, resulting in a differentiable function (MAD). 

In the plot, 𝜖 = 0.01 in order to visualize its function. In the real implementation, it is much smaller. 

This function is also pre-implemented: 

𝑀𝐴𝐷(𝑑) = √𝑑2 + 𝜖 

After prediction, the differences are quantized to an integer. The 

number of bits required to represent any positive integer (without 

leading zeros) depends on its value as 𝑏𝑖𝑡𝑠 = ⌈log2(𝑣𝑎𝑙𝑢𝑒 + 1)⌉. 

This suggests the usage of a logarithmic distance function in order 

to minimize the total amount of bits. Like for MAD loss, a small 

epsilon has been introduced to make the function differentiable. 

This function is not pre-implemented: 

𝐿𝑜𝑔𝐷𝑖𝑠𝑡(𝑑) = √(log2(|𝑑| + 1))
2 + 𝜖 

A pre-implemented logarithm-based loss function is the 

Lorentzian error. This function is considered robust against 

outliers and has proven successful in a variety of image processing 

tasks [Tap07]: 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛(𝑑) = log (1 +
1

2
𝑑2) Figure 4.8 Loss function plots 
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4.5.2 Entropy Loss 

The entropy coding step after prediction and quantization aims to encode the data with little redundancy, 

i.e. as closely to its information entropy as possible. The Shannon entropy is a measure for the 

information gain of each symbol in a data stream [TKS94]. It defines a lower bound for the size of any 

lossless direct code (such as the used Huffman code). The entropy can be calculated from the relative 

frequencies 𝑓 of each symbol 𝑠: 

𝐻 = −∑ 𝑓𝑠 log2 𝑓𝑠
𝑠 ∈ 𝑆

 

The frequency of any quantized coefficient difference (bin 𝑏) for a given pixel distribution 𝑃 can be 

calculated as the number of pixels which produce this difference after quantization: 

𝑓𝑏(𝑃) =
1

𝑛
∗ |{𝑝𝑥 ∈ 𝑃 | 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑑𝑖𝑓𝑓𝑝𝑥) = 𝑏}| 

Assuming that the Huffman code introduces a constant redundancy, minimizing the coefficient 

differences’ entropy directly maps to minimizing the required storage size. If the coefficient images can 

be predicted perfectly (i.e. with zero-difference), the resulting entropy is minimal. That’s why difference 

based loss function can be considered as a special case of entropy minimization. However, the general 

entropy minimization approach aims to distribute the coefficient differences in an optimal way. This 

includes the case where all differences are equal, but non-zero, which also yields minimum entropy 

without the need for perfect predictions. 

In order to calculate the entropy, the training process has to be aware of the normalization and 

quantization parameters. Both are factors and can be combined to a single factor which can be used to 

transform normalized to quantized coefficient differences. 

Information entropy is only defined for discrete data, which is achieved through rounding in the 

quantization process. However, discrete data are not suitable for the quasi-Newton optimization used 

during training. Therefore, a continuous, differentiable approximation of the resulting entropy has to be 

found. 

This is achieved by adapting the frequency calculation. In the original approach, each quantized sample 

point increments the count for the bin in which they lie. Even when the sample is changed slightly, it is 

very likely that it will be in the same bin again, which results in a zero-derivative. This problem can be 

avoided by assigning an extent to each sample so it will increase the relative count of several bins instead 

of a single one. Then, the bin’s count is not an integer anymore but a real number because fractions of 

a sample’s extent may overlap a single bin. This extent can be constant (i.e. a box function), but can also 

be adjusted by choosing an appropriate window function (i.e. bins close to the sample are influenced 

more than bins farther away). The frequency calculation changes accordingly: 

𝑓𝑏(𝑃) =
1

𝑛
∑∫𝑤 (𝑥 − 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑑𝑖𝑓𝑓𝑝))𝑑𝑥

𝑏

𝑏𝑝∈𝑃

 

Where 𝑏 and 𝑏 are the bin’s lower and upper bound, respectively and 𝑤:ℝ → ℝ is the window function. 

Furthermore, the quantization function does not include the rounding anymore. Figure 4.9 visualizes 

this process for a sample distribution of 16 quantized values and a triangle window function. 
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Figure 4.9 Adapted frequency calculation for entropy loss. Left: Sample distribution for triangle 
window; each peak represents a single sample's weight. Right: the resulting frequencies 
for each bin.  

The final entropy-based loss function is calculated based on this real-valued frequency distribution, 

making the loss continuous. Besides being continuous, the loss function should be (desirably twice) 

continuously differentiable. The RTF implementation expects the loss function to provide its per-pixel 

gradient with respect to the prediction. This derivative can be calculated as follows: 

𝑔𝑝 ≔  ground truth value for pixel 𝑝 

𝑝𝑟𝑝 ≔ prediction for pixel 𝑝 

𝑞 ≔ quantization factor 

𝑓𝑏(𝑃) ≔ frequency of bin 𝑏 for pixels 𝑃 

𝑊(𝑥) ≔ antiderivative of w(x) 

𝐵 ≔ set of all bins 

𝑓𝑏(𝑃) =
1

𝑛
∑∫𝑤 (𝑥 −

𝑔𝑝 − 𝑝𝑟𝑝

𝑞
)𝑑𝑥

𝑏

𝑏𝑝∈𝑃

 

=
1

𝑛
∑ ∫ 𝑤(𝑥)𝑑𝑥

𝑏−
𝑔𝑝−𝑝𝑟𝑝

𝑞

𝑏−
𝑔𝑝−𝑝𝑟𝑝

𝑞
𝑝∈𝑃

 

=
1

𝑛
∑ [𝑊 (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝

𝑞
) −𝑊 (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝

𝑞
)]

𝑝∈𝑃

 

𝜕𝑓𝑏(𝑃)

𝜕𝑝𝑟𝑝
=
1

𝑛
[
𝜕

𝜕𝑝𝑟𝑝
∑ [𝑊(𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝
𝑞

) −𝑊 (𝑏 −
𝑔𝑝 − 𝑝𝑟𝑝

𝑞
)]

𝑝∈𝑃\𝑝

+
𝜕

𝜕𝑝𝑟𝑝
(𝑊 (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝
𝑞

) −𝑊 (𝑏 −
𝑔𝑝 − 𝑝𝑟𝑝

𝑞
))] 

=
1

𝑛
[0 +

𝜕

𝜕𝑝𝑟𝑝
(𝑊 (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝
𝑞

) −𝑊 (𝑏 −
𝑔𝑝 − 𝑝𝑟𝑝

𝑞
))] 

=
1

𝑛𝑞
[𝑊′ (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝

𝑞
) −𝑊′ (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝

𝑞
)] 

=
1

𝑛𝑞
[𝑤 (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝
𝑞

) − 𝑤 (𝑏 −
𝑔𝑝 − 𝑝𝑟𝑝

𝑞
)] 

𝐻(𝑃) = −∑𝑓𝑏(𝑃) log2 𝑓𝑏(𝑃)

𝑏∈𝐵
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𝜕𝐻(𝑃)

𝜕𝑝𝑟𝑝
= −∑ [

𝜕𝑓𝑏(𝑃)

𝜕𝑝𝑟𝑝
∗ log2 𝑓𝑏(𝑃) + 𝑓𝑏(𝑃) ∗

𝜕𝑓𝑏(𝑃)

𝜕𝑝𝑟𝑝
∗

1

ln 2 ∗ 𝑓𝑏(𝑃)
]

𝑏∈𝐵

 

= −∑ [
𝜕𝑓𝑏(𝑃)

𝜕𝑝𝑟𝑝
(log2 𝑓𝑏(𝑃) +

1

ln 2
)]

𝑏∈𝐵

 

=
1

𝑛𝑞
∑ [(𝑤 (𝑏 −

𝑔𝑝 − 𝑝𝑟𝑝
𝑞

) − 𝑤 (𝑏 −
𝑔𝑝 − 𝑝𝑟𝑝

𝑞
)) (log2 𝑓𝑏(𝑃) +

1

ln 2
)]

𝑏∈𝐵

 

This derivative can be calculated efficiently by ignoring bins that are not influenced by the respective 

pixel. This also avoids the calculation of log2 0 for a zero-frequency. In this case, the first factor in the 

sum (difference of window functions) is also zero, yielding zero for the entire term. 

If another sample is added to the sample distribution of 

Figure 4.9, the entropy changes continuously, which is 

visualized by Figure 4.10. It can be observed that the 

entropy is minimal if the additional sample is added to 

the bin with the highest frequency. Therefore, entropy 

loss training tries to produce coefficient differences that 

already often exist. 

The derivative’s continuity is caused by the window 

function’s continuity. However, because the window 

function is not continuously differentiable, the resulting 

entropy function is not twice continuously 

differentiable. This suggests the usage of a different 

window function. The window function should have the 

following properties. 

It should allow local evaluation, i.e. for a given window 

width 𝑒: 

𝑤(𝑥) = 0 ∀ 𝑥 < −
𝑒

2
∨ 𝑥 >

𝑒

2
 

It should be non-negative. This property asserts that the frequency is always positive for influenced bins 

(allowing the calculation of the logarithm). 

𝑤(𝑥) ≥ 0 ∀ −
𝑒

2
≤ 𝑥 ≤

𝑒

2
 

It should be normalized. Although this property is not necessary, it simplifies the code because 

frequencies can be normalized with the number of pixels: 

∫𝑤(𝑥)𝑑𝑥

𝑒
2

−
𝑒
2

= 1 

Additionally, it should be continuous and at least once continuously differentiable. 

A window function which fulfills these properties is the Hann window [Har78]: 

Figure 4.10 Entropy change if another 
sample with a certain value is 
added. 
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𝑤(𝑥) = { 

1

𝑒
(1 + cos (

2𝜋𝑥

𝑒
)) −

𝑒

2
≤ 𝑥 ≤

𝑒

2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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−0.5 𝑥 < −
𝑒

2
𝑥

𝑒
+
1

2𝜋
sin (

2𝜋𝑥

𝑒
) −

𝑒

2
≤ 𝑥 ≤

𝑒

2

0.5 𝑥 >
𝑒

2

 

Figure 4.11 shows the changed behavior of the continuous entropy function if the Hann window is used. 

The overall entropy is smaller as opposed to the triangle window because the Hann window is more 

focused on its center. Both samples (triangle and Hann window) use a window width of 3. 

 

Figure 4.11 Hann window and resulting entropy 

The approach described above allows to train a single RTF for optimal entropy of quantized differences. 

However, prediction schemes may include several RTFs (e.g. the initial scheme uses 189 RTFs). All 

differences are encoded together. Therefore, only the total entropy of all differences is a measure for the 

prediction quality, which is not automatically minimized by minimizing partial entropies. 

In order to minimize the overall entropy, subsequent trainings have to be linked to each other. This is 

achieved by transferring the final frequencies to the next training round, which in turn calculates the 

actual frequencies from those and the distribution of its own prediction. Latter trainings then aim to 

produce differences that already exist in previous trainings. One problem of this approach is that the 

impact of trainings on the final entropy decreases from round to round, rendering the last rounds virtually 

powerless. A possible solution is to emulate a simultaneous training where all predictions have equal 

influence. This is achieved by using a single RTF to predict all 64 coefficient images of a channel. The 

maximum tree depth is increased by 6 to maintain fairness of comparison. These first six levels could 

be used to choose the correct subtree (26 = 64). Although this is most likely not what the training 

procedure will produce, such construction should perform at least as well as 64 separate RTF which are 

trained together for a single entropy. Details on how multiple inputs and outputs are handled by the RTF 

stage are described in a subsequent section. 

4.5.3 Comparison of Loss Functions 

The previous section introduced several loss functions, which all perform differently with respect to 

compression. Figure 4.12 shows the final compression results if all functions are used to compress the 

same image. The rate does include neither the RTF size nor the size of Huffman trees. All representatives 

encode non-differences with 10 bit. Training of entropy RTFs has been performed with the according 

difference bit depth. The complete data set can be examined on the accompanying CD. 
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Figure 4.12 Comparison of Loss Functions. The sample image (bottom right) will be used for 
subsequent experiments.  

There are obviously two loss functions which are superior to the other ones: MAD and LogDist. While 

MAD loss produces improved image quality for small rates, logarithmic distance loss is preferable for 

very high qualities. Entropy loss poses an improvement as opposed to MSE loss but does not achieve 

the performance of MAD and LogDist. Surprisingly, the improvements on entropy loss discussed in the 

previous section (linking frequencies, simultaneous prediction) perform worse than the original 

implementation where each prediction is optimized separately. These results are reproducible 

qualitatively for other images. 

If high image qualities are desired, lossless compression might be more appropriate. Therefore, the rest 

of this thesis focuses on MAD loss. 

4.6 Eigenvalue Bounds 

One parameter set which has not been considered so far is the set of eigenvalue boundaries. Eigenvalue 

bounds constrain the eigenvalues of the leaves’ matrix parameters to a particular interval. In theory, a 

tighter interval has two effects. Predictions become less distinctive, i.e. the possible error for the training 

data set may increase, but the RTF should generalize better for unseen data. This property is only 

important for scenarios where general RTFs are pre-installed and not trained for a specific data set. 

Secondly, the time required for training changes. Although training time varies strongly, in average a 

tighter bound results in faster training. Both effects are contrary. For compression, a small prediction 

error is necessary (loose interval) and little training time is desirable (tight interval). Figure 4.13 shows 

how different eigenvalue bounds influence compression performance (again 10-bit non-difference 

encoding is used). 
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Figure 4.13 Comparison of compression performance for different eigenvalue bounds 

In this case, training for the E3 interval is even faster than for the E2 interval (12:32 min vs. 15:47 min). 

For different images, the training time varies significantly. However, the E3 interval always yields the 

best compression performance, which is, therefore, used for subsequent experiments. 

4.7 RTF Input Representation 

RTFs are trained in a discriminative way, i.e. based on pairs of input and output images. Output images 

are single one-channel coefficient images, the type of input images can vary according to the used 

prediction scheme. In most schemes, input images consist of one or several coefficient images. Each 

source image forms a separate channel. Two artificial channels are added to every input image in order 

to identify the target image. All pixels within one of these channels are equal and represent the target 

image’s coefficient index and channel. This approach allows to predict several target images from the 

same input image. 

Both input and output images are normalized. Three normalization methods have been examined for 

their suitability for compression. Each method requires additional parameters to be stored in order to 

reconstruct the normalization and de-normalization on decoding. 

The simplest form of normalization is division. For each coefficient image – both source and target 

images – it is necessary to store the divisor. In order to keep this additional space as small as possible, 

the divisor itself is quantized and stored as a single byte. The coefficient range requires a maximum 

divisor of 8192. When distributed over the 256 states of a byte, a quantization factor of 32 is necessary. 

The normalization method is then: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑣) =
𝑣

32 ∗ (𝑑 + 1)
 

The divisor 𝑑 can be calculated from the image’s maximum absolute value: 

𝑚𝑎𝑥

32(𝑑 + 1)
≤ 1 

⌈
𝑚𝑎𝑥

32
− 1⌉ = 𝑑 
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The second normalization method introduces a bias shift to make all values positive: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑠(𝑣) =
𝑣 + 32𝑠

64(𝑑 + 1)
 

Both parameters are stored as a byte and require a total of two bytes per image. 

The last method is based on [RK03]. It stores the coefficients’ signs in a separate bit vector and performs 

a division. This makes the coefficients more uniform with the price of additional storage. This method 

requires 
#𝑝𝑥

8
+ 1 additional bytes per image. 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑣) =
|𝑣|

32 ∗ (𝑑 + 1)
 

Figure 4.14 shows the results of these three normalization methods. 

 

Figure 4.14 Comparison of normalization methods. Left: Rate includes only coefficient differences. 
Right: Rate also includes additional data (normalization parameters, Huffman trees).  

For MAD loss, AbsDivide does not pose an improvement of compression performance. This is different 

for other loss function like MSE. However, its requirement to store the signs makes it an ineligible 

candidate. Divide and ShiftDivide normalization produce similar results, even for smaller tree depths. 

Because the shift does not result in a significant improvement, it is considered superfluous. Therefore, 

the optimal normalization method is the simple Divide normalization. 

4.8 Prediction Strategy 

The previous sections assumed that a separate depth-10 RTF for each non-zero-frequency coefficient 

image is trained. This strategy would require about additional 80 bytes per pixel to store the RTF models, 

which is far too much. This size can be reduced by decreasing the maximum tree depth, by defining 

fewer factor types, and by using fewer RTFs. The following section focuses on developing an alternate 

prediction scheme which uses less RTFs. Additionally to varying the prediction order, the maximum 

tree depth is decreased to 7. This reduces the required size of a single RTF from approximately 0.4 bytes 

per pixel to 0.05 bytes per pixel (in the sample image). 
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All prediction schemes have in common that the three zero-frequency coefficient images are stored as 

non-differences while all other parts are predicted. The following schemes have been examined with 

respect to their compression performance: 

The initial scheme uses separate RTFs (189 in total) to predict each coefficient image from the three 

zero-frequency images (C0 images). This strategy is appropriate if all images are fundamentally 

different and share no commonalities. However, storing the RTF models requires a huge amount of 

memory. Therefore, this scheme is only suitable – if at all – if the RTF size can be distributed over a lot 

of pixels, i.e. for very big images or image data sets. This scheme will be referred to as C0ToAll. 

The row-wise scheme builds upon the C0ToAll scheme for coefficient images with a zero horizontal 

frequency. However, each coefficient row of a channel (i.e. all images with the same vertical frequency) 

are predicted with a single RTF, using the three zero-frequency images and the respective predecessor 

(i.e. coefficient image 3 uses the three zero-frequency images and its predecessor image 2). This makes 

a total of 3 ∗ (7 + 8) = 45 RTFs. 

The RTF count can be reduced further with the observation that respective coefficient images of 

different channels are correlated. Therefore, a single RTF can be used to predict all coefficient images 

of a color channel, using the three zero-frequency images and the partner of the luminance channel. The 

luminance channel is predicted like in the row-wise scheme with the modification that the first column 

(images with zero horizontal frequencies) is predicted with a single RTF from their predecessors. This 

results in a total of 1 + 8 + 2 = 11 RTFs, which is why this scheme will be referred to as 11RTFs. 

The initial C0ToAll scheme can be modified to use fewer RTFs for the same predictions, i.e. either a 

single RTF per channel (where images are predicted in the same way as before) or a single RTF for the 

entirety of coefficient images. 

As stated in the introductory chapter, coefficient images are not smooth like the original image. This 

might cause RTFs to perform better on plain images than on coefficient images, especially if pairwise 

factor types are used. That’s why it might be more efficient to predict the color channels in the spatial 

domain rather than the frequency domain once the luminance channel has been restored. The luminance 

channel is predicted like in the 11RTFs scheme, also yielding a total of 11 RTFs. 

Figure 4.15 shows how the different prediction strategies perform with respect to compression 

performance. Again, each graph is the 10-bit-non-difference representative of the whole family of 

compression parameters. 
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Figure 4.15 Comparison of prediction strategies. Left: Rate includes only coefficient data. Right: Rate 
includes normalization data, Huffman tree, and RTF models. The graphs for C0ToAll and 
Row-wise are not on this chart because the large number of RTFs induces high rates (about 
20 and 5 bytes per pixel respectively).  

Two properties can be observed in these charts. Disregarding additional data, only the original approach 

with separate RTFs per coefficient image represents an improvement over JPEG. In fact, all other 

strategies produce predictions that have large differences to the original. These differences are often in 

the same range as the original coefficients. In these cases, RTF prediction does not pose an improvement 

because the differences’ entropy is nearly equal to the non-differences and therefore can’t be encoded 

more efficiently.  

On the other hand, the number of RTFs significantly increases the rate. Only if the RTF approach proves 

to scale well (i.e. prediction quality is preserved for a larger number of pixels and constant RTF 

complexity), it may be useful for compression at all. Each coefficient image of the sample has 748 

pixels; the tree depth of 7 allows a maximum of 64 leaves per tree, which result in average-quality 

predictions (i.e. prediction is not perfect, but differences are significantly smaller than the original 

pixels). The previous experiment with a maximum tree depth of 10 (512 leaves max) yielded far better 

results. This represents almost a 1:1 mapping from pixels to leaves in the regression trees, which does 

not support the well-scaling assumption. 

4.9 RTF Complexity 

Before analyzing the scaling behavior of the RTF approach, the following section examines how the 

RTF complexity (maximum tree depth and factor type count) influences the prediction quality. Both 

parameters are reflected directly in the storage requirements of an RTF. 

More factor types densify the conditional random field, which allows the modeling of inter-pixel 

dependencies. Furthermore, both training time (encoding) and testing time (decoding) increase as more 

factor types are present. Figure 4.16 visualizes how the number of factor types influences compression 

performance. 
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Figure 4.16 Comparison of different RTF complexities (factor type count) 

Experiments with smaller trees have shown that RTFs with four and five factor types further improve 

the compression performance (compared to three factor types), which is not obvious in the diagram. 

One reason for this is that the additional trees can store more data. 

Regression trees for the RTF are trained level by level and the parameters 𝜃 and Θ are stored at each 

node. This allows to revert the training process, i.e. for a given RTF it is easy to infer another RTF with 

shorter trees by simply cutting off nodes deeper than a pre-defined depth. The resulting RTF will behave 

equally to the original RTF if this had been trained only up to the pre-defined depth. While this behavior 

is not relevant in compression practice, it allows to evaluate different tree depths quickly. Figure 4.17 

shows this evaluation’s result. 

 

Figure 4.17 Comparison of different maximum tree depths for a three-factor-type RTF 

This experiment shows that the prediction quality decreases quickly as the RTF complexity is reduced. 

The smallest complexity which yields usable predictions is the depth-8 RTF which allows a maximum 

of 384 leaves in all three trees (for 748 pixels). However, all complexities – even the depth-1 RTF – 
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need far too much storage for the RTF model. If additional data is considered, deeper trees increase the 

overall rate monotonically, regardless of the improved predictions. 

4.10 Compression of Image Data Sets 

The method to compress image data sets is almost identical to single-picture compression. The only 

difference is that the training step is provided with coefficient images from each image of the set 

simultaneously. This approach optimizes the RTF for the mean error across all images if an error loss 

function is used. For entropy loss, it is necessary to calculate the frequencies for each image separately, 

which is not implemented yet. 

In order to evaluate the scaling-behavior of the RTF prediction, an image set of 100 similar images (all 

showing landscapes) has been encoded. The previous section did not yield a definite optimum for the 

number of factor types, so the following experiment will use a three-factor-types RTF, which should be 

able to model all necessary dependencies. Furthermore, the only strategy which has proven to improve 

the compression performance is used, which trains a separate RTF for each coefficient image. This also 

allows coefficient images of different frequencies to have fundamentally different properties (regarding 

RTF prediction) because each RTF specializes on a single frequency. 

One coefficient image in this set consists of 1024 pixels. Previous experiments have shown that good 

predictions are achieved with a 1:1 mapping from pixels to leaves. Assuming that this ratio is 

independent of the number of images, this suggests the usage of a depth-9 to depth-10 RTF (with a 

maximum of 768 and 1536 leaves for all three trees, respectively) for this experiment. If this assumption 

is wrong, and the ratio refers to the total pixel count (102,400 in this case), a depth-16 RTF would be 

more appropriate. 

Indeed, this experiment’s results do not support the well-scaling assumption. The depth-10 RTF 

produces unusable predictions, whereas the predictions of a depth-15 RTF are of average to good 

quality, which leads to the conclusion that images in the frequency domain do not share valuable features 

that can be used by the regression trees. Instead, almost every pixel of every image needs a separate path 

in the RTF to be predicted correctly (or at least nearly correctly). However, this basically outsources an 

image’s data into the RTF, which does not pose a real model in the sense of machine learning. 

4.11 Comparison to RTF De-blocking 

In chapter 2 the application of JPEG de-blocking has been introduced [JNR12], which also represents a 

kind of image compression with the help of RTFs. Through the usage of RTFs, this approach is a direct 

competitor to the method developed in this thesis. The following section compares both methods with 

respect to compression. 

If the RTF models can be considered available (i.e. without the need to store them explicitly), the RTF-

based compression poses a significant improvement and outperforms the de-blocking approach. 

However, de-blocking uses an RTF model which generalizes even to images that are not used during 

training. Hence, this approach scales very well, which is not the case for the RTF-based compression. 

Therefore, if the size of RTF models is considered, de-blocking is the only of both methods that can 

improve JPEG compression.
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5 Implementation Details 

In order to evaluate the compression performance for the various parameter combinations, an application 

has been developed which can assemble an overall scheme from atomic steps. The following chapter 

focuses on this program’s implementation. 

5.1 Architecture 

The entire application consists of three 

components. The transformations library is a 

dynamically linked C++ library which handles 

low-level conversions such as DCT and color 

space transformations. The RTF management is 

also a C++ library. It provides methods to train 

RTFs and perform predictions using the RTF 

implementation from [JNSR12]. It is also 

responsible for converting input data into the 

correct data structures and for custom loss 

functions. The GUI and high-level logic are contained in a C# executable which in turn uses the 

aforementioned libraries via Platform Invoke. High-level logic includes code for assembling the final 

compression scheme and performing evaluations. 
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Figure 5.2 Reduced class diagram of the GUI and high-level logic component 
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The GUI and high-level logic component obeys to the Model-View-ViewModel (MVVM) design 

pattern, which is a variation of the MVC pattern. The view model’s task, which is situated between the 

view and the model, is to provide the model’s data and functionality in a way that can be handled by the 

view. One main difference between MVVM and MVC is that in MVVM the view specifies which view 

model to use, whereas in MVC the controller specifies which view is presented to the user. 

Multiple images can be loaded into the application. For each image an ImageData object is created, 

which holds the image in both spatial and frequency representations. The ImageDataVM wraps these 

data in a view model and adds GUI-specific properties, such as a transformation matrix to modify the 

visualization. 

RTFPrediction objects store trained RTF models along with the predictions for which they are used. 

The models are represented in the serialized form of the RTF library. However, they can be easily 

converted to internal tree structures with the RTFReader and back to serializations with the 

RTFWriter. 

The variable steps of the compression schemes are objectified in several classes. Prediction strategies 

implement the IPredictionStrategy interface (strategy pattern) and define in which order and from 

which sources image parts are predicted. The actual prediction process is executed by the ViewModel 

using inversion of control. 

During prediction, a set of normalization parameters (INormalizationParameters) is created for 

each ImagePart. Normalization parameters are used to normalize image data to a [−1, 1] range before 

prediction. Which type of normalization parameters is created is defined by the 

NormalizationParametersCreator (reflective factory pattern). 

Objects of type CodecStrategy (strategy pattern) define how the prediction results are encoded in the 

final data stream, i.e. which data are serialized and how they are encoded. 

The above architecture’s primary design goal is flexibility in terms of compression scheme variability. 

Performance and memory efficiency are subordinate. This allows to store data suboptimally (e.g. image 

data in various representations) if this increases flexibility (different prediction strategies use different 

image representations). 

5.2 Implementation of Entropy Loss 

The RTF implementation requires every loss function to define an empty tag class (usually in the Loss 

namespace) and the actual implementation (usually in the Loss::Detail namespace). Additionally a 

template specialization of the LossDispatcher is necessary. E.g. for MSE loss: 

namespace Loss { 

class MSE; 

namespace Detail { 

 template <…> struct MSE  { 

  static … Objective(…) { … } 

  static void Gradient(…) { … } 

 } 

} 

} 
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For entropy loss, a different structure has been chosen: The tag class is not empty anymore but contains 

necessary data for the loss function (such as quantization factors and frequencies of previous 

predictions). The implementation is split into two structures – one untemplated struct which defines 

generic functionality (such as the window function and frequency convolution) and the default templated 

struct. This distinction is necessary because both the templated implementation and the tag class need 

to access the generic functionality of the untemplated implementation. Although it would be possible to 

define the generic functionality in the tag class, it is considered cleaner to keep the tag class as slim as 

possible (with only meta-data). 

In order to perform the frequency calculation, the definition of the window function double window 

(double) and its indefinite integral double windowIntegral(double) is necessary. The 

convolution is calculated incrementally by evaluating distinct values of the integral function. The 

definition of the derivative is not necessary because the loss function’s gradient can be calculated from 

the original window function. 

Furthermore, the RTF implementation has been adapted to include a pre-processing step for loss 

functions. This pre-processing step is used to calculate the total frequencies of all images before 

calculating the entropy and gradient. If the frequencies were not calculated in a pre-processing step, the 

objective function and gradient function could only access the frequencies of their respective images 

and previous images. I.e. the gradient calculation for the first image would not consider frequencies in 

the second and subsequent images. 

5.3 Selected Design Patterns and Structures 

The flexibility requirement strongly suggests the usage of design patterns where appropriate. The 

following section focuses on a selection of utilized patterns beyond the already introduced strategy and 

factory patterns. 

5.3.1 Assembling Prediction Strategies 

The ViewModel’s TrainAndPredict() method takes a list of prediction steps as the first argument, 

where a PredictionStep consists of a number of source images (defined by coefficient index and 

channel) and a target image. This list is a complex type whose construction needs to be performed 

carefully. This suggests the usage of the builder pattern (actually a variation of the original pattern). The 

builder pattern allows to construct complex types step by step, enforcing protocol constraints (e.g. order 

of data, value checks etc.) Additionally, the builder pattern is most suitable for a fluent interface, which 

allows a convenient usage. The prediction step builder’s interface is defined as follows: 

class PredictionMaker { 

PredictionMaker AddSources(params int[] coeffChannels); 

PredictionMaker AddTarget(int coefficient, int channel); 

PredictionStep[] Make(); 

} 

This class can be used as follows: 

TrainAndPredict(new PredictionMaker() 

.AddSources(0, 0, 0, 1).AddTarget(1, 0) 

.AddSources(0, 2, 1, 0).AddTarget(2, 0).Make(), …); 
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This defines an RTF that is used to predict two coefficient images. The image 1/0 (index/channel) is 

predicted from the images 0/0 and 0/1; image 2/0 is predicted from 0/2 and 1/0. During construction, 

each input is checked for validity. Furthermore, the builder ensures that every target has sources and 

that every source has a target. 

5.3.2 Dynamic Serialization Order 

All codec strategies – except the JPEG encoder – need to serialize input data into a stream before further 

compression (RLE, Huffman) can be applied. The order in which data are linearized significantly 

influences compression performance. A solution that can construct a serialization in an arbitrary order 

dynamically is essential to evaluate the compression performance without the need to re-compile. 

Usually, the code for a hard-coded stream order looks as follows: 

for (int channel = 0; channel < 3; ++channel) 

 for (int c = 0; c < 64; ++c) 

  for (int y = 0; y < height; ++y) 

   for (int x = 0; x < width; ++x) 

    serializedData[i++] = structuredData[x, y, c, channel] 

 

A change of the order would require re-arranging the for statements. Instead, the serial index (formerly 

i++) can be calculated explicitly by an external function from the structured position vector [x, y, 

c, channel]. If only sequential serializations of each parameter were allowed (e.g. arrange all c’s 

from 0 through 63), this method would be required to calculate a dot product with pre-calculated 

coefficients. However, more advanced serializations are possible (e.g. zig-zag serialization), which 

cannot be calculated with a simple dot product. In order to allow such orders, the index function is 

calculated on demand in a recursive way. A function produced in this way can be used by the codecs to 

serialize data: 

streamOrder = StreamOrder.Construct(width, height, StreamComponent.Channel, 

StreamComponent.CoefficientZigZag, StreamComponent.X, 

StreamComponent.Y); 

 

… 

serializedData[streamOrder(x, y, c, channel)] = structuredData[x, y, c, channel] 

 

The number of stream components that are passed to this method is variable, i.e. the same method can 

be used to construct orders for data of arbitrary dimensionality. 

5.3.3 Updates of the View 

The MVVM pattern strongly relies on data binding to display data in its views. This means that data is 

not assigned to display controls directly (e.g. text for text boxes). Instead, only the data’s location is 

specified. This allows lazy evaluation of data; i.e. UI data need only be calculated if there is a control to 

display them. 

Another advantage of this approach is that UI controls do not need to be updated manually. Most data 

objects provide an event that is raised whenever the object’s content is changed. By applying a variation 

of the observer pattern, bindings can update controls automatically when their data source changes. 
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Additionally, these events can be used independent of views. E.g. the ViewModel watches all RTFs for 

changes. Whenever an RTF is changed (e.g. through tree reduction), the view model initiates a re-

prediction of involved targets (loose coupling). Furthermore, some statistics are updated (e.g. maximum 

tree depth and RTF storage size).
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6 Conclusions 

This thesis has shown that JPEG compression can be improved significantly by encoding differences if 

image parts can be predicted reliably. Furthermore, the results demonstrated that RTF models are not 

suited to predict images in the frequency domain as there are no or few usable features in the input 

images. Appropriate preprocessing steps or different image representations might change the RTF’s 

suitability, which is subject to further research. 

One strength of the RTF model is loss-specific training. Indeed, the choice of loss functions has great 

influence on the compression performance. A novel form of entropy optimization has been developed 

in this thesis. Although this loss function turned out to be outperformed by MAD and LogDist loss in 

its current form, more favorable parameterizations (e.g. window width) and better integration in the 

optimization process (avoidance of local optima) might increase the according compression 

performance. Further research on this topic may result in a loss function which is superior to others with 

respect to compression. 

The developed application is optimized for flexibility in terms of software design, which makes it most 

appropriate as a basis for ongoing research efforts. This includes – besides the aforementioned topics – 

the analysis of different machine learning models and different types of media (such as volumes and 3D 

meshes). 
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