



# **Computer Graphics II**

# **3D Scanning**

#### contents



- Overview of 3D Acquisition Techniques
- Camera and Projector Calibration
  - 2D Projective Geometry and Homographies
  - Geometric Camera Model
  - Camera Calibration
  - Projector Model and Calibration
- Triangulation
- <u>Structured Light Approaches</u>
  - Acquisition Setups and commercial systems
  - Structured Light Approaches
  - Direct vs indirect illumination
  - Robust Pixel Classification



# **OVERVIEW OF 3D ACQUISITION TECHNIQUES**





mechanical measurement of individual points



Time of flight till detection of ultrasonic echo



tomographic reconstruction from x-ray images taken at many view points





precise laser triangulation measurement



spatially varying excitation of hydrogren atoms in magnetic resonance tomography



volume visualization of MRI-Volume



dynamic phase shift measurement

## **RGBD-Cameras**



- today exist affordable 3D cameras from different manufacturers
- plug&play via USB
- joint acquisition of color image and depth map with 30-90 fps
- Hardware architecture:
  - infrared projector projects structured light pattern
  - infrared camera acquires object with projected pattern
  - Reconstruction algorithm computes depth map
  - color camera acquires RGB image





#### [Multi-view] Stereo Acquisition





system calibration and finding corresponding pixel locations is the basis for 3D point reconstruction via triangulation





#### **3D Scanning with Structured Light**





The projected patterns encode the projector column. For triangulation the ray through the camera pixal is intersected with plane through the projector column.





# 2D PROJECTIVE GEOMETRY AND HOMOGRAPHIES

# **Camera Projection**



- In computer vision the perspective projection of a pinhole camera is modeled in a coordinate system with the pinhole in the origin and the z-direction corresponding to the view direction (y-direction points downwards) projection to the image plane at Z = 1 from division by Z-coordinate (corresponds to w-clip in computer graphics)
- homogeneous image point and 3D point are equal!



# **2D Projective Geometry**

- camera projections map points on a plane with a homography to image plane
- This can be modeled with 2D homogeneous coordinates

$$\widetilde{u} = \widetilde{H}\widetilde{x}$$

$$\widetilde{\boldsymbol{u}} = \begin{pmatrix} \widetilde{\boldsymbol{u}} \\ \widetilde{\boldsymbol{v}} \\ \widetilde{\boldsymbol{\lambda}} \end{pmatrix} \stackrel{\widetilde{\boldsymbol{H}}}{\longleftarrow} \begin{pmatrix} \widetilde{\boldsymbol{x}} \\ \widetilde{\boldsymbol{y}} \\ \text{homo-} \\ \text{graphy} \end{pmatrix} = \widetilde{\boldsymbol{x}} \\ \text{world} \\ \text{plane}$$









• a point: 
$$\widetilde{\mathbf{x}} = (\widetilde{x} \quad \widetilde{y} \quad \widetilde{z})^T \in P^2$$

- a line:  $a\tilde{x} + b\tilde{y} + c\tilde{w} = 0$
- line as homogeneous vector  $\tilde{\boldsymbol{l}} = (a \ b \ c)^T \in \overline{P}^2$
- invariance to scalar multiplication  $\tilde{x} \sim \lambda \cdot \tilde{x}$ ,  $\tilde{l} \sim \lambda \cdot \tilde{l}$
- points and lines are dual:  $\widetilde{x}$  is on  $\widetilde{l}$  if  $\widetilde{l}^T \widetilde{x} = 0$
- line through two points  $\tilde{l} = \tilde{x}_1 \times \tilde{x}_2$
- intersection of two lines  $\widetilde{x} = \widetilde{l}_1 \times \widetilde{l}_2$

# **2D Projective Transformation**



 A homography is defined as a projective transformation that maps from the projective plane to the projective plane bijectively



The homogeneous matrix representation is defined up to scale

 $\widetilde{H}\sim\lambda\widetilde{H}$ 

- from 9 parameters, 8 are degrees of freedom (dof)
- 4 corresponding points determine homography
- transformation of lines similar to normals in 3D case:  $\tilde{l}' = (\tilde{H}^{-1})^T \tilde{l} = \tilde{H}^{-T}\tilde{l}$

# **Estimation of Homography**



- Input:point to point  $\widetilde{u}_i = \lambda_i \cdot \widetilde{H} \widetilde{x}_i$  or line to line  $\widetilde{H}^T \widetilde{l}'_i = \lambda_i \cdot \widetilde{l}_i$  correspondences
- at least n = 4 correspondences are necessary. (when mixing point and line correspondences, the case with <u>2 points & 2 lines</u> is degenerate and does not work)
- To eliminate  $\lambda_i$  one uses the cross product to derive 3 linear equations in the 9 components of  $\tilde{H}$ :

 $\widetilde{u}_i \times \widetilde{H}\widetilde{x}_i = \overrightarrow{\mathbf{0}} \text{ or } \widetilde{\boldsymbol{l}}_i \times \widetilde{H}^T \widetilde{\boldsymbol{l}}_i' = \overrightarrow{\mathbf{0}}.$ 

- per correspondence the 3 equations are linearly dependent and span a 2 dimensional space
- The homogeneous system of 3n equations in the 9 components of  $\tilde{H}$  is solved by the singular vector corresponding to the smallest singular value in the SVD.



checker board with point features ©Wikipedia



checker board with line features ©Wikipedia

# When does Homography relate 2 views? Computer Graphics and Visualization

planar scene homography between 2 views:

pure rotation -> same pin hole:



View 1

View 2



When does Homography relate 2 views?

#### Planar Scene

- the part of interest of the scene is planar
- given the plane normal  $\hat{n}$ and distance d to origin, one gets the homography from rotation R and translation  $\vec{t}$  of camera:

$$\widehat{n}^{T}\underline{X} = d \Rightarrow 1 = \frac{\widehat{n}^{T}\underline{X}}{d}$$
$$\underline{X}' = R\underline{X} + \overrightarrow{t} = \left(R + \frac{1}{d}\overrightarrow{t}\widehat{n}^{T}\right)\underline{X}$$
$$\widetilde{x}' = \underline{X}' = \widetilde{H}\underline{X} = \widetilde{H}\widetilde{X}$$

#### **Pure Rotation**

- the camera only rotates around pinhole
- The rotation matrix *R* can directly be used as homography:

$$\frac{X' = RX}{\widetilde{H} = R}$$
$$\widetilde{\chi}' = \widetilde{H}\widetilde{\chi}$$

 in both cases the depth of the scene points cannot be recovered from 2 views



# **GEOMETRIC CAMERA MODEL**

S. Gumhold, CG2, SS24 – 3D Scanning

### **Geometric Camera Model**





S. Gumhold, CG2, SS24 – 3D Scanning

# **Extrinsic Parameters**

- The camera's position and orientation with respect to the world coordinate system is defined by a 3x3 dim rotation matrix and a 3D translation vector.
- rotation and translation each have 3 degrees of freedom (dof) together these are 6 dof
- Extrinsic calibration determines Rand  $\vec{t}$  and corresponds to localization of the camera in the scene





# **Intrinsic Parameters**

- intrinsic parameters specify the internal geometry of the camera
- the simplest model is a pinhole camera defined with the camera matrix K<sub>C</sub>
  - s<sub>x</sub>, s<sub>y</sub> ... focal length in pixel width and height (often assumed to be equal)
  - c<sub>x</sub>, c<sub>y</sub> ... principle point (often close to image center)
  - *h* ... skew strength (often assumed to be zero)
- This results in 3 up to 5 intrinsic parameters
- As last row of  $K_c$  is trivial, one can equivalently do the Z-clip on  $\widetilde{x}$ .

$$\widetilde{\boldsymbol{u}} = \widetilde{\boldsymbol{K}}_{C} \widetilde{\boldsymbol{x}}$$
$$\widetilde{\boldsymbol{K}}_{C} = \begin{pmatrix} \boldsymbol{s}_{x} & \boldsymbol{h} & \boldsymbol{c}_{x} \\ \boldsymbol{0} & \boldsymbol{s}_{y} & \boldsymbol{c}_{y} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{pmatrix}$$

$$\underline{\boldsymbol{u}} = \boldsymbol{K}_C \begin{pmatrix} \underline{\boldsymbol{x}} \\ l \end{pmatrix}, \boldsymbol{K}_C = \begin{pmatrix} s_x & h & c_x \\ 0 & s_y & c_y \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} s_x x + hy + c_x \\ s_y y + c_y \end{pmatrix}$$



# Focal length

Computer Graphics and Visualization

- computation of focal length from metric quantities:  $s_x = \frac{w_{\text{pixel}}}{w_{\text{sensor:mm}}} f_{\text{mm}}$
- $s_y = \frac{h_{\text{pixel}}}{h_{\text{sensor:mm}}} f_{\text{mm}}$  computation of focal length from field of view and pixel quantities:  $=\frac{w_{\text{pixel}}}{2\tan\frac{\text{FoV}_x}{2}}$  $\frac{h_{\text{pixel}}}{2 \tan \frac{\text{FoV}_y}{2}}$



• values from kinect 1/RGB:  $w_{\text{pixel}} \times h_{\text{pixel}} = 640 \times 480$   $\text{FoV}_x \times \text{FoV}_y = 62^\circ \times 48.6^\circ$   $s_x = 526.37013657$   $s_y = 526.37013657$   $c_x = 313.68782938$  $c_y = 259.01834898$ 

# **Dissecting the Camera Matrix**



• slight change of notation: 
$$K = \begin{pmatrix} f_x & s & x_0 \\ 0 & f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix}$$

Intrinsic and extrinsic



 taken from <u>http://ksimek.github.io/2013/08/13/intrinsic</u> (see also the interactive tool there)

#### **Lens Distortion**







# Brown-Conrady Non-linear Lens Distortion Model



- extend linear intrinsic camera model by non-linear radial and tangential distortion model
- map from distorted image coordinates  $\underline{x}_d$  to undistorted ones  $\underline{x}$  with radial / tangential parameters  $k_{1...6}$  /  $p_{1/2}$ :



S. Gumhold, CG2, SS24 – 3D Scanning



click on graphs for link to vector field plot tool by Kevin Mehall (©2010)

or copy the following link for specific plots:

 $http://kevinmehall.net/p/equationexplorer/vectorfield.html \#! 2xyi + \%28x^2 + 3y^2\%29j |!\%283^*x^2 + y^2\%29i + 2xyj|\%28x^2 + 2xyj|$ 



# **CAMERA CALIBRATION**

S. Gumhold, CG2, SS24 – 3D Scanning

# **Camera Calibration by Zhang**



- 1. **construct calibration plate**: print a checker board pattern and attach it to a planar surface.
- 2. take (≥ 3) images of calibration plate under different orientations by moving either the plate or the camera (no pure translation!!).
- 3. detect the feature points in the images.
- 4. estimate the five intrinsic parameters and all the extrinsic parameters using the closedform solution from paper
- 5. refine all parameters, including lens distortion parameters, by minimizing re-projection error



sample calibration images taken from Zhang 2000

S. Gumhold, CG2, SS24 – 3D Scanning



$$\begin{array}{c}
\overbrace{(\tilde{u}_{1j},\underline{X}_{1j})} & \overbrace{(\tilde{u}_{1j},\underline{X}_{1j})} & \overbrace{(\tilde{u}_{1j},\underline{X}_{1j})} & \overbrace{(\tilde{u}_{2j},\underline{X}_{2j})} & \overbrace{(\tilde{u}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U}_{2j},\underline{U$$

value in SVD

# • in each image detect checker board corners and construct

correspondences  $(\widetilde{\boldsymbol{u}}_{ij}, \underline{\boldsymbol{X}}_{ij})_{j=1...m_i}$ 

• assume that checker board is in Z = 0 plane:

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \widetilde{u} \sim K_C [\mathbf{R} \quad \vec{t}] \widetilde{X} = K_C [\vec{r}_1 \quad \vec{r}_2 \quad \vec{r}_3 \quad \vec{t}] \begin{pmatrix} A \\ Y \\ 0 \\ 1 \end{pmatrix}$$

• we get homography  $\widetilde{H}$  with resp. to 2D homogeneous  $\widetilde{\widetilde{X}}$ :

$$\widetilde{\boldsymbol{u}} \sim \boldsymbol{K}_C[\vec{\boldsymbol{r}}_1 \quad \vec{\boldsymbol{r}}_2 \quad \vec{\boldsymbol{t}}] \begin{pmatrix} \boldsymbol{Y} \\ \boldsymbol{1} \end{pmatrix} = \widetilde{\boldsymbol{H}}\widetilde{\boldsymbol{X}}$$

• for each image compute  $\widetilde{H}_i$  from  $\widetilde{\widetilde{X}}_{ij}$ .



 $Y_{\Lambda}$ 

# **Camera Calibration by Zhang**

• Input: images  $I_{i=1...n\geq 3}$ • Output: camera matrix  $K_C$  and poses  $\begin{bmatrix} R_i & \vec{t}_i \end{bmatrix}_{i=1...n}$ 

## **Camera Calibration by Zhang**



• write homography in columns:

$$\begin{bmatrix} \widetilde{\boldsymbol{h}}_{1,i} & \widetilde{\boldsymbol{h}}_{2,i} & \widetilde{\boldsymbol{h}}_{3,i} \end{bmatrix} = \lambda_i \cdot \boldsymbol{K}_C \begin{bmatrix} \vec{\boldsymbol{r}}_{1,i} & \vec{\boldsymbol{r}}_{2,i} & \vec{\boldsymbol{t}}_i \end{bmatrix}$$

• exploit that columns of R are orthonormal:

$$\vec{r}_{1,i}^{T}\vec{r}_{2,i} = 0 = \boldsymbol{h}_{1,i}^{T}\boldsymbol{K}_{C}^{-T}\boldsymbol{K}_{C}^{-1}\boldsymbol{h}_{2,i} \quad (1)$$

$$\vec{r}_{1,i}^{T}\vec{r}_{1,i} = \vec{r}_{2,i}^{T}\vec{r}_{2,i} \Rightarrow \widetilde{\boldsymbol{h}}_{1,i}^{T}\boldsymbol{K}_{C}^{-T}\boldsymbol{K}_{C}^{-1}\widetilde{\boldsymbol{h}}_{1,i} = \widetilde{\boldsymbol{h}}_{2,i}^{T}\boldsymbol{K}_{C}^{-T}\boldsymbol{K}_{C}^{-1}\widetilde{\boldsymbol{h}}_{2,i} \quad (2)$$

- define symmetric matrix  $B = K_C^{-T} K_C^{-1}$  and represent it as 6D vector  $\vec{b} = (B_{11}, B_{12}, B_{13}, B_{22}, B_{23}, B_{33})$
- for each homography  $\tilde{H}_i$  the constraints (1) and (2) define two linear equations on  $\vec{b}$ , thus 3 images sufficient
- from **B** we can reconstruct  $K_C$  and poses  $\begin{bmatrix} R_i & \vec{t}_i \end{bmatrix}_{\substack{i=1...n \\ i=1...n}}$ :  $c_x = \frac{a_1 = B_{12}B_{23} - B_{13}B_{22}}{a_2}, c_y = \frac{a_3 = B_{12}B_{13} - B_{11}B_{23}}{a_2}, \lambda = B_{33} - \frac{B_{13}^2 + c_y \cdot a_3}{B_{11}}$   $K_C = \begin{pmatrix} \sqrt{\lambda/B_{11}} & -\sqrt{\lambda B_{12}^2/B_{11}a_2} & c_x \\ 0 & \sqrt{\lambda B_{12}/B_{11}a_2} & c_y \\ 0 & \sqrt{\lambda B_{11}/a_2} & c_y \\ 0 & 0 & 1 \end{pmatrix}, [\vec{r}_{1,i} & \vec{r}_{2,i} & \vec{t}_i] = \nu K_C^{-1} \tilde{H}_i, \nu = \frac{1}{\|K_C^{-1} \tilde{h}_1\|}$ S. Gumhold, CG2, SS24 - 3D Scanning

## **Camera Calibration by Zhang**



• in case of no shearing (h = 0) **B** simplifies to  $B = \frac{1}{s_x^2 s_y^2} \begin{pmatrix} s_y^2 & 0 & -c_x s_y^2 \\ 0 & s_x^2 & -c_y s_x^2 \\ -c_x s_y^2 & -c_y s_x^2 & c_x^2 s_y^2 + c_y^2 s_x^2 + s_x^2 s_y^2 \end{pmatrix}$ 

such that  $B_{12} = 0$  resulting in a linear constraint on the vector  $\vec{b}$ :  $(0 \ 1 \ 0 \ 0 \ 0 \ 0)\vec{b} = 0$ , which can be incorporated into the linear equation system.

 In a final non-linear optimization problem the re-projection error is minimized with Levenberg-Marquardt algorithm and previous result as initial guess for camera matrix and poses:

$$\min_{\mathbf{K}_{C}, [\mathbf{R}_{i} \quad \mathbf{\vec{t}}_{i}]_{i}=1...n} \sum_{ij} \left\| \underline{\mathbf{u}}_{ij} - \operatorname{Zclip} \begin{pmatrix} \mathbf{K}_{C} [\mathbf{R}_{i} \quad \mathbf{\vec{t}}_{i}] \mathbf{\widetilde{X}}_{ij} \end{pmatrix} \right\|^{2}$$

# **Camera Calibration with OpenCV**



- 1. print a checker board pattern
- 2. take images
- 3. detect checker board corners: bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags)
- 4. estimate intrinsic and extrinsic parameters and (<u>undistorted case</u>: fit one homography per image, decompose homographies into joint camera matrix and rotations / translations per image)
- 5. including lens distortion

InputArrayOfArrays objectPoints, imagePoints, Size imageSize, InputOutputArray cameraMatrix, distCoeffs,

OutputArrayOfArrays rvecs, tvecs, int flags, TermCriteria crit)



# PROJECTOR MODEL AND CALIBRATION

# **Projector Model**



 use pinhole with radial and tangential lens distortion to describe projector

 $\mathbf{K}_{P}, k_{P,1..6}, p_{P,1..2}$ 

- calibrate projector with same technique as camera
- for this we need correspondences of checker board corners jwith projector image plane  $\underline{u}_{P,ij} \leftrightarrow \widetilde{X}_{ij}$
- calibrate camera first and use it to calibrate projector



example for projector distortion taken from D. Moreno and G.Taubin, 2012

 careful: projectors have principle point on top or bottom edges, not in image center!
# standard procedure (i.e.

## calibration plate use gray-code pattern) to encode projector row and column in logarithmic number of images

• for each pose *i* of

 $\mathcal{U}_{P,i}$ 

all images from D. Moreno and G. Taubin, 2012



 $\mathcal{V}_{P,i}$ 



i=1



i=2

### S. Gumhold, CG2, SS24 – 3D Scanning

 $u_{C} \in \overline{U(u_{C,ii})}$ 

 $\widetilde{H}_{ij} = \min_{\widetilde{H}} \sum_{ij}$ 

• and finally:

## **Estimate Local Homographies**

- There are more camera  $\boldsymbol{u}_{C}$ pixels than projector pixels  $u_P$
- Quantized per pixel corresponddences  $\boldsymbol{u}_{P}(\boldsymbol{u}_{C})$  are inprecise
- for sub-precision in  $u_P$  fit homography  $\widetilde{H}_{ii}$  locally around each checker board corner  $\underline{u}_{C,ij}$ to a pixel neighborhood  $U(\boldsymbol{u}_{C,ii})$ of 47x47 pixel:







## Summary of Camera-Projector Calib



- 1. Detect checkerboard corner locations in camera image for each plane orientation
- 2. Decode projector row and column correspondences
- 3. Per checkerboard corner in cam image compute local homography (cam image ->proj image)
- 4. Transform corner locations to projector coordinates
- 5. Find camera intrinsics with OpenCV's implementation of Zhang's method
- 6. Find projector intrinsics with OpenCV's implementation of Zhang's method
- 7. Fix camera and projector intrinsics and use world, camera, and projector corner locations to estimate stereo extrinsic parameters.
- 8. Optimize all intrinsic and extrinsic parameters to minimize the total re-projection error



# **CONCLUSION AND REFERENCES**

S. Gumhold, CG2, SS24 – 3D Scanning

## Summary / Take Home Message



- camera and projector can be modeled with pinhole extended by radial and tangential lens distortion
- intrinsic camera parameters can be determined by acquisition of checker board in 3 and more poses
- an iterative non-linear optimization is performed with parameters estimated from linear model as initial guess
- projector can be calibrated in the same way by projecting binary coded stripe images for projector-camera pixel correspondences, for which homographies are fitted locally.

## References

- Zhang: A Flexible New Technique for Camera Calibration, TechRep from 1998 and TPAMI 22(11) 2000
- Daniel Moreno and Gabriel Taubin: Simple, Accurate, and Robust Projector-Camera Calibration, 3DPVT 2012
- OpenCV Reference Manual



# TRIANGULATION

S. Gumhold, CG2, SS24 – 3D Scanning

## **Triangulation – rectified setup**





## **Triangulation in undistorted Case**

 $\widetilde{K}_{C/P}$ 

intrinsic





## Camera

• ray of pixel  $\underline{u} = (u, v)$  is line through origin of homogenous vector:

ũ

$$\lambda \cdot \widetilde{\boldsymbol{u}} = \widetilde{\boldsymbol{K}}_{C} \left( \boldsymbol{R}_{C} \underline{\boldsymbol{X}} + \vec{\boldsymbol{t}}_{C} \right) \quad (1)$$

• solving for 
$$\underline{X}$$
 yields ray:  
 $\underline{X}_{u,v}(\lambda) = \underline{X}_0 + \lambda \cdot \vec{V},$   
 $\underline{X}_0 = -R_C^T \vec{t}_C, \quad \vec{V} = R_C^T \widetilde{K}_C^{-1} \widetilde{u}$   
• if camera is coordinate  
reference,  $[R_C | \vec{t}_C] = [\mathbf{1} | \vec{\mathbf{0}}]$ :  
 $\underline{X}_{u,v}(\lambda) = \lambda \cdot \widetilde{K}_C^{-1} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$ 

 $\underbrace{ \begin{bmatrix} \mathbf{R}_{C/P} | \vec{\mathbf{t}}_{C/P} \end{bmatrix} }_{\boldsymbol{\leftarrow}} \left( \frac{\mathbf{X}}{\mathbf{1}} \right)$ ĩ  $=\widetilde{X}$ extrinsic  $\tilde{\boldsymbol{l}}^T \tilde{\boldsymbol{u}} = 0$  (2) 2d line equation **Projector** • homogenous line of column  $u_0$ /row  $v_0$ :  $\tilde{l} = \binom{-1}{0} / \binom{0}{-1}_{v_0}$ • Ansatz for plane  $\widetilde{\mathbf{\Pi}}(\widetilde{\boldsymbol{l}}) = \left[\boldsymbol{R}_{P} | \overrightarrow{\boldsymbol{t}}_{P} \right]^{T} \widetilde{\boldsymbol{K}}_{P}^{T} \widetilde{\boldsymbol{l}}$ (3)• yields plane equation in 3D  $\widetilde{\mathbf{\Pi}}^T \widetilde{\mathbf{X}} = 0$  Proof by reduction to line equation:  $\widetilde{\mathbf{\Pi}}^T \widetilde{\mathbf{X}} \stackrel{(3)}{=} \widetilde{\mathbf{l}}^T \widetilde{\mathbf{K}}_P [\mathbf{R}_P | \vec{\mathbf{t}}_P] \widetilde{\mathbf{X}}$  $\stackrel{(1)}{=} \widetilde{\mathbf{l}}^T \widetilde{\mathbf{u}} \stackrel{(2)}{=} 0$ 

## **Triangulation in distorted Case**





### Camera

- $\underline{x}_d(\underline{u})$  can be found iteratively or stored per camera pixel in a map
- the camera ray can be computed to

$$\underline{X}(\widetilde{x}_d,\lambda) = R_C^T (\lambda \cdot \widetilde{x}_d - \vec{t}_C)$$

## Projector

- The planes of a projector column become bent
- Three possible solutions
  - inversely distort projector pattern (can yield stair case artifacts for stripe patterns)
  - iteratively solve the ray surface intersection (multiple intersections possible!!)
  - project full 2D coordinate and intersect rays (slower acquisition)



# **ACQUISITION SETUPS**

S. Gumhold, CG2, SS24 – 3D Scanning

## **Standard Setup**



- Uses one camera and one projector
- Calibrate projector camera system, optionally rectify
- Project structured light patterns from projector and acquire images with camera
- Projector and camera need to be synchronized
- Reconstruct points through triangulation
- Only points seen from camera AND projector can be reconstructed
- indirect lighting causes confusion and highlights lead to high range of brightness values



## More Cameras

Computer Graphics and Visualization

adding more cameras ...

- reduces problems with highlights
- increases surface visibility with respect to cameras
- through multiple measurements of the same surface point the precision can be increased
- professional systems are mostly optimized for shape acquisition and do not reproduce colors at all (like "ATOS II Triple Scan") or in low quality



### Setup with two cameras



ATOS II Triple Scan (available at KTC chair in school of engineering)

## **Highspeed Setups**

- in standard approaches several patterns need to be projected per 3D scan
- In dynamic setting one can use synchronized high speed projector and camera, but faces short illumination time
- other approaches use partially unsynchronized systems where the projector generates
  - random patterns for correspondence matching of synchronized stereo approach
  - static "single shot" pattern that allows reconstruction from one acquired pattern



use high speed components



use projector only to help stereo reconstruction





## Challenges







# STRUCTURED LIGHT APPROACHES

## **Basic Idea**



- project *n* patterns  $\Pi_i(u_P, v_P)$ that can be independent of  $v_P$
- acquire scene with camera  $\Gamma_i(u_C, v_C)$ such that correspondences  $(u_C, v_C) \leftrightarrow u_P$ can be reconstructed
- assume simple model of projector-scene interaction (ignores interreflections, what will be refined later)  $\Gamma_i(u_C, v_C) = L_d(u_C, v_C) \cdot \Pi_i(u_P, v_P) + L_{amb}(u_C, v_C)$

pixel luminance from direct reflection

luminance due to background illumination



## Line Shift Approach

 project a one pixel wide stripe for each projector column:

$$\Pi_i(u_P, v_P) = \delta_{i, u_P} \quad \delta_{i, u_P} = \begin{cases} 1 \text{ if } i = u \\ 0 \end{cases}$$

reconstruction:

$$u_P(u_C,v_C) = \max \arg \Gamma_i(u_C,v_C)$$

- fit gaussian to do subpixel accurate detection, but be careful at
  - depth discontinuities
  - texture color discontinuities
- *n* patterns necessary, where *n* is number of projector columns





## **Direct Coding in Intensity**

- encode projector column in intensity  $\Pi(u_P, v_P) = u_P / (n - 1)$
- project off and on patterns  $\Pi_{off}(u_P, v_P) = 0$   $\Pi_{on}(u_P, v_P) = 1$
- reconstruct:

$$u_{P} = \frac{\Gamma(u_{C}, v_{C}) - \Gamma_{\text{off}}(u_{C}, v_{C})}{\Gamma_{\text{on}}(u_{C}, v_{C}) - \Gamma_{\text{off}}(u_{C}, v_{C})}$$

- Challenges
  - projector color resolution (8bit)
  - non linearity through gamma corrections



54



For acquisition of white surfaces, all color channels can be exploited



## **Example Gray Code Pattern Sequence**





on and off patterns + 10 bits column code + 10 bits row code

## **Binary and Gray Code**







(converts to binary code)

## **Binary and Gray Code**



- encode projector column with gray code  $\Pi_i(\underline{u}_p) = \operatorname{bit}(i, \operatorname{encode}(u_p))$
- decode single bit  $b_i(\underline{u}_C) = classify(\Gamma_i(\underline{u}_C))$



- simplest classification with on and off pattern  $\begin{bmatrix} 1\\ b_i(\underline{u}_C) = \text{classify}(\Gamma_i(\underline{u}_C)) = \\ 0\\ \tau = \frac{1}{2}(\Gamma_{\text{off}}(\underline{u}_C) + \Gamma_{\text{on}}(\underline{u}_C)) \end{bmatrix}$ • decode projector column  $u_P(u_C, v_C) = \text{decode}\{b_i(u_C, v_C)\}$ 
  - $\Gamma_{i}(\underline{\boldsymbol{u}}_{C}) > \tau + \varepsilon$  $\Gamma_{i}(\underline{\boldsymbol{u}}_{C}) < \tau - \varepsilon$

f otherwise

- if one bit is undef, no  $u_P$  can be decoded
- $\log n + 2$  measurements

### project three shifted cosine patterns: 0.5

$$\Pi_i \left( \underline{\boldsymbol{u}}_p \right) = \frac{1}{2} + \frac{1}{2} \cos(\varphi(\boldsymbol{u}_p) + \boldsymbol{d}_i)$$

- column encoded in phase  $\varphi(u_{P}) = 2\pi f u_{P}$
- phase shift for N patterns:  $d_i = i \frac{2\pi}{N}$ , i.e.  $d_i = \{0, \frac{2\pi}{3}, \frac{4\pi}{3}\}$
- measured images  $\Gamma_i = L_d \cdot \prod_i (\boldsymbol{u}_P) + L_{amb}$

$$\Box \succ \Gamma_i = A \cdot \cos(\varphi(u_P) + d_i) + B$$

**Computer Graphics** 



-0.5

• three patterns suffice:  

$$\Gamma_0 = A \cdot \cos(\varphi(u_P)) + B$$

$$\Gamma_1 = A \cdot \cos(\varphi(u_P) + \frac{2\pi}{3}) + B$$

$$\Gamma_2 = A \cdot \cos(\varphi(u_P) + \frac{4\pi}{3}) + B$$

eliminate A/B and solve for phase:

$$\tan \varphi(u_P) = \sqrt{3} \frac{\Gamma_2 - \Gamma_1}{2\Gamma_0 - (\Gamma_1 + \Gamma_2)}$$

• up to period  $\rightarrow$  unwrapping

## **Phase Shift Discussion**

- use three or more shifted cosine patterns to encode the projector column in phase (e.g. in the 3 color channels)
- Advantage (without color coding): almost independent of the object texture and the sharpness of the projection
- Problem of ambiguous phase reconstruction can be solved by combination with Gray code or by hierarchical phase shift
- If the objects are colored, the color channels cannot be used.





# Debruijn Sequences I



Debruijn Sequence B(n,m): Size of Alphabet: n all sub sequences of length m are unique

Example B(2,4): 0000

Debruijn Graph:

- Nodes are all possible sequences of length m-1
- For each node one outgoing edge per symbol in the alphabet
- Eulerian Path through Debruijn Graph yields Debruijn Sequence



# **Debruijn Sequences II**





Line coding

Alphabet = Color

Color of line i is i<sup>th</sup> symbol of Debruijn Sequence

- One-Shot-Approach
- To be examined neighborhood: 2m lines
- At depth jumps erroneous decoding



Color change coding [Zhang 2002]

Alphabet = Numbers 1-7 (Binary)  
"XOR"  

$$p_{j+1} = p_j \text{ XOR } d_j$$
  
 $\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \text{ XOR } \begin{pmatrix} 1\\0\\1 \end{pmatrix}$ 

To be examined neighborhood: m lines

## **Microsoft Kinect**





Depth Measurement Approach (speculations)

- 1. Stereoblockmatching with point pattern
- 2. Depth from anisotropic blur based on astigmatic lenses with two different focal lengths



## **More Approaches**





Stripe Boundary Codes [Hall-Holt 2001]

Extension of Debruijn to 2D

S. Gumhold, CG2, SS24 – 3D Scanning



### content and images taken from

S.K. Nayar, G. Krishnan, M. D. Grossberg, R. Raskar, *Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination,* ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH), 2006.

# SEPARATION OF DIRECT AND INDIRECT ILLUMINATION

## **Motivation**





S. Gumhold, CG2, SS24 – 3D Scanning

## **Indirect Illumination**



- in structured light scanning only the direct illumination is of interest
- scene points in shadow
   (G) should be ignored
- at other points the luminance due to
  - diffuse or specular interreflections (B)
  - subsurface scattering (C)
  - transluceny (E), or
  - volumetric scattering (F)
- should be determined and filtered out



A: Diffuse Interreflection (Board) B: Specular Interreflection (Nut) C: Subsurface Scattering (Marble) D: Subsurface Scattering (Wax) E: Translucency (Frosted Glass) F: Volumetric Scattering (Dil. Milk) G: Shadow (Fruit on Board)



## Idea of Separation



per pixel we want to split incoming luminance:

$$L = L_d + L_g$$

- in direct component  $L_d$  and indirect or global comp.  $L_g$
- assumtion: L<sub>g</sub> is a smooth function of projected direct light pattern (violated for mirror reflection)
- idea: project high frequency pattern with 50% pixels on and its negative, such that each scene point is once illuminated and once not illuminated

 measure minimum and maximum luminance

$$L_{\min} = \frac{1}{2} L_g$$

$$L_{\max} = L_d + \frac{1}{2}L_g$$

• and reconstruct comp.:  $L_d = L_{\max} - L_{\min}, \quad L_g = 2L_{\min}$ 



## **Practical Separation**



### problem 1:

- camera pixels can overlap parts of both black and white projector pixels
- projector sharpness is not perfect and varies over acquisition volume

### solution 1:

 do not use maximum frequency (i.e. 4x4 up to 6x6 squares)

• project several shifted versions of pattern (i.e. 16 for 4x4 with offsets +0, +2, +4, +6 in x- and y-direction) and compute  $L_{min}/L_{max}$  per pixel over all acquired images

## problem 2:

 black projector pixels still emits some fraction b of brightness

## solution 2:

 calibrate projector for b and extend formulae:

$$L_{\min} = bL_d + (l+b)\frac{1}{2}L_g$$
$$L_{\max} = L_d + (l+b)\frac{1}{2}L_g$$



## **Extension to Phase Shift**



• each cosine pattern ditributes light uniformly, such that all generate the same global component  $\frac{1}{2}L_g$ :

$$\Gamma_i = L_d \cdot \left(\frac{1}{2} + \frac{1}{2}\cos(\varphi(u_P) + d_i)\right) + \frac{1}{2}L_g + L_{\text{amb}}$$

- Iuminance from ambient illumination and global component add up per pixel, such that standard phase shift is based on direct component only
- in order to reconstruct the indirect component one can project an off pattern to determine  $L_{amb}$  directly

## Verification



## experiment 1

- illuminate all but square of increasing size p around point of interest
- this yields the global component only
- in case of subsurface scattering square needs to be small

### experiment 2

- use checkerboard with squares of increasing pixel size *q* for separation (point C excluded)
- shows invariance to q



A: Diffuse Interreflection (Board) B: Specular Interreflection (Nut) C: Subsurface Scattering (Marble) D: Subsurface Scattering (Wax) E: Translucency (Frosted Glass) F: Volumetric Scattering (Dil. Milk) G: Shadow (Fruit on Board)



## Results



#### Scene



#### **Direct Component**



eggs: diffuse interreflections

#### **Global Component**







wood: diffuse and specular interreflections







peppers: subsurface scattering

## **Results**



#### Scene



### **Direct Component**



grapes and cheese: subsurface scattering

### **Global Component**







milky water: volumetric scattering





mirror sphere yields artefacts as smoothness assumption is violated




#### content and images taken from

Y. Xu, D. Aliaga: *Robust pixel classification for 3D modeling with structured light*. Graphics Interface 2007: 233-240

## **ROBUST PIXEL CLASSIFICATION**

### **Robust Pixel Classification**

- first direct-indirect light separation is done as in previous paper yielding per pixel direct and global component:  $L = L_d + L_g$
- if  $L_d$  is less than threshold m, scene point is in projector shadow
- otherwise pixel values p in images  $\Gamma_i$  are classified to decode projector column
- $L_g$  is an upper bound on indirect light component for illumination with any pattern  $\Pi_i$

• Conservative estimate of luminance intervals for on and off pixel classification:  $P_{off} = [0, L_g], \quad P_{on} = [L_d, L_d + L_g]$ 





### **Dual Pattern Rules and Comparison**



- If two complementary patterns  $\Gamma_i$  and  $\overline{\Gamma}_i$  are available, one can add the constraint that a pixel must classify oppositely in the two patterns
- comparison of approaches:



white pixels are classified correctly for a) standard method b) single and c) dual pattern rules



# CONCLUSION

S. Gumhold, CG2, SS24 – 3D Scanning

### Conclusion



- camera-projector setup has problems with highlights which can be eliminated by adding a second camera
- gray codes, phase shift and their combinations are most prominent methods
- one needs to project in order of logn patterns
- to reduce the number of patterns for fast scanning, one needs to encode projector column in spatial neighborhood
- direct illumination component can be separated from indirect one with two complementary high frequency patterns
- robust binary classification uses global indirect light component to derive classification intervals
- we did not cover brightness and color calibration. Both projector and camera do not map them linearly!!!

#### References



- V. Srinivasan, H.-C. Liu, M. Halioua. Automated phase-measuring profilometry: a phase mapping approach. Applied Optics 24(2), 1985, pp 185-188.
- O. Hall-Holt, S. Rusinkiewicz. *Stripe boundary codes for real-time structured-light range scanning of moving objects*. ICCV 2001
- L. Zhang, B. Curless, S. M. Seitz. Rapid shape acquisition using color structured light and multi-pass dynamic programming. 3D Data Processing Visualization and Transmission (3DPVT), 2002
- S.K. Nayar, G. Krishnan, M. D. Grossberg, R. Raskar, Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination, ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH), 2006.
- Y. Xu, D. Aliaga: *Robust pixel classification for 3D modeling with structured light*. Graphics Interface 2007: 233-240