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Computer Graphics
and Visualizationcontents

 Overview & Motivation

 Neighbor Graphs

 Estimation of Local Quantities

 Orientation of Normals

 Feature Extraction

 Registration Revisited

 Surface Reconstruction
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Computer Graphics
and Visualization

OVERVIEW AND MOTIVATION
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Computer Graphics
and VisualizationKinect Fusion

Real-time 3D Reconstruction and Interaction Using a 
Moving Depth Camera
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http://research.microsoft.com/en-us/projects/surfacerecon

http://research.microsoft.com/en-us/projects/surfacerecon


Computer Graphics
and VisualizationKinect Fusion
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Computer Graphics
and VisualizationMore Recent Fusion Approach
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http://graphics.stanford.edu/projects/bundlefusion

http://graphics.stanford.edu/projects/bundlefusion


Computer Graphics
and VisualizationMore Recent Fusion Approach
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Computer Graphics
and VisualizationLSD-SLAM

Large-Scale Direct Monocular SLAM

 http://vision.in.tum.de/research/vslam/lsdslam
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http://vision.in.tum.de/research/vslam/lsdslam


Computer Graphics
and VisualizationLSD-SLAM
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Computer Graphics
and VisualizationReplica Dataset (2019)
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https://github.com/facebookresearch/Replica-Dataset

https://github.com/facebookresearch/Replica-Dataset


Computer Graphics
and Visualization3D Scan Processing

 local features: compute
 classification (outlier, boundary, sharp 

edge, corner, smooth)

 tangent space or surface normal

 curvatures and higher moments

 histogram descriptors

 matching: find correspondences
 distance based

 projection based

 feature based

 registration: two interpretations:
 bring 3D scans in same coordinate

system

 estimate pose of camera (camera
localization)

 fusion: merge partial scans
 point filtering

 signed distance fields

 reconstruction: estimate globally 
consistent surface
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Computer Graphics
and Visualization

NEIGHBORGRAPHS
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Computer Graphics
and VisualizationPoint Neighborhood Definitions

 Riemannian-Graph: includes for
each point outgoing edges to the
k nearest neighbors
(typically k[6,20])

 symmetrized Riemannian-Graph
eliminate directedness of edges

 Connect to all neighbors within a 
sphere of fixed radius estimated
from sampling density

 filtered edges of Delaunay-
Tetrahedralization:
estimate per point normal 
direction from largest extent of
Voronoi-cell and eliminate close to
parallel edges

 Robust and fast implementations
of Delaunay-Tetrahedralization in 
CGAL or qhull.
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k=3
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Riemannian-Graph symmetrized

Riemannian-Graph

k=3

https://www.cgal.org/
http://www.qhull.org/


Computer Graphics
and VisualizationOutlier detection & Density estimation

Outlier detection

 In not symmetrized Riemannian-
Graph most edges of an outlier
point are outgoing and only few
ingoing

 Detection by thresholding of
fraction of bidirectional edges over
unidirectional outgoing edges.

Estimation of sampling density

 The sampling density  is defined
as the minimum radius of a circle
in tangential space, in which at 
least one surface sample is found
in scan. Sampling density typically
varies over surface.

  can be estimated from average
distance to 3rd up to sixth nearest
neighbor points.
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Outlier point has only

outgoing edges


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Computer Graphics
and Visualization

ESTIMATION OF LOCAL
QUANTITIES
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Computer Graphics
and Visualization

PLANE FITTING
Surface Denoising and Surface Normal Estimation
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Computer Graphics
and VisualizationNormal Estimation in 3D Scans 

Input: set of 3D points

sampled from surface

Output: set of denoised 3D 

points with normal

Approach: 
for each point collect

neighborhood

define distance-based weight

function

estimate local tangent plane from

weighted least squares problem

orthogonally project input point

onto local tangent plane

assign tangent plane normal to

output point
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local tangent plane

neighoring

surface samples

point normal

surface samples

integrated normal estimation and denoising



Computer Graphics
and VisualizationWeighted Plane Fitting Problem

for each point 𝒙 of point cloud collect 𝑚 points 𝒙𝑗 with 

knn-query sorted by distance, typically 10 < 𝑚 < 50.

estimate reference radius: ℎ = 𝒙10 − 𝒙

assign pre-weights: 𝑗
′ = exp −

𝒙𝑗−𝒙
2

ℎ2
and

normalize: 𝜔𝑗 =
𝜔𝑗
′

Ω′
, Ω′ = σ𝑗=1

𝑚 𝜔𝑗
′
.

residuals: 𝑟𝑗 = 𝑟𝑗 𝒙 = 𝑛𝑥𝑥𝑗 + 𝑛𝑦𝑦𝑗 + 𝑛𝑧𝑧𝑗 + 𝑑

parameters: ෥𝒑 = ෝ𝒏, 𝑑 with ෝ𝒏 = 1

As 𝒃 = 𝟎 the normalization constraint is essential to avoid 

the trivial solution ෥𝒑∗ = 𝑨𝑾
+ 𝒃 = 𝟎. The constrained LLS is:

minarg
෥𝒑= ෝ𝒏,𝑑 | ෝ𝒏 =1

𝑓 ෥𝒑 , 𝑓 ෥𝒑 = 𝑾𝑨෥𝒑
2

2
= ෥𝒑𝑇𝑨𝑇𝑾𝑨෥𝒑 = ෥𝒑𝑇𝑴𝑾෥𝒑

For brevity we define a weighted cov. matrix 𝑴𝑾
S. Gumhold, CG2, SS24 – 3D Scan Processing 18



Computer Graphics
and VisualizationReduced Plane Fitting Problem

Theorem: if ෥𝒑∗ = ෝ𝒏∗, 𝑑∗ is the solution to the plane fitting

problem, then the weighted center of mass

ഥ𝒙 =෍

𝑗=1

𝑚

𝜔𝑗𝒙𝑗

is on ෥𝒑∗, i.e. ෝ𝒏∗𝑇ഥ𝒙 + 𝑑∗ = 0. [Proof by setting 𝜕𝑑𝑓 ෥𝒑 = 0]

We can enforce 𝑑 = 0 by considering a coordinate system 

with ഥ𝒙 in the origin, a reduced parameter vector 𝒑′ and 

reduced weighted cov. matrix:

𝒑′ = ෝ𝒏, 𝒙𝑗
′ = 𝒙𝑗 − ഥ𝒙, 𝑴𝑾

′ ≔ 𝑨′
𝑇
𝑾𝑨′ =෍

𝑗=1

𝑚

𝜔𝑗𝒙𝑗
′𝒙𝑗

′𝑇

The plane fitting problem reduces to

ෝ𝒏∗ = minarg
ෝ𝒏| ෝ𝒏 =1

ෝ𝒏𝑇𝑴𝑾
′ ෝ𝒏
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Computer Graphics
and VisualizationReduced Plane Fitting Problem

Eigenvalue decomposition of the symmetric matrix 𝑴𝑾
′

𝑴𝑾
′ = 𝑽𝚲𝑽𝑇 = 𝜆1𝒗1𝒗1

𝑇 + 𝜆2𝒗2𝒗2
𝑇 + 𝜆3𝒗3𝒗3

𝑇 , 𝜆1 ≤ 𝜆2 ≤ 𝜆3
plugged into the objective function yields

ෝ𝒏𝑇𝑴𝑾
′ ෝ𝒏 = 𝜆1 𝒗1

𝑇ෝ𝒏 2 + 𝜆2 𝒗2
𝑇ෝ𝒏 2 + 𝜆3 𝒗3

𝑇ෝ𝒏 2

From the increasing ordering of the 𝜆𝑖 it follows that the 

optimal normal is given by

ෝ𝒏∗ = ±𝒗1

Note that the sign of the normal direction (plane 

orientation) is not unique. A globally consistent orientation 

is typically achieved by
knowledge of an exterior point (scanner location)

a region growing normal orientation algorithm
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Computer Graphics
and VisualizationSummary of Plane Fitting Problem

Input: set of 𝑚 weighted points 𝒙𝑗 , 𝜔𝑗
′.

1. normalize weights: 𝜔𝑗 =
𝜔𝑗
′

Ω′
, Ω′ = σ𝑗=1

𝑚 𝜔𝑗
′

2. compute weighted center of mass ഥ𝒙 = σ𝑗=1
𝑚 𝜔𝑗𝒙𝑗

3. transform points: 𝒙𝑗
′ = 𝒙𝑗 − ഥ𝒙

4. compute weighted cov. matrix: 𝑴𝑾
′ = σ𝑗=1

𝑚 𝜔𝑗𝒙𝑗
′𝒙𝑗

′𝑇

5. compute Eigenvector 𝒗1 of smallest Eigenvalue of 𝑴𝑾
′

Output: return plane through ഥ𝒙 orthogonal to ෝ𝒏∗ = ±𝒗1.
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Computer Graphics
and VisualizationDifficulties in surface reconstruction
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outlier

noise

sharp

corner

corner

close sheets



Computer Graphics
and VisualizationProblems of weighted Tanget Space Fit

 outliers and C0-
discontinuities
significantly influence fit

 use robust norm 𝜌 𝑟𝑗

𝑓 𝒏′ =෍

𝑗

𝜌 𝑟𝑗

 C1-discontinuities are
smoothed out

 bilateral weights

S. Gumhold, CG2, SS24 – 3D Scan Processing 23

C0-discontinuity

C1-discontinuity

outliers



Computer Graphics
and VisualizationSelection of robust norms

 On infinite plane with Gaussian noise, the L2-norm 𝜌 𝑟 =
𝑟2 is optimal

 Otherwise (always) a large number of norms can be chosen 
from, which partially need to be scaled by noise scale noise:

S. Gumhold, CG2, SS24 – 3D Scan Processing 24

noise
noise noise noise



Computer Graphics
and VisualizationIterated Re-weightes Least Squares

 IRLS suitable for convex norms like the p-norm 𝜌 𝑟 = 𝑟 𝑝

 Idea: choose weights not for localization but to emulate 
robust norm with weighted least squares fit

 given robust norm 𝜌 𝑟 introduce influence function 

𝜓 𝑟 ≔ 𝜕𝜌
𝜕𝑟

𝑟

 compare weighted least squares with robust norm:

𝑓2(𝜃) =
1
2෍

𝑗

𝜔𝑗𝑟𝑗 𝜃
2 ⟺ 𝑓𝜌(𝜃) =෍

𝑗

𝜌 𝑟𝑗(θ)

 condition for optimum with respect to parameter vector θ

0 =
𝜕𝑓2
𝜕𝜃

=෍

𝑗

𝜔𝑗𝑟𝑗
𝜕𝑟𝑗
𝜕𝜃

⟺ 0 =
𝜕𝑓𝜌

𝜕𝜃
=෍

𝑗

𝜓 𝑟𝑗
𝜕𝑟𝑗
𝜕𝜃

 choose weights to identify both conditions: 𝜔𝑗 =
𝜓 𝑟𝑗

𝑟𝑗

 we finally need a strategy to ensure the last identity
S. Gumhold, CG2, SS24 – 3D Scan Processing 25



Computer Graphics
and VisualizationIterated Re-weightes Least Squares

IRLS solution strategy

 iteratively re-compute weights

 add superscript to weights that marks iteration number 𝑙

1. start with regular least squares fit: 𝜔𝑗
𝑙=0 ≡ 1

2. perform weighted least squares fit with 𝜔𝑗
𝑙 yielding 

parameters 𝜃𝑙 and residua 𝑟𝑗
𝑙 = 𝑟𝑗 𝜃𝑙

3. starting with second iteration check 𝑓𝜌 or 𝜃 for 

termination

4. re-compute weights 𝜔𝑗
𝑙+1 =

𝜓 𝑟𝑗
𝑙

𝑟𝑗
𝑙 and goto 2.

 typically a small number of iterations are sufficient

 homework: combine IRLS with localization weighting
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Computer Graphics
and VisualizationIRLS discussion

 A good family of robust norms
is Minkowski norm for 0 < 𝜈 < 1:

 choice of localization and noise scales is important:

 for depth sensors the noise scale depends on the viewing 
angle and is not easy to estimate from the data

S. Gumhold, CG2, SS24 – 3D Scan Processing 27

loc and noise good for loc too large for noise too large

𝜌 𝑟 =
1

𝜈

𝑟

𝜎𝑛𝑜𝑖𝑠𝑒

𝜈
and 𝜓 𝑟 =

𝑟

𝜎𝑛𝑜𝑖𝑠𝑒

𝜈−1

noise



Computer Graphics
and Visualizationbilateral weighting

 To support sharp creases and
corners, a second weight 𝜋𝑗 is

multiplied to the localization

weight: 𝜔𝑗
𝑏𝑖𝑙 = 𝜔𝑗 ⋅ 𝜋𝑗

 𝜋𝑗 decreases with increasingly
different tangent spaces

 Two choices have been proposed:
1. normal distance

𝜋𝑗
ෝ𝒏 = exp −

ෝ𝒏𝑗 − ෝ𝒏
2

𝜎ෝ𝒏
2

2. plane distance

𝜋𝑗
𝑑 = exp −

ෝ𝒏𝑗
𝑇𝒙 − 𝑐𝑗

2

𝜎𝑑
2

 The bilateral weights depend on 
the to be estimated normals
and couple the local optimzation
problems into a global, non-
linear optimization problem

 Typically, the following simple 
solution strategy is used:

1. compute neighbor graph

2. initialize all bilateral weights to 1

3. fit tangent plane (ෝ𝒏𝑖 , 𝑐𝑖) at each
point 𝒙𝑖

4. iterate till convergence
compute bilateral weights

fit tangential planes with new
weights

S. Gumhold, CG2, SS24 – 3D Scan Processing 28

𝒙

ෝ𝒏 ෝ𝒏𝑗

𝒙𝑗
𝑑

ෝ𝒏𝑗
𝑇𝒙 − 𝑐𝑗

𝑑

[Fleishman03]



Computer Graphics
and Visualizationexample convergence
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ground truth iteration 0 iteration 1 iteration 2



Computer Graphics
and VisualizationCurvatures and Higher Order

 After fitting a tangent space 
through ഥ𝒙 orthogonal to ෝ𝒏, one 
can define a local 2D 
coordinate system in the 
tangent space (𝑥, 𝑦)

 The neighboring points can be 
transformed to local 
coordinates with 𝑧 along the 
normal direction

 We can fit a height field 𝑔(𝑥, 𝑦)
in a polynomial description to 
the neighboring points and use 
the tailor series of 
𝑔(𝑥, 𝑦) around the 2D origin to 
compute the curvature 
properties

30S. Gumhold, CG2, SS24 – 3D Scan Processing

ഥ𝒙

ෝ𝒏

𝑧𝑗
𝒙𝑗

𝑔(𝑥, 𝑦)

[Alexa‘01]



Computer Graphics
and VisualizationCurvatures and Higher Order

Local Polynomial Fit

 monoms are the simplest basis
and can be built for increasing
degrees:
degree 0: 1,
degree 1: 𝑥, 𝑦,
degree 2: 𝑥2, 𝑥𝑦, 𝑦2,
degree 3: 𝑥3, 𝑥2𝑦, 𝑥𝑦2, 𝑦3

 𝑔(𝑥, 𝑦) is a linear combination of
the basis functions, which can
be transformed to vector
notation:
𝑔 𝑥, 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 +

𝑎3𝑥
2 + 𝑎4𝑥𝑦 + 𝑎5𝑦

2 +⋯

=෍

𝑖

𝑎𝑖𝜙𝑖 𝑥, 𝑦 = 𝒂,𝜙 𝑥, 𝑦

 This is a standard least squares
problem with:

𝑟𝑗 = 𝑔 𝑥𝑗 , 𝑦𝑗 − 𝑓𝑗
 and weights Gaussian

𝜔𝑗 ∝ exp − 𝒙𝑗 − ഥ𝒙
2
/𝜎𝑙𝑜𝑐

2

 The solution can be computed
via the normal equations

𝑨𝑇𝑾𝑨𝒂 = 𝑨𝑇𝑾𝒇

 with 𝑨𝑗𝑖 = 𝜙𝑖 𝑥𝑗 , 𝑦𝑗 and 𝒇𝑗 = 𝑓𝑗.

 Solve with weighted pseudo 
inverse or with SVD.

 estimate curvature from 
curvature of 𝑔(𝑥 = 0, 𝑦 = 0).

 compare CG1 script on surface
analysis,

with 𝒔 𝑥, 𝑦 =

𝑥
𝑦

𝑔 𝑥, 𝑦
S. Gumhold, CG2, SS24 – 3D Scan Processing 31



Computer Graphics
and VisualizationSpin Images

 describe larger 
neighborhood of point 
with a histogram over 
angle 𝛼 and height 𝛽

 for this compute tangent 
space and local coordinate 
frame

 per neighbor point 
measure angle 𝛼 to x-axis 
and local height 𝛽 over
tangent plane

 compute histogram on 
grid vertices (not on cells) 
by adding weights of 
bilinear interpolation 
(resulting in extrapolation)
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Computer Graphics
and VisualizationSpin Images

 Spin images can well 
distinguish different 
local surface types

 They are used 
frequently in shape 
matching approaches

 choice of x-axis is a 
degree of freedom that
cyclically translates spin
image in 𝛼-direction

 to make matching
approaches robust 
against choice of x-axis, 
identify all 𝛼-
translations of splin
image
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Computer Graphics
and VisualizationLiterature
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Computer Graphics
and Visualization

ORIENTATION OF NORMALS
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Computer Graphics
and VisualizationMotivation Normal Orientation Problem

 consistent normal orientation is precondition of several 
surface reconstruction techniques

S. Gumhold, CG2, SS24 – 3D Scan Processing 36

Double-Sided Lighting

Normal Orientation

Poisson Reconstruction

Poisson Reconstruction



Computer Graphics
and VisualizationMotivation Normal Orientation Problem

 tangent plane fitting does 
not give sign of normal

 sign defines outside 
direction which needs to 
be globally consistent

 position of 3D scanner 
defines outside direction, 
but
 information is often lost 

 difference between 
computed normal directions 
to original surface normals
can lead to wrong 
orientation estimate

S. Gumhold, CG2, SS24 – 3D Scan Processing 37

wrong normal direction

leads to wrong orientation



Computer Graphics
and VisualizationOverview on normal orientation

normal orientation problem

 input: points 𝒙𝑖 with normals ෝ𝒏𝑖
 output: one sign 𝑠𝑖 per normal where

 𝑠𝑖 = +1 … keep normal

 𝑠𝑖 = −1 … negate normal

solution strategy

 estimate one or several normals
from additional knowledge

 build neighbor graph and propagate
normal orientation along graph edges

S. Gumhold, CG2, SS24 – 3D Scan Processing 38



Computer Graphics
and Visualizationnormal orientation solution strategy

 initialization: estimate one or several normals per 
connected component from additional knowledge (i.e. 
outside direction of convex hull)

 build neighbor graph (i.e. Riemann
graph with 𝑘 = 16)

 weight each graph edge by
unreliability measure

 define flip criterion and propagate 
normal orientations from initialization 
over graph edges by one of the two 
strategies:

1. propagate orientation along
minimal spanning tree, or

2. setup global unreliability minimization
problem and solve with approximate 
solver [Schertler16]
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Computer Graphics
and Visualizationflip criteria and unreliability measures

 [Hoppe92] locally assumes planar 
surface and directly compares 
normals of points incident to edge:

𝑓𝐻 𝑒𝑖𝑗 ≔ ො𝑛𝑖 , ො𝑛𝑗 < 0

 Hoppe measures reliability from 
the absolute value of cosine of  
angle between the normals

𝑢𝐻 𝑒𝑖𝑗 ≔ 1− ො𝑛𝑖 , ො𝑛𝑗
 [Xie03] assume constant curvature 

and transport normal by reflection 
at edge bisector. Flip criterion and 
unreliability measure are defined 
as in Hoppe’s approach:

𝑓𝑋 𝑒𝑖𝑗 ≔ ො𝑛𝑖
′, ො𝑛𝑗 < 0

𝑢𝑋 𝑒𝑖𝑗 ≔ 1− ො𝑛𝑖
′, ො𝑛𝑗
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sphere

bisector

𝑓𝐻 𝑒𝑖𝑗 = false

𝑓𝐻 𝑒𝑖𝑗 = true

ො𝑛𝑖 ො𝑛𝑗

ො𝑛𝑗

𝒙𝑖 𝒙𝑗

ො𝑛𝑖

𝒙𝑖 𝒙𝑗

𝑓𝑋 𝑒𝑖𝑗 = false

𝑓𝑋 𝑒𝑖𝑗 = true

ො𝑛𝑗ො𝑛𝑖

ො𝑛𝑗

ො𝑛𝑖
′

𝑒𝑖𝑗

𝑒𝑖𝑗



Computer Graphics
and Visualizationflip criteria and unreliability measures

 [König09] proposes to define flip 
criterion and unreliability measure 
from curve complexity

𝐶 𝑐𝑘 = ∫ 𝜅𝑘(𝑠) 𝑑𝑠

 2D coordinate system is built from 

edge Ƹ𝑒 and Ƹ𝑒 × ො𝑛𝑖 × ො𝑛𝑗 .

 for both orientations 𝑠𝑗 = ±1 two 

Hermit curves 𝑐1
+, 𝑐2

+ and 𝑐1
−, 𝑐2

− are 
defined to connect points

 flip criterion and unreliability are 
defined from smaller curve 

complexity 𝐶± = min 𝐶(𝑐1
±), 𝐶(𝑐2

±)
𝑓𝐾 𝑒𝑖𝑗 ≔ 𝐶− < 𝐶+

𝑢𝐾 𝑒𝑖𝑗 ≔
min 𝐶−, 𝐶+

max 𝐶−, 𝐶+
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ො𝑛𝑗ො𝑛𝑖

ො𝑛𝑗

𝑓𝐾 𝑒𝑖𝑗 = false

𝑓𝐾 𝑒𝑖𝑗 = true

𝒙𝑖 𝒙𝑗

𝒙𝑖 𝒙𝑗

𝑐2
+

𝑐1
+

𝑐1
−𝑐2

−

𝑐2
+

𝑐1
+

𝑐1
−

𝑐2
−
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Case Hoppe Xie König

Smooth surface / 
low curvature

++ ++ ++

High curvature /
acute angles

- ++ ++

nearby sheets - + +

high normal twist
along edge

- - +

𝒙𝑖

𝒙𝑗 ො𝑛𝑗

ො𝑛𝑖



Computer Graphics
and VisualizationMinimal Spanning Tree (MST)

 given initial orientations and 
a connected graph of edges 
with unreliability as cost

 MST can be computed with 
Kruskal’s algorithm in 
𝑂(𝑚 log𝑚) for 𝑚 edges and 
minimizes unreliability.

 The idea is to add edges 
with increasing unreliability 
starting from least 
unreliable one and to avoid 
cycles by tracing sets of 
connected graph vertices 
with union find data 
structure (compare CG1)

S. Gumhold, CG2, SS24 – 3D Scan Processing 43

vector MST_Kruskal(n,E,C)

vector MST;

union_find U(n);

sort (E,C) increasingly

iterate e=(vi,vj) in E {

if (U.find(vi) != 

U.find(vj)) {

MST.push_back(e);

U.union(vi, vj);

}

}

return MST;

avoids

cycles

Pseudo code of Kruskal’s algorithm using 

the union find data structure

(see also www.youtube.com/watch?v=3fU0w9XZjAA)

http://www.youtube.com/watch?v=3fU0w9XZjAA
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and VisualizationMotivation of Global Optimization

S. Gumhold, CG2, SS24 – 3D Scan Processing 44

example of distance-

weighted output of

reliability measure
(sign encodes flip criterion)

Maximum Spanning

Tree greedily minimizes 

reliability of sum of contradicted 

flip criteria solution, E=2.4

Optimal Solution of the

minimization of sum of

contradicted broken flip

criteria: E=2.0

alternative view:

maximize reliability

𝑟 𝑒𝑖𝑗 ≔ ො𝑛𝑖 , ො𝑛𝑗 = 1 − 𝑢 𝑒𝑖𝑗



Computer Graphics
and VisualizationGlobal Orientation Problem

 use sign 𝑠𝑖 ∈ −1,+1 as point 
label

 per edge in neighbor graph define 
energy for label assignments that 
defaults to zero.

 for assignments that contradict flip 
criterion, assign positive term with 
a distance decreasing weight 𝜔𝑖𝑗:

𝐸𝑖,𝑗 = 𝑟∗ 𝑒𝑖𝑗 1 −
𝒙𝑖 − 𝒙𝑗

2

𝑙max
2

𝜔𝑖𝑗∈ 0,1

with the maximum edge length 
𝑙max in the graph

 finally optimize labels

𝐿∗ = arg min
𝑆= −1,+1 𝒫

෍

𝑖,𝑗 ∈ℰ

𝐸𝑖,𝑗 𝑠𝑖 , 𝑠𝑗
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𝑓∗ 𝑒𝑖𝑗 =false

𝑓∗ 𝑒𝑖𝑗 =true

𝑠𝑖 𝑠𝑗

𝑠𝑖 𝑠𝑗



Computer Graphics
and VisualizationGlobal Orientation Problem

 problem is NP-hard  only semi-approximate solvers like 
QPBO (Quadratic Pseudo-Boolean Optimization) feasible
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Xie, MST Xie, MST + QPBO-I Hoppe, MST Hoppe, MST + QPBO-I
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http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_informatik/smt/cgv/publikationen/2009/normal_propagation.pdf
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FEATURE EXTRACTION
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Computer Graphics
and VisualizationClassification of Surface Points

Mannifold

 smooth surface point

 sharp crease point

 sharp corner

 „darts“: transition

from a sharp edge into 

a planar area

Mannifold with Boundary

 smooth border curve

 border corner

corners, darts and border corner are hard to detect locally
S. Gumhold, CG2, SS24 – 3D Scan Processing

© Hughes Hoppe
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Computer Graphics
and VisualizationClassification with covariance matrix

Local Point Density Analysis

 given 𝑚 neighbor points 𝒑𝑗 with 

weights 𝜔𝑗 we compute
 barycenter: ഥ𝒑 = σ𝑗=1

𝑚 𝜔𝑗𝒑𝑗 and

 covariance matrix: 𝑪 = σ𝑗=1
𝑚 𝜔𝑗𝒑𝑗

′𝒑𝑗
′ 𝑇

with 𝒑𝑗
′ = 𝒑𝑗 − ഥ𝒑

 ellipsoid representing local point
density from Eigen decomposition
𝑪 = 𝜆1ෝ𝒗1ෝ𝒗1

𝑇 + 𝜆2ෝ𝒗2ෝ𝒗2
𝑇 + 𝜆3ෝ𝒗3ෝ𝒗3

𝑇

with 𝜆1 ≤ 𝜆2 ≤ 𝜆3

 𝜆𝑖 are

radii of
represen-
tative
ellipsoid:

Feature Detection

 representative ellipsoid is
suitable for characterization of
neighborhood of point 𝒑𝒌:

 smooth surface:
 0 1<< 2 3



 smooth border:
 0 1<< 2  ½ 3



 sharp crease
 0 << 1  2 < 3



 corner
 0 << 1  2  3

S. Gumhold, CG2, SS24 – 3D Scan Processing
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1v̂

2v̂

3v̂
p

2λ

3λ

k
pp 

2k
λ pp

2k
λ pp
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Computer Graphics
and VisualizationAlternative Border Detection 1

Half-Disk Criterion

 The local neighborhood of 
points located on the 
surface boundary is 
homeomorphic to a half-
disk as opposed to the full 
disk of an interior point

 For an interior point, the 
average 𝜇𝑝 of the 
neighborhood points will 
coincide with the interior 
point itself

 for a boundary point, it will 
deviate in direction of the
interior of the surface.
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Boundary Probability:

average distance to neighboring points

𝜇𝑝

𝜇𝑝 p

p
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and VisualizationAlternative Border Detection 2

Angle Criterion

 Project neighboring
points onto tangential 
plane

 Sort projected points
according to their
angle around the
center point p

 find largest gap 𝑔

 𝑔 will be significantly
larger for a boundary
point than for an 
interior point
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Boundary probability:

number of neighbor points
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and VisualizationFeature Line Extraction [Gum01]

 MST weights are
defined for creases
and border separately
(formula see paper)

S. Gumhold, CG2, SS24 – 3D Scan Processing 53

compute

neighbor

graph

compute

represent.

ellipsoids

minimal

spanning

pattern

prune

short

arms

fit spline and

reconstruct

corners
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REGISTRATION
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Computer Graphics
and Visualization3D Dataset Registration (CG1)

 Registration is the process of bringing
two data sets into a joint coordinate
system based on feature
correspondences.
 common features are points, lines and

planes

 common correspondences are point-to-
point, point-to-plane or line-to-line

 one distinguishes between rigid and
non-rigid registration

 For registration of 3D scans we
consider rigid registration with point-to-
point or point-to-plane 
correspondences.

 Given two scans 𝐴 & 𝐵 we want to find 
a rigid transformation 𝑇 s.t. 𝐴 = 𝑇(𝐵)

 Standard approach: ICP algorithm

S. Gumhold, CG2, SS24 – 3D Scan Processing 56

for acquisition of a 3D Model several 3D-Scans

from different view points need to be transformed

into a common coordinate system and then fused



Computer Graphics
and VisualizationIterative Closest Points (ICP) Algorithm

 Input: two point clouds and coarse initial alignment

 ICP alternates between generation of correspondences
based on closeness according to some distance function 
and the alignment according to correspondences.

 algorithm is iterative and assumes a coarse initial align-
ment of the 3D scans, as well as an overlap of the scans

 Pseudo-Code:
1. find coarse initial alignment 𝑇0

(you can use markers, geometry features or do it manually)

2. find correspondences: subsample 𝐴 and 𝐵 to 𝑆𝐴 and 𝑆𝐵 and find 
∀𝑎 ∈ 𝑆𝐴 closest point 𝑏𝑎𝐵 and define 𝑎, 𝑏𝑎 as correspondence
(similarly ∀𝑏 ∈ 𝑆𝐵). Filter correspondences, for example only 
symmetric ones where 𝑎 is closest point to 𝑏𝑎.

3. compute 𝑇𝑖+1 such that squared distance of all corresponding 
point pairs with respect to 𝑇𝑖 is minimized (Kabsch Algorithm)
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until

conver-

gence:

𝑇𝑖+1 ≈ 𝑇𝑖



Computer Graphics
and VisualizationKabsch Algorithm

 Input: 𝑛 correspondences 
𝒑1, 𝒒1 , … , 𝒑𝑛, 𝒒𝑛 on two 

different shapes 𝐴 and 𝐵.

 Goal: find rigid transformation 𝑹, Ԧ𝒕
(rotation matrix 𝑹 and translation 

vector Ԧ𝒕) that minimizes the 
squared distances between all 
point-to-point correspondences:

𝑹∗, Ԧ𝒕∗

= minarg
𝑹,Ԧ𝒕|𝑹𝑹𝑇=𝟏

෍

𝑖=1

𝑛

𝒑𝑖 − 𝑹𝒒𝑖 + Ԧ𝒕
2

 Translate the input points to the 
centroids:
𝒑𝑖
′ = 𝒑𝑖 − ഥ𝒑, 𝒒𝑖

′ = 𝒒𝑖 − ഥ𝒒

 Compute the “covariance matrix”

𝑯 =෍

𝑖=1

𝑛

𝒒𝑖
′𝒑𝑖

′𝑇

 Compute the SVD of 𝑯:
𝑯 = 𝑼𝚺𝑽𝑇

 The optimal rotation is

𝑹∗ = 𝑽
1 0 0
0 1 0
0 0 det 𝑽𝑼𝑇

𝑼𝑇

 translation vector is: Ԧ𝒕∗ = ഥ𝒑 − 𝑹∗ഥ𝒒
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and VisualizationICP Variants

 Decompose ICP into six steps:

1. Selection of some set of points in one or both meshes.

2. Matching these points to samples in the other mesh.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs based on looking at each pair 
individually or considering the entire set of pairs.

5. Assigning an error metric based on the point pairs.

6. Minimizing the error metric.

 Possible criteria for comparison
 Speed

 Stability

 Tolerance with respect to noise / outliers

 Maximum initial misalignment
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[Rusinkiewicz01]

[Rusinkiewicz01]
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and VisualizationICP Variants – Selection

 Use all points

 Uniform subsampling

 Random sampling

 Normal-space sampling
 Ensure that samples have 

normals distributed
as uniformly as possible

 Demands for additional data 
structure

 Is more efficient if surface 
has narrow features
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Uniform Sampling

Normal-Space Sampling
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and VisualizationICP Variants – Matching 

 great effect on convergence and speed

 all approaches can discard matches 
where normals / colors don’t match
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closest-point matching 

generally stable,

but slow and requires 

preprocessing

normal shooting slightly 

better than closest point 

for smooth meshes, 

worse for noisy or 

complex meshes

projection much faster 

than closest point (can be 

implemented through 

rendering), a bit less 

stable such that point to 

plane distance necessary



Computer Graphics
and VisualizationICP Variants – Error Metric

 Point to point distance 

𝑹∗, Ԧ𝒕∗ = minarg
𝑹,Ԧ𝒕|𝑹𝑹𝑇=𝟏

෍

𝑖=1

𝑛

𝑹𝒒𝑖 + Ԧ𝒕 − 𝒑𝑖

𝒓𝑖 𝑹,Ԧ𝒕
2

 Given normals ෝ𝒏𝑖 at points 𝒑𝑖 one can minimize point to 
plane distance yielding faster convergence

𝑹∗, Ԧ𝒕∗ = minarg
𝑹,Ԧ𝒕|𝑹𝑹𝑇=𝟏

෍

𝑖=1

𝑛

ෝ𝒏𝑖 , 𝒓𝑖
2

Implemented through linearization of 𝑹
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residual vector
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and VisualizationHigh-Speed ICP Algorithm

 ICP algorithm with projection-based correspondences, 
point-to-plane matching can align meshes in a few tens of 
ms. (cf. over 1 sec. with closest-point)
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[Rusinkiewicz01]



Computer Graphics
and VisualizationSparse ICP [Bouaziz13/14]

 Robust norm makes vector of residuals sparse and 
approach less sensitive to outliers and noise

 propose to use Minkowski norm with exponent 𝜈 = 0.4 (in 
their paper denoted 𝑝).

 iteratively re-weighted least squares approach is too
unstable for small residuals

 They derive an Alternating Direction Method of Multipliers

(ADMM) using Lagrange multipliers 𝝀𝑖 and an additional 
vector 𝒛𝑖 per correspondence

 Step 1: minarg
𝒛𝑖

σ𝑖 𝒛𝑖 2
𝜈 +

𝜇

2
𝒓𝑖 − 𝒛𝑖 + 𝝀𝑖/𝜇 2

2

 Step 2: minarg
𝑹,Ԧ𝒕|𝑹𝑹𝑇=𝟏

σ𝑖 𝒓𝑖 − 𝒛𝑖 + 𝝀𝑖/𝜇 2

2

 Step 3: 𝝀𝑖 ← 𝝀𝑖 + 𝜇 𝒓𝑖 − 𝒛𝑖

 𝜇 is a penalty to automatically eliminate outliers
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Computer Graphics
and VisualizationSparse ICP [Bouaziz13/14]

 when decreasing the norm 
exponent 𝜈, the method
 becomes more robust, but

 slows down

 using point to plane 
distance increases
convergence speed
significantly

 purely header based
source code available at 
http://lgg.epfl.ch/sparseicp
(comes with a compatible
version of Eigen)
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http://lgg.epfl.ch/sparseicp


Computer Graphics
and VisualizationSparse ICP [Bouaziz13/14]
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Computer Graphics
and VisualizationArticulated-ICP for Hand Tracking

 current research generalizes ICP to flexible and articulated 
models
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[Tagliasacchi15]
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SURFACE RECONSTRUCTION
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Computer Graphics
and Visualizationpoint cloud artifacts and priors

priors

surface 
smoothness

visibility

volumetric 
smoothness

geometric 
primitives

data-driven

 interactive 
user input
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and VisualizationOverview of surface reconstruction

 zippering

 ball pivoting

 Voronoi diagram 
based direct 
tessellation

 dilation based 
methods

 moving least 
squares projections

 local Voronoi
diagram methods

 moving least 
squares projections
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points

tangent spaces

oriented normals

 implicit function 
fitting

 indicator function 
fitting

In
p

u
t

Output triangle mesh, implicit surface, point set, volumetric segmentation

a
p

p
ro

a
c

h
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Computer Graphics
and VisualizationBall pivoting

 start with seed triangle

 grow region over boundary edges that are organized in 
queue by rolling ball of user specified radius over edge 
until it hits a third point 

 all balls touch three points and do not contain further 
point

 Simple and fast implementation with low memory 
demands and suitable for out-of-core 
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[Bernardini99] 



Computer Graphics
and VisualizationBall pivoting

 But not adaptive as we need to fix a sphere radius!

 Can not handle very noisy data sets
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Computer Graphics
and VisualizationVoronoi based approaches

Crust

compute Delaunay tetrahedralization

for each sample compute two poles (most distant 
Voronoi vertices)

add poles to point set and compute joint 
Delaunay tetrahedralization

output all triangles that connect original samples

Variants

power crust

cocone

umbrella filter
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Umbrella filter for topological consistency

file:///E:/build/bin/examples_10.exe
file:///E:/build/bin/examples_10.exe


Computer Graphics
and VisualizationLocal Voronoi based triangulation

 Input: points with tangent spaces (unoriented normals)

 project point neighborhood into 2D tangent space

 compute local 2D Delaunay triangulation
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[König13]
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and VisualizationLocal Voronoi based triangulation

 find triangles that are part of all local Delaunay triangulations

 use priority queue to add nearly consistent triangles

 close remaining small holes with tessellation strategy
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[König13]



Computer Graphics
and VisualizationIndicator Function Based Reconstruction

 M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface 
reconstruction, Symposium on Geometry Processing 
2006, 61-70.

 M. Kazhdan, H. Hoppe. Screened Poisson surface 
reconstruction, ACM Trans. Graphics, 32(3), 2013. 
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∇𝜒 = 𝑉

𝜒 𝑞 𝑉 𝑞

𝜒 = minarg
𝐹

∇𝐹 − 𝑉
2

(q)=-0.5

(q)=0.5

Δ𝜒 = ∇𝑉

(q)=0
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and VisualizationIndicator Function Based Reconstruction
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1. Discretize over octree

2. Compute divergence

3. Solve the Poisson equation
coarse  fine

coarse

fine

+

+

+

+

Solution Correction

𝑉 𝑞

Δ−1

𝜒 𝑞

∇⋅
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and VisualizationIndicator Function Based Reconstruction
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𝐸 𝜒 = න ∇𝜒 𝑞 − 𝑉 𝑞
2
𝑑𝑞

Gradient fitting Sample interpolation
[Carr et al.,…,Calakli and Taubin]
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 Screended Poisson surface reconstruction toolchain 
available at https://github.com/mkazhdan/PoissonRecon

color values from the input samples can be obtained by calling:

% PoissonRecon --in eagle.points.ply --out eagle.pr.color.ply --depth 10 --colors

using the --colors flag to indicate that color extrapolation should be used.

A reconstruction of the eagle that does not close up the holes can be obtained by first calling:

% SSDRecon --in eagle.points.ply --out eagle.ssd.color.ply --depth 10 --colors --density

using the --density flag to indicate that density estimates should be output with the vertices of the 
mesh, and then calling:

% SurfaceTrimmer --in eagle.ssd.color.ply --out eagle.ssd.color.trimmed.ply --trim 7

to remove all subsets of the surface where the sampling density corresponds to a depth smaller than 7.

This reconstruction can be chunked into cubes of size 4×4×4 by calling:

% ChunkPly --in eagle.ssd.color.trimmed.ply --out eagle.ssd.color.trimmed.chnks --width 4

which partitions the reconstruction into 11 pieces. 

https://github.com/mkazhdan/PoissonRecon
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 Acquire object from a large 
number of registered views 
(for example with turn table)

 Extract binary Object masks 
(border corresponds to 
silhouette of object)

 From silhouette the visual hull 
can be reconstruct as follows:
 Define volume grid

 Project each voxel to all mask 
images and check whether it 
falls inside all silhouettes

 The resulting set of voxels 
(grey in figure) approximate 
the visual hull of the object
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acquisition

reconstructed voxels
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 idea: exploit the colors of the 
image pixels and remove 
further voxels that are not 
photoconsistent as follows:
 define volume

 optionally perform silhouette 
carving as initialization

 check for each voxel on the 
surface, whether it is photo-
consistent: project voxel into 
all images, compute variance 
and threshold variance

 discard inconsistent voxels
until surface is consistent
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K. N. Kutulakos and S. M. Seitz, A Theory of 

Shape by Space Carving, ICCV 1999.
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 uses RGB-Depth cameras 
like kinect as input

 reconstruction is simple 
and most accurate carving 
approach
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 uses RGB-Depth cameras 
like kinect as input

 then reconstruction is 
simplest and most 
accurate
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 uses RGB-Depth cameras 
like kinect as input

 then reconstruction is 
simplest and most 
accurate
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 uses RGB-Depth cameras 
like kinect as input

 then reconstruction is 
simplest and most 
accurate
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visual hull from silhouettes

(outer bound of possible scenes)

photo consistency hull

(better outer bound of scenes)

real object can be 

reconstructed with volume 

carving from RGB-Depth
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