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Computer Graphics
and Visualizationcontents

 2D rotations

 3D rotations

 Quaternions

 Articulated Objects
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Computer Graphics
and Visualization

2D ROTATIONS
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Computer Graphics
and Visualization2D Rotations

 Transformation matrices contain the new base vectors in 
their columns (or rows, depending on the convention)

 For example: counter clockwise rotation around angle 
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Computer Graphics
and VisualizationComplex Numbers

 The equation x2+1=0 has no solution in R

 With the definition                we get the solutions x=i

 Besides the “real” dimension, an imaginary dimension 

extends the 1d real space to the 2d complex space

 By definition, the real dimension and the imaginary 

dimension are orthogonal

1i 
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Computer Graphics
and VisualizationComplex Numbers

 Different equivalent notions exist to describe a point in 

the complex plane
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component form

𝑧 = 𝑎 + 𝑖 ⋅ 𝑏

trigonometric form

𝑧 = 𝑧 ⋅ (cos 𝜌 + 𝑖 ⋅ sin 𝜌)
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Computer Graphics
and VisualizationProperties of Complex Numbers

 product is defined by distribution law and the basic 

products 1 ⋅ 1 = 1, 1 ⋅ 𝑖 = 𝑖, 𝑖 ⋅ 1 = 𝑖, 𝑖 ⋅ 𝑖 = −1:

𝑎 + 𝑖𝑏 𝑐 + 𝑖𝑑 = 𝑎𝑐 − 𝑏𝑑 + 𝑖 𝑏𝑐 + 𝑎𝑑

 complex product is commutative:

𝑧1 ⋅ 𝑧2 = 𝑧2 ⋅ 𝑧1

 conjugation: 𝑧∗ = 𝑎 + 𝑖𝑏 ∗ = 𝑎 − 𝑖𝑏

 norm: 𝑧 2 = 𝑧 ⋅ 𝑧∗= 𝑎2 + 𝑏2

 inverse: 𝑧−1 = 𝑧∗/ 𝑧 2

 any polynomial σ𝑗=0…𝑛 𝑎𝑗 ⋅ 𝑥
𝑗 has 𝑛 zero crossings in ℂ
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Computer Graphics
and VisualizationEuler’s Formula

 Euler published in 1748 the formula

exp(𝑖 ⋅ 𝜌) = cos 𝜌 + 𝑖 ⋅ sin 𝜌
that shows exp(𝑖 ⋅ 𝜌) repeatedly traces out the unit circle.

 The proof is given by Taylor series expansions:

exp(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

6
𝑥3 +

1

24
𝑥4 +

1

120
𝑥5 +⋯

 plugging in 𝑥 = 𝑖𝛼 yields

exp(𝑖𝛼) = 1 + 𝑖𝛼 −
1

2
𝛼2 − 𝑖

1

6
𝛼3 +

1

24
𝛼4 + 𝑖

1

120
𝛼5 +⋯

= 1 −
1

2
𝛼2 +

1

24
𝛼4 +⋯+ 𝑖 𝛼 −

1

6
𝛼3 +

1

120
𝛼5 +⋯

= cos 𝛼 + 𝑖 ⋅ sin 𝛼

 the trigonometric form of a complex number becomes

𝑧 = 𝑧 ⋅ exp 𝑖𝜌 = 𝑧 ⋅ 𝑒𝑖𝜌
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Computer Graphics
and Visualization2D Rotation with complex numbers

 multiplication of a complex number 𝑧 = 𝑎 + 𝑖𝑏 from left or 
right with 𝑒𝑖𝛼 corresponds to 2D rotation of 𝑧 around
origin in complex plane

 proof by reduction to matrix form:
𝑧 ⋅ 𝑒𝑖𝛼 = 𝑎 + 𝑖𝑏 ⋅ 𝑒𝑖𝛼

= 𝑎 + 𝑖𝑏 ⋅ cos 𝛼 + 𝑖 ⋅ sin 𝛼
= 𝑎 ⋅ cos 𝛼 + 𝑖 ⋅ 𝑎 ⋅ sin 𝛼 + 𝑖 ⋅ 𝑏 ⋅ cos 𝛼 − 𝑏 ⋅ sin 𝛼
= 𝑎 ⋅ cos 𝛼 − 𝑏 ⋅ sin 𝜌 + 𝑖 ⋅ 𝑎 ⋅ sin 𝛼 + 𝑏 ⋅ cos 𝛼

=
cos 𝛼 −sin 𝛼
sin 𝛼 cos 𝛼

𝑎
𝑏

= cos 𝛼 + 𝑖 ⋅ sin 𝛼 ⋅ 𝑎 + 𝑖𝑏
= 𝑒𝑖𝛼 ⋅ 𝑧
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3D ROTATIONS
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Computer Graphics
and VisualizationProperties of rotations in 3D

 Rotations retain the length of
vectors, which means

 This is true for all    , thus

 If detR=1 the matrix contains a 
reflection. Rotations must have
detR=+1

 Rotations form the special
orthonormal group:

 3D rotations do not commute:
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Computer Graphics
and VisualizationForward Euler Angle

 A 3D rotation in the 123-convention
of Euler angles as used in navigation
for roll, pitch, yaw can be written in 
the form:

 The Euler angles can be computed from a given rotation 
matrix 𝑹 according to the Pseudo code on next slide. We 
define the vector 𝝎 of Euler angles as

𝝎 = 𝜃1, 𝜃2, 𝜃3
𝑇 = 𝑅123

−1 𝑹
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Computer Graphics
and VisualizationEuler Angles Inversion – 2 Approaches

Ken Shoemake. "Euler angle 
conversion." Graphics gems IV. 
1994. 222-229.

 checks for gimble lock case
where 𝑐2 becomes very small
with epsilon check on m00 and
m01 and assumes 𝜃3 = 0.

 Mike Day. "Extracting euler
angles from a rotation matrix, 
2012

 avoids check by accounting for
instable 𝜃1 in computation of  𝜃3

 this allows for restriction to
single precision floats
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0ẑ

0x̂

0ŷ

n̂

v


Rotation around Axis

 Every rotation can be described
by an axis and an angle 

 Notion of this rotation matrix

 For every rotation exist two
axis-angle combinations:

 Matrix notation
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and Visualization

QUATERNIONS
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Computer Graphics
and VisualizationDerivation of Euler Parameters
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cos 2𝑥 = 1 − 2 sin2 𝑥

cos 2𝑥 = cos2 𝑥 − sin2 𝑥

sin 2𝑥 = 2 sin 𝑥 cos 𝑥



Computer Graphics
and VisualizationQuaternion Definition

 comparison with complex numbers suggests definition of
quaternions:

 with complex roots i,j and k whose direct products define
the rule of multiplying two quaternions

 when reducing to 2D rotations, the complex numbers
should result. This implies

 This results in the following
product table:
(ij= ji would result in a commutative
product, but rotations in 3D don‘t
commute)
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3210 kejeieeqiz   sincos

1222  ijkkji

∗ 1 𝑖 𝑗 𝑘

1 1 𝑖 𝑗 𝑘

𝑖 𝑖 −1 𝑘 −𝑗

𝑗 𝑗 −𝑘 −1 𝑖

𝑘 𝑘 𝑗 −𝑖 −1
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Computer Graphics
and VisualizationQuaternion Definition

 Note the similarity between 𝑖,𝑗,𝑘 and cross products of
the orthogonal unit vectors ෝ𝒙, ෝ𝒚, ො𝒛:

 detailed explanation of quaternions can be found at: 
http://3dgep.com/?p=1815
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∗ 1 𝑖 𝑗 𝑘

1 1 𝑖 𝑗 𝑘

𝑖 𝑖 −1 𝑘 −𝑗

𝑗 𝑗 −𝑘 −1 𝑖

𝑘 𝑘 𝑗 −𝑖 −1

× ෝ𝒙 ෝ𝒚 ො𝒛

ෝ𝒙 𝟎 ො𝒛 −ෝ𝒚

ෝ𝒚 −ො𝒛 𝟎 ෝ𝒙

ො𝒛 ෝ𝒚 −ෝ𝒙 𝟎
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Computer Graphics
and VisualizationMore on Quaternions

 conjugation:

 norm:

 inverse: for unit quaternions:  

 scalar+vector-interpretation

 multiplication

 unit quaternions                              can be interpreted as 
rotation by α around   . To rotate a 3d-vector    construct 
quaternion                and compute

𝑝′ = ො𝑞𝑝ො𝑞∗

 efficient concatenation of rotations: ො𝑞12 = ො𝑞1 ො𝑞2
 When interpolating rotations with quaternions one has to 

ensure that result is a proper rotation. Then one can 
normalize the result quaternion or use SLERP.

     zyxsseq 0 ,,,,,  ve
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Computer Graphics
and VisualizationExample

 concatenation of rotation by 𝛼 around 𝑥 followed by 
rotation by 𝛽 around 𝑦

 𝑞𝑥 = cos
𝛼

2
sin

𝛼

2
0 0

 𝑞𝑦 = cos
𝛽

2
0 sin

𝛽

2
0

 quat. product:𝑞1𝑞2 = 𝑠1𝑠2 − 𝒗1 ⋅ 𝒗2, 𝑠1𝒗2 + 𝑠2𝒗1 + 𝒗1 × 𝒗2

𝑞𝑦𝑞𝑥 = cos
𝛼

2
cos

𝛽

2
sin

𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
 this corresponds to rotation around new axis ෝ𝒏 and new

angle 𝛾 with

𝒏 = sin
𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
,
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Computer Graphics
and VisualizationExample

 𝑞𝑦𝑞𝑥 = cos
𝛼

2
cos

𝛽

2
sin

𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
−sin

𝛼

2
sin

𝛽

2

 this corresponds to rotation around new axis ෝ𝒏 and new
angle 𝛾 with

 and angle
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𝒏 = sin
𝛼

2
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𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
,

𝛾 = arctan2 1 − cos2
𝛽

2
cos2

𝛼

2
, cos

𝛼

2
cos

𝛽

2

𝒏 2 = sin2
𝛼

2
cos2

𝛽

2
+ cos2

𝛼

2
sin2

𝛽

2
+ sin2

𝛼

2
sin2

𝛽

2
= sin2

𝛼

2
cos2

𝛽

2
+ sin2

𝛽

2
,

= 1 − cos2
𝛽

2
+ sin2

𝛼

2
cos2

𝛽

2
= 1 − cos2

𝛽

2
1 − sin2

𝛼

2
= 1 − cos2

𝛽

2
cos2

𝛼

2

ෝ𝒏 =
1

1 − cos2
𝛽
2 cos

2 𝛼
2

sin
𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
,



Computer Graphics
and VisualizationConversions from and to matrix

 conversion to rotation matrix can be derived by transforming
the base vectors ෝ𝒙, ෝ𝒚, ො𝒛 with the quaternion and writing result
in columns of rotation matrix:

𝑹 𝑞 =

𝑠
𝑥
𝑦
𝑧

=

𝑠2 + 𝑥2 − 𝑦2 − 𝑧2 2 𝑥𝑦 − 𝑠𝑧 2 𝑥𝑧 + 𝑠𝑦

2 𝑥𝑦 + 𝑠𝑧 𝑠2 − 𝑥2 + 𝑦2 − 𝑧2 2 𝑦𝑧 − 𝑠𝑥

2 𝑥𝑧 − 𝑠𝑦 2 𝑦𝑧 + 𝑠𝑥 𝑠2 − 𝑥2 − 𝑦2 + 𝑧2

 conversion back to quaternion from diagonal elements of 𝑹 and
normalization constraint:

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1

𝑠2

𝑥2

𝑦2

𝑧2

=

𝑅𝑥𝑥
𝑅𝑦𝑦
𝑅𝑧𝑧
1

⇒

𝑠2

𝑥2

𝑦2

𝑧2

=
1

4

1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

𝑅𝑥𝑥
𝑅𝑦𝑦
𝑅𝑧𝑧
1

 The signs of the components can be derived from (see)
𝑠 = 1; 𝑥 = sgn 𝑅𝑧𝑦 − 𝑅𝑦𝑧 ; y = sgn 𝑅𝑥𝑧 − 𝑅𝑧𝑥 ; z = sgn 𝑅𝑦𝑥 − 𝑅𝑥𝑦 ;
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and VisualizationConversions from and to matrix

 Example of derivation of x-column of rotation matrix:
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ො𝑞 0,
1
0
0

ො𝑞∗ = −𝑥,

𝑠
𝑧
−𝑦

ො𝑞∗ =

−𝑥𝑠 − −𝑥𝑠 − 𝑧𝑦 + 𝑦𝑧 ,

−𝑥
−𝑥
−𝑦
−𝑧

+ 𝑠

𝑠
𝑧
−𝑦

+

𝑠
𝑧
−𝑦

×
−𝑥
−𝑦
−𝑧

𝑞1𝑞2 = 𝑠1𝑠2 − 𝒗1 ⋅ 𝒗2, 𝑠1𝒗2 + 𝑠2𝒗1 + 𝒗1 × 𝒗2ො𝑞 = (𝑠,
𝑥
𝑦
𝑧
) ො𝑞∗ = (𝑠,

−𝑥
−𝑦
−𝑧

)

= 0,
𝑠2 − 𝑥2

𝑥𝑦 + 𝑠𝑧
𝑥𝑧 − 𝑠𝑦

+
𝑦2 − 𝑧2

𝑥𝑦 + 𝑠𝑧
𝑥𝑧 − 𝑠𝑦

0

= 0,

𝑠2 − 𝑥2 + 𝑦2 − 𝑧2

2 𝑥𝑦 + 𝑠𝑧

2 𝑥𝑧 − 𝑠𝑦



Computer Graphics
and VisualizationDouble Cover of Rotations

 The axis-angle representation of rotations with
𝛼 ∈ −𝜋, 𝜋 is not unique, as

𝑹 ෝ𝒏, 𝛼 = 𝑹 −ෝ𝒏,−𝛼

 Each rotation has two representations. We call this a 
double cover of the group of rotations

 The quaternions are also a double cover as
𝑞𝑝𝑞∗ = −𝑞 𝑝 −𝑞∗

with

−𝑞 = −cos
𝛼

2
−sin

𝛼

2
ෝ𝒏 =

.          cos 𝜋 −
𝛼

2
sin 𝜋 −

𝛼

2
−ෝ𝒏 =

. cos
2𝜋−𝛼

2
sin

2𝜋−𝛼

2
−ෝ𝒏

 On the 3-unit sphere in 4D space the
unit quaternions that are related by point
reflection at origin represent same rotation
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and VisualizationVergleich von Rotationsrepräsentationen
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Pktrep.     Rotrep.            Transf.

2D

2x2 Matrix

komplexe Zahlen

3D

3x3 Matrix

Quaternionen

pT


rot






 


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cossin
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









y

x
p


iyx

z




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ARTICULATED OBJECTS
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© http://the-4thworld.com/essentials.html

Fabricating Articulated Characters

using Skinned Meshes, Siggraph 2012
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http://blog.hurco.com/blog/bid/281989/An-Introduction-to-Mill-Turn-Technology

Y-Axis neededX&C3-Axes only

X&C3-Axes only flats X&C3-Axes only circle

http://blog.hurco.com/blog/bid/281989/An-Introduction-to-Mill-Turn-Technology


Computer Graphics
and VisualizationMotivation – Skeletal Animation

biped body tracking
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illustration of human skeleton

© http://insectanatomy.com/tag/bones-names

kinect 1.0 skeleton

BVH skeleton

(mocap file format: Biovision

hierarchical data)

kinect azure skeleton
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hand tracking

Other applications: facial animations
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© wikipedia

leap motion hand skeleton
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and VisualizationKinematic Chain – Definition

 bone/limb/link corresponds 
to a stiff part and a bone 
coordinate system

 the arm is fixed at the first 
bone, which is called base

 the last bone is also called 
end effector and used for 
example for grabbing

 joints connect two bones 
and often have an own 
coordinate system aligned 
with their rotation axis

 bones and joints form a 
kinematic chain
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bone

base

end effector

joint

Robot arms with Bones and Joints
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and VisualizationKinematic Chain – Coordinate Systems

 In robotics and milling the 
most basic joint types are 
revolute and prismatic 
joints with one axis each

 per bone three coordinate 
systems are defined:
 input joint (subscript 𝐼) is 

reference coordinate system 
of bone

 bone (subscript 𝐵) is used to 
place bone geometry

 output joint (subscript 𝑂) is  
used to connect next bone

 joint coordinate systems 
are aligned with joint axis
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and VisualizationKinematic Chain – Coordinate Systems

 input joint coordinate systems are used as 
reference for base / bone and enumerated 
from 0 (base/world) to 𝑁 (end effector

 Transformations are composed along 
kinematic chain

0𝑻𝑁 = 0𝑻1 ⋅
1𝑻2 ⋅ ⋯ ⋅ 𝑁−1𝑻𝑁

 model transform view: place bones from 
base to end effector

 system transform view: convert coordinate 
system from end effector to base

 This can be further refined into
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Revolute prismatic

in-planar

Universal

Gimbal Spherical3R

1R 2R

3R 2T

1T

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html
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Telescoping Screw

Cylindrical

Six-DoF Bushing

Bearing planar

3R3T3R3T
3R1T

1R1T
3R1T

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html

1R2T

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html
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and VisualizationEuler Angle Representation of Orientation

Roll-Pitch-Yaw

 An arbitrary rotation is defined by 3 
free parameters

 They can be defined by 3 rotation
angles which are called Euler angles

 Coming from aironautics, the terms
roll (x), pitch (y) and yaw (z) are
commonly used

Navigation using gyroscopes

 Commonly used: 313-Convention

 The first and third axis can become 
parallel, thus reducing one degree 
of freedom. This is called “gimbal 
lock”.

S. Gumhold, CG2, SS24 – Rotations & Articulated Objects

x

y

z

nicken

rollen

gieren ©Wikipedia

gimbal/Cardan

suspension used to

hold gyroscope

gimbal lock

only 2R left

        ZXZ313 RRRR ,,

     rollpitchyawyawpitchroll  XYZ RRRR 
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and VisualizationForward Kinematics

 Given a kinematic chain 
(robot arm or path in 
skeleton) with relative 
transformations (i1)Ti (qik)
depending on parameters 
qik location and orientation 
of the end effector in 
world coordinates are a 
function of the qik also:
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and VisualizationKinematic Tree / Skeleton

 a skeleton is a kinematic tree 
structure with joints as nodes 
and bones along edges.

 it has a single root joint and 
several end effectors

 at each joint 𝑖 a joint 
coordinate frame 𝐹𝑖 is 
defined

 Local joint transformations 
𝑝(𝑖)

𝑻𝑖 map from parent frame 

𝐹𝑝(𝑖) to 𝐹𝑖 with a rigid body 

transformation 

 together all local joint 
transforms define the pose of 
the skeleton

S. Gumhold, CG2, SS24 – Rotations & Articulated Objects

© Stefan Bröcker

tree edges
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and VisualizationRepresentation of Local joint transformations

 In the Denavit-Hartenberg 
notation for each link there 
is one adjustible parame-
ter qik corresponding to di

or φi depending on the 
joint type (prismatic or 
revolution)

 Using Euler
angles one 
has 6 para-
meters

 Using quaternions one has 
7 parameters plus one 
normalization constraint

S. Gumhold, CG2, SS24 – Rotations & Articulated Objects
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and VisualizationComputing Joint to World Transforms

 the skeleton tree can be linearized 
in breadth or depth first traversal

 for rendering we need for each 
joint the joint to world 

transformation 0𝑻𝑖
 these transformations can be 

stored linearly in breadth or depth 
first order

 Both orders guarantee that parent 
to world transformation is 
computed before joint to world 
transformation, allowing for 
sequential computation:
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4

0

1
2

3

5
6

78

9

10

11 12

13
14

15
16

17
18

joint index 4 3 2 1 5 7 6 0 10 8  9 11 12 13 14 15 16 17 18

p(i) -1  0  0  0  0  1 2 3 4 5 6 8  8 11 12 13 14 15 16

initialize 0𝑻1
for i from 1 to n do

0𝑻𝑖 =
0𝑻𝑝 𝑖

𝑝 𝑖
𝑻𝑖 𝑞𝑖𝑘
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DENAVIT-HARTENBERG 
NOTATION
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Computer Graphics
and VisualizationDenavit-Hartenberg notation

 input: joint axes 𝒑𝑖 + 𝜆 ⋅ ො𝒛𝑖

 output: joint input coordinate
frames 𝒐𝑖, ෝ𝒙𝑖, ෝ𝒚𝑖, ො𝒛𝑖 and four
parameters 𝑑𝑖, 𝜃𝑖, 𝑎𝑖 and 𝛼𝑖
per joint:
 𝑑𝑖… is the Euclidean distance

along axis ො𝒛𝑖−1 to the point
where the common perpendi-
cular intersects axis ො𝒛𝑖−1.
(parameter of prismatic variable)

 𝜃𝑖… joint angle / rotation angle around ො𝒛𝑖−1that rotates ෝ𝒙𝑖−1
axis onto ෝ𝒙𝑖 axis (parameter of revolute joint)

 𝑎𝑖… link length / perp. distance between joint axes

 𝛼𝑖… link twist / rotation angle between joint axes (around ෝ𝒙𝑖)


𝑖−1𝑻𝑖 = Rot𝒛 𝜃𝑖 ⋅ Trans𝒛 𝑑𝑖 ∙ Trans𝒙 𝑎𝑖 ∙ Rot𝒙 𝛼𝑖

 x-axis of base can be chosen freely
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https://www.youtube.com/watch?v=rA9tm0gTln8here 𝑎𝑖,𝛼𝑖, 𝑑𝑖, 𝜑𝑖 are denoted as 𝑟, 𝛼, 𝑑, 𝜃𝑖

https://www.youtube.com/watch?v=rA9tm0gTln8
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 new ෝ𝒙𝑖 axis is perpendicular to
both ො𝒛 axes:
ෝ𝒙𝑖 = ±normalize(ො𝒛𝑖−1 × ො𝒛𝑖)

 sign of ෝ𝒙𝑖 is determined from 
constraint that 𝑎𝑖 > 0, where 𝑎𝑖
is the projected distance from
𝒑𝑖 to 𝒑𝑖+1: 𝑎𝑖 = 𝒑𝑖+1 − 𝒑𝑖 , ෝ𝒙𝑖

 we get from origin 𝒐𝑖−1 to 𝒐𝑖 along the path
𝒐𝑖 = 𝒐𝑖−1 + 𝑑𝑖ො𝒛𝑖−1 + 𝑎𝑖ෝ𝒙𝑖

 𝒐𝑖 is on axis 𝑖: 𝒐𝑖 = 𝒑𝑖 + 𝜆 ⋅ ො𝒛𝑖 = 𝒐𝑖−1 + 𝑑𝑖ො𝒛𝑖−1 + 𝑎𝑖ෝ𝒙𝑖

 we can compute 𝑑𝑖 and 𝜆 by forming triple products:

𝑑𝑖 = ൗ𝒑𝑖 − 𝒐𝑖−1, ො𝒛𝑖 × ෝ𝒙𝑖 ො𝒛𝑖−1, ො𝒛𝑖 × ෝ𝒙𝑖

𝜆 = ൗ𝒐𝑖−1 − 𝒑𝑖 , ො𝒛𝑖−1 × ෝ𝒙𝑖 ො𝒛𝑖 , ො𝒛𝑖−1 × ෝ𝒙𝑖

 The frames are completed with ෝ𝒚𝑖 = ො𝒛𝑖 × ෝ𝒙𝑖
S. Gumhold, CG2, SS24 – Rotations & Articulated Objects 44



Computer Graphics
and VisualizationDH 360° Angle Computation

 Take care when computing 
angles via arctan2 through
sin 𝛼𝑖 = ො𝒛𝑖−1 × ො𝒛𝑖 and
cos 𝛼𝑖 = ො𝒛𝑖−1, ො𝒛𝑖

 As the sine is always 
positive, the range of 𝛼𝑖 is 
0, 𝜋

 One needs to determine the 
sign of 𝛼𝑖 from the sign of 
ො𝒛𝑖−1 × ො𝒛𝑖 , ෝ𝒙𝑖 , i.e.

𝛼𝑖 = sgn ො𝒛𝑖−1 × ො𝒛𝑖 , ෝ𝒙𝑖 ⋅ arctan2 ො𝒛𝑖−1 × ො𝒛𝑖 , ො𝒛𝑖−1, ො𝒛𝑖
 Similarly one gets
𝜃𝑖 = sgn ෝ𝒙𝑖−1 × ෝ𝒙𝑖 , ො𝒛𝑖−1 ⋅ arctan2 ෝ𝒙𝑖−1 × ෝ𝒙𝑖 , ෝ𝒙𝑖−1, ෝ𝒙𝑖
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ො𝒛𝑖ො𝒛𝑖−1

ො𝒛𝑖−1 × ො𝒛𝑖
ෝ𝒙𝑖

𝛼𝑖

ො𝒛𝑖−1 × ො𝒛𝑖

ො𝒛𝑖

ො𝒛𝑖−1
𝛼𝑖

ෝ𝒙𝑖
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