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Computer Graphics
and Visualization

2D ROTATIONS
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Computer Graphics
and Visualization2D Rotations

 Transformation matrices contain the new base vectors in 
their columns (or rows, depending on the convention)

 For example: counter clockwise rotation around angle 
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Computer Graphics
and VisualizationComplex Numbers

 The equation x2+1=0 has no solution in R

 With the definition                we get the solutions x=i

 Besides the “real” dimension, an imaginary dimension 

extends the 1d real space to the 2d complex space

 By definition, the real dimension and the imaginary 

dimension are orthogonal

1i 

S. Gumhold, CG2, SS24 – Rotations & Articulated Objects 5

-1,3 0 1,97
real

imaginary0

2

0

0

−1,3

0

1,4

1,2



Computer Graphics
and VisualizationComplex Numbers

 Different equivalent notions exist to describe a point in 

the complex plane

S. Gumhold, CG2, SS24 – Rotations & Articulated Objects 6

component form

𝑧 = 𝑎 + 𝑖 ⋅ 𝑏

trigonometric form

𝑧 = 𝑧 ⋅ (cos 𝜌 + 𝑖 ⋅ sin 𝜌)
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Computer Graphics
and VisualizationProperties of Complex Numbers

 product is defined by distribution law and the basic 

products 1 ⋅ 1 = 1, 1 ⋅ 𝑖 = 𝑖, 𝑖 ⋅ 1 = 𝑖, 𝑖 ⋅ 𝑖 = −1:

𝑎 + 𝑖𝑏 𝑐 + 𝑖𝑑 = 𝑎𝑐 − 𝑏𝑑 + 𝑖 𝑏𝑐 + 𝑎𝑑

 complex product is commutative:

𝑧1 ⋅ 𝑧2 = 𝑧2 ⋅ 𝑧1

 conjugation: 𝑧∗ = 𝑎 + 𝑖𝑏 ∗ = 𝑎 − 𝑖𝑏

 norm: 𝑧 2 = 𝑧 ⋅ 𝑧∗= 𝑎2 + 𝑏2

 inverse: 𝑧−1 = 𝑧∗/ 𝑧 2

 any polynomial σ𝑗=0…𝑛 𝑎𝑗 ⋅ 𝑥
𝑗 has 𝑛 zero crossings in ℂ
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Computer Graphics
and VisualizationEuler’s Formula

 Euler published in 1748 the formula

exp(𝑖 ⋅ 𝜌) = cos 𝜌 + 𝑖 ⋅ sin 𝜌
that shows exp(𝑖 ⋅ 𝜌) repeatedly traces out the unit circle.

 The proof is given by Taylor series expansions:

exp(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

6
𝑥3 +

1

24
𝑥4 +

1

120
𝑥5 +⋯

 plugging in 𝑥 = 𝑖𝛼 yields

exp(𝑖𝛼) = 1 + 𝑖𝛼 −
1

2
𝛼2 − 𝑖

1

6
𝛼3 +

1

24
𝛼4 + 𝑖

1

120
𝛼5 +⋯

= 1 −
1

2
𝛼2 +

1

24
𝛼4 +⋯+ 𝑖 𝛼 −

1

6
𝛼3 +

1

120
𝛼5 +⋯

= cos 𝛼 + 𝑖 ⋅ sin 𝛼

 the trigonometric form of a complex number becomes

𝑧 = 𝑧 ⋅ exp 𝑖𝜌 = 𝑧 ⋅ 𝑒𝑖𝜌
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Computer Graphics
and Visualization2D Rotation with complex numbers

 multiplication of a complex number 𝑧 = 𝑎 + 𝑖𝑏 from left or 
right with 𝑒𝑖𝛼 corresponds to 2D rotation of 𝑧 around
origin in complex plane

 proof by reduction to matrix form:
𝑧 ⋅ 𝑒𝑖𝛼 = 𝑎 + 𝑖𝑏 ⋅ 𝑒𝑖𝛼

= 𝑎 + 𝑖𝑏 ⋅ cos 𝛼 + 𝑖 ⋅ sin 𝛼
= 𝑎 ⋅ cos 𝛼 + 𝑖 ⋅ 𝑎 ⋅ sin 𝛼 + 𝑖 ⋅ 𝑏 ⋅ cos 𝛼 − 𝑏 ⋅ sin 𝛼
= 𝑎 ⋅ cos 𝛼 − 𝑏 ⋅ sin 𝜌 + 𝑖 ⋅ 𝑎 ⋅ sin 𝛼 + 𝑏 ⋅ cos 𝛼

=
cos 𝛼 −sin 𝛼
sin 𝛼 cos 𝛼

𝑎
𝑏

= cos 𝛼 + 𝑖 ⋅ sin 𝛼 ⋅ 𝑎 + 𝑖𝑏
= 𝑒𝑖𝛼 ⋅ 𝑧
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Computer Graphics
and Visualization

3D ROTATIONS
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Computer Graphics
and VisualizationProperties of rotations in 3D

 Rotations retain the length of
vectors, which means

 This is true for all    , thus

 If detR=1 the matrix contains a 
reflection. Rotations must have
detR=+1

 Rotations form the special
orthonormal group:

 3D rotations do not commute:
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Computer Graphics
and VisualizationForward Euler Angle

 A 3D rotation in the 123-convention
of Euler angles as used in navigation
for roll, pitch, yaw can be written in 
the form:

 The Euler angles can be computed from a given rotation 
matrix 𝑹 according to the Pseudo code on next slide. We 
define the vector 𝝎 of Euler angles as

𝝎 = 𝜃1, 𝜃2, 𝜃3
𝑇 = 𝑅123

−1 𝑹
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Computer Graphics
and VisualizationEuler Angles Inversion – 2 Approaches

Ken Shoemake. "Euler angle 
conversion." Graphics gems IV. 
1994. 222-229.

 checks for gimble lock case
where 𝑐2 becomes very small
with epsilon check on m00 and
m01 and assumes 𝜃3 = 0.

 Mike Day. "Extracting euler
angles from a rotation matrix, 
2012

 avoids check by accounting for
instable 𝜃1 in computation of  𝜃3

 this allows for restriction to
single precision floats
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https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2012/07/euler-angles1.pdf


Computer Graphics
and Visualization

0ẑ

0x̂
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Rotation around Axis

 Every rotation can be described
by an axis and an angle 

 Notion of this rotation matrix

 For every rotation exist two
axis-angle combinations:

 Matrix notation
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Computer Graphics
and Visualization

QUATERNIONS
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Computer Graphics
and VisualizationDerivation of Euler Parameters
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addition theorems

       sinˆcosˆˆcos vnnnvvv


 1

16

cos 2𝑥 = 1 − 2 sin2 𝑥

cos 2𝑥 = cos2 𝑥 − sin2 𝑥

sin 2𝑥 = 2 sin 𝑥 cos 𝑥



Computer Graphics
and VisualizationQuaternion Definition

 comparison with complex numbers suggests definition of
quaternions:

 with complex roots i,j and k whose direct products define
the rule of multiplying two quaternions

 when reducing to 2D rotations, the complex numbers
should result. This implies

 This results in the following
product table:
(ij= ji would result in a commutative
product, but rotations in 3D don‘t
commute)
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3210 kejeieeqiz   sincos

1222  ijkkji

∗ 1 𝑖 𝑗 𝑘

1 1 𝑖 𝑗 𝑘

𝑖 𝑖 −1 𝑘 −𝑗

𝑗 𝑗 −𝑘 −1 𝑖

𝑘 𝑘 𝑗 −𝑖 −1
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𝑘 = 𝑖𝑗



Computer Graphics
and VisualizationQuaternion Definition

 Note the similarity between 𝑖,𝑗,𝑘 and cross products of
the orthogonal unit vectors ෝ𝒙, ෝ𝒚, ො𝒛:

 detailed explanation of quaternions can be found at: 
http://3dgep.com/?p=1815
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∗ 1 𝑖 𝑗 𝑘

1 1 𝑖 𝑗 𝑘

𝑖 𝑖 −1 𝑘 −𝑗

𝑗 𝑗 −𝑘 −1 𝑖

𝑘 𝑘 𝑗 −𝑖 −1

× ෝ𝒙 ෝ𝒚 ො𝒛

ෝ𝒙 𝟎 ො𝒛 −ෝ𝒚

ෝ𝒚 −ො𝒛 𝟎 ෝ𝒙

ො𝒛 ෝ𝒚 −ෝ𝒙 𝟎
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Computer Graphics
and VisualizationMore on Quaternions

 conjugation:

 norm:

 inverse: for unit quaternions:  

 scalar+vector-interpretation

 multiplication

 unit quaternions                              can be interpreted as 
rotation by α around   . To rotate a 3d-vector    construct 
quaternion                and compute

𝑝′ = ො𝑞𝑝ො𝑞∗

 efficient concatenation of rotations: ො𝑞12 = ො𝑞1 ො𝑞2
 When interpolating rotations with quaternions one has to 

ensure that result is a proper rotation. Then one can 
normalize the result quaternion or use SLERP.
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Computer Graphics
and VisualizationExample

 concatenation of rotation by 𝛼 around 𝑥 followed by 
rotation by 𝛽 around 𝑦

 𝑞𝑥 = cos
𝛼

2
sin

𝛼

2
0 0

 𝑞𝑦 = cos
𝛽

2
0 sin

𝛽

2
0

 quat. product:𝑞1𝑞2 = 𝑠1𝑠2 − 𝒗1 ⋅ 𝒗2, 𝑠1𝒗2 + 𝑠2𝒗1 + 𝒗1 × 𝒗2

𝑞𝑦𝑞𝑥 = cos
𝛼

2
cos

𝛽

2
sin

𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
 this corresponds to rotation around new axis ෝ𝒏 and new

angle 𝛾 with

𝒏 = sin
𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
,
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Computer Graphics
and VisualizationExample

 𝑞𝑦𝑞𝑥 = cos
𝛼

2
cos

𝛽

2
sin

𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
−sin

𝛼

2
sin

𝛽

2

 this corresponds to rotation around new axis ෝ𝒏 and new
angle 𝛾 with

 and angle
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𝒏 = sin
𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
,

𝛾 = arctan2 1 − cos2
𝛽

2
cos2

𝛼

2
, cos

𝛼

2
cos

𝛽

2

𝒏 2 = sin2
𝛼

2
cos2

𝛽

2
+ cos2

𝛼

2
sin2

𝛽

2
+ sin2

𝛼

2
sin2

𝛽

2
= sin2

𝛼

2
cos2

𝛽

2
+ sin2

𝛽

2
,

= 1 − cos2
𝛽

2
+ sin2

𝛼

2
cos2

𝛽

2
= 1 − cos2

𝛽

2
1 − sin2

𝛼

2
= 1 − cos2

𝛽

2
cos2

𝛼

2

ෝ𝒏 =
1

1 − cos2
𝛽
2 cos

2 𝛼
2

sin
𝛼

2
cos

𝛽

2
cos

𝛼

2
sin

𝛽

2
− sin

𝛼

2
sin

𝛽

2
,



Computer Graphics
and VisualizationConversions from and to matrix

 conversion to rotation matrix can be derived by transforming
the base vectors ෝ𝒙, ෝ𝒚, ො𝒛 with the quaternion and writing result
in columns of rotation matrix:

𝑹 𝑞 =

𝑠
𝑥
𝑦
𝑧

=

𝑠2 + 𝑥2 − 𝑦2 − 𝑧2 2 𝑥𝑦 − 𝑠𝑧 2 𝑥𝑧 + 𝑠𝑦

2 𝑥𝑦 + 𝑠𝑧 𝑠2 − 𝑥2 + 𝑦2 − 𝑧2 2 𝑦𝑧 − 𝑠𝑥

2 𝑥𝑧 − 𝑠𝑦 2 𝑦𝑧 + 𝑠𝑥 𝑠2 − 𝑥2 − 𝑦2 + 𝑧2

 conversion back to quaternion from diagonal elements of 𝑹 and
normalization constraint:

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1

𝑠2

𝑥2

𝑦2

𝑧2

=

𝑅𝑥𝑥
𝑅𝑦𝑦
𝑅𝑧𝑧
1

⇒

𝑠2

𝑥2

𝑦2

𝑧2

=
1

4

1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

𝑅𝑥𝑥
𝑅𝑦𝑦
𝑅𝑧𝑧
1

 The signs of the components can be derived from (see)
𝑠 = 1; 𝑥 = sgn 𝑅𝑧𝑦 − 𝑅𝑦𝑧 ; y = sgn 𝑅𝑥𝑧 − 𝑅𝑧𝑥 ; z = sgn 𝑅𝑦𝑥 − 𝑅𝑥𝑦 ;
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Computer Graphics
and VisualizationConversions from and to matrix

 Example of derivation of x-column of rotation matrix:
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ො𝑞 0,
1
0
0

ො𝑞∗ = −𝑥,

𝑠
𝑧
−𝑦

ො𝑞∗ =

−𝑥𝑠 − −𝑥𝑠 − 𝑧𝑦 + 𝑦𝑧 ,

−𝑥
−𝑥
−𝑦
−𝑧

+ 𝑠

𝑠
𝑧
−𝑦

+

𝑠
𝑧
−𝑦

×
−𝑥
−𝑦
−𝑧

𝑞1𝑞2 = 𝑠1𝑠2 − 𝒗1 ⋅ 𝒗2, 𝑠1𝒗2 + 𝑠2𝒗1 + 𝒗1 × 𝒗2ො𝑞 = (𝑠,
𝑥
𝑦
𝑧
) ො𝑞∗ = (𝑠,

−𝑥
−𝑦
−𝑧

)

= 0,
𝑠2 − 𝑥2

𝑥𝑦 + 𝑠𝑧
𝑥𝑧 − 𝑠𝑦

+
𝑦2 − 𝑧2

𝑥𝑦 + 𝑠𝑧
𝑥𝑧 − 𝑠𝑦

0

= 0,

𝑠2 − 𝑥2 + 𝑦2 − 𝑧2

2 𝑥𝑦 + 𝑠𝑧

2 𝑥𝑧 − 𝑠𝑦



Computer Graphics
and VisualizationDouble Cover of Rotations

 The axis-angle representation of rotations with
𝛼 ∈ −𝜋, 𝜋 is not unique, as

𝑹 ෝ𝒏, 𝛼 = 𝑹 −ෝ𝒏,−𝛼

 Each rotation has two representations. We call this a 
double cover of the group of rotations

 The quaternions are also a double cover as
𝑞𝑝𝑞∗ = −𝑞 𝑝 −𝑞∗

with

−𝑞 = −cos
𝛼

2
−sin

𝛼

2
ෝ𝒏 =

.          cos 𝜋 −
𝛼

2
sin 𝜋 −

𝛼

2
−ෝ𝒏 =

. cos
2𝜋−𝛼

2
sin

2𝜋−𝛼

2
−ෝ𝒏

 On the 3-unit sphere in 4D space the
unit quaternions that are related by point
reflection at origin represent same rotation
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Computer Graphics
and VisualizationVergleich von Rotationsrepräsentationen

S. Gumhold, CG2, SS24 – Rotations & Articulated Objects 25

Pktrep.     Rotrep.            Transf.

2D

2x2 Matrix

komplexe Zahlen

3D

3x3 Matrix

Quaternionen

pT


rot






 





cossin

sincos











y

x
p


iyx

z









sincos i

ei



 zeze ii  



















z

y

x

p
























cossin

sincos

0

0

001
pT


rot

 

zkyjxi

0p



 p


,

*qpq

qpq 1  

 knjnin

q

zyx2

2

22













sin

cos

sinˆ,cos n

Pktrep.  Rotrep.      Transf.



Computer Graphics
and Visualization

ARTICULATED OBJECTS
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Computer Graphics
and VisualizationExamples
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© http://the-4thworld.com/essentials.html

Fabricating Articulated Characters

using Skinned Meshes, Siggraph 2012



Computer Graphics
and VisualizationMotivation – CNC-Milling Machines
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http://blog.hurco.com/blog/bid/281989/An-Introduction-to-Mill-Turn-Technology

Y-Axis neededX&C3-Axes only

X&C3-Axes only flats X&C3-Axes only circle

http://blog.hurco.com/blog/bid/281989/An-Introduction-to-Mill-Turn-Technology


Computer Graphics
and VisualizationMotivation – Skeletal Animation

biped body tracking

S. Gumhold, CG2, SS24 – Rotations & Articulated Objects 29

illustration of human skeleton

© http://insectanatomy.com/tag/bones-names

kinect 1.0 skeleton

BVH skeleton

(mocap file format: Biovision

hierarchical data)

kinect azure skeleton



Computer Graphics
and VisualizationMotivation – Skeletal Animation

hand tracking

Other applications: facial animations
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© wikipedia

leap motion hand skeleton



Computer Graphics
and VisualizationKinematic Chain – Definition

 bone/limb/link corresponds 
to a stiff part and a bone 
coordinate system

 the arm is fixed at the first 
bone, which is called base

 the last bone is also called 
end effector and used for 
example for grabbing

 joints connect two bones 
and often have an own 
coordinate system aligned 
with their rotation axis

 bones and joints form a 
kinematic chain
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bone

base

end effector

joint

Robot arms with Bones and Joints



Computer Graphics
and VisualizationKinematic Chain – Coordinate Systems

 In robotics and milling the 
most basic joint types are 
revolute and prismatic 
joints with one axis each

 per bone three coordinate 
systems are defined:
 input joint (subscript 𝐼) is 

reference coordinate system 
of bone

 bone (subscript 𝐵) is used to 
place bone geometry

 output joint (subscript 𝑂) is  
used to connect next bone

 joint coordinate systems 
are aligned with joint axis
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Computer Graphics
and VisualizationKinematic Chain – Coordinate Systems

 input joint coordinate systems are used as 
reference for base / bone and enumerated 
from 0 (base/world) to 𝑁 (end effector

 Transformations are composed along 
kinematic chain

0𝑻𝑁 = 0𝑻1 ⋅
1𝑻2 ⋅ ⋯ ⋅ 𝑁−1𝑻𝑁

 model transform view: place bones from 
base to end effector

 system transform view: convert coordinate 
system from end effector to base

 This can be further refined into
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end

end

3

2

2

2

2

2

2

1

1

1

1

1

1

0

0

3

2

2

1

1
0

world

chain BF

IF

IF

OF

OF

BF

BF

IF

IF

OF

OF

BF

BF

IF

IF

OF

OF T

T

TTT

T

TTT

T

TTT 
      


dependent on joint parameters

{0}

{1}

{2}

{3}

EE
p

local joint transformations



Computer Graphics
and VisualizationBasic Joint Types
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Revolute prismatic

in-planar

Universal

Gimbal Spherical3R

1R 2R

3R 2T

1T

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html
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Telescoping Screw

Cylindrical

Six-DoF Bushing

Bearing planar

3R3T3R3T
3R1T

1R1T
3R1T

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html

1R2T

http://www.mathworks.de/de/help/physmod/sm/assembled-joints.html
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and VisualizationEuler Angle Representation of Orientation

Roll-Pitch-Yaw

 An arbitrary rotation is defined by 3 
free parameters

 They can be defined by 3 rotation
angles which are called Euler angles

 Coming from aironautics, the terms
roll (x), pitch (y) and yaw (z) are
commonly used

Navigation using gyroscopes

 Commonly used: 313-Convention

 The first and third axis can become 
parallel, thus reducing one degree 
of freedom. This is called “gimbal 
lock”.
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y

z
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rollen

gieren ©Wikipedia
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hold gyroscope

gimbal lock

only 2R left

        ZXZ313 RRRR ,,
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and VisualizationForward Kinematics

 Given a kinematic chain 
(robot arm or path in 
skeleton) with relative 
transformations (i1)Ti (qik)
depending on parameters 
qik location and orientation 
of the end effector in 
world coordinates are a 
function of the qik also:
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and VisualizationKinematic Tree / Skeleton

 a skeleton is a kinematic tree 
structure with joints as nodes 
and bones along edges.

 it has a single root joint and 
several end effectors

 at each joint 𝑖 a joint 
coordinate frame 𝐹𝑖 is 
defined

 Local joint transformations 
𝑝(𝑖)

𝑻𝑖 map from parent frame 

𝐹𝑝(𝑖) to 𝐹𝑖 with a rigid body 

transformation 

 together all local joint 
transforms define the pose of 
the skeleton
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© Stefan Bröcker

tree edges
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and VisualizationRepresentation of Local joint transformations

 In the Denavit-Hartenberg 
notation for each link there 
is one adjustible parame-
ter qik corresponding to di

or φi depending on the 
joint type (prismatic or 
revolution)

 Using Euler
angles one 
has 6 para-
meters

 Using quaternions one has 
7 parameters plus one 
normalization constraint
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Computer Graphics
and VisualizationComputing Joint to World Transforms

 the skeleton tree can be linearized 
in breadth or depth first traversal

 for rendering we need for each 
joint the joint to world 

transformation 0𝑻𝑖
 these transformations can be 

stored linearly in breadth or depth 
first order

 Both orders guarantee that parent 
to world transformation is 
computed before joint to world 
transformation, allowing for 
sequential computation:
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4

0

1
2

3

5
6

78

9

10

11 12

13
14

15
16

17
18

joint index 4 3 2 1 5 7 6 0 10 8  9 11 12 13 14 15 16 17 18

p(i) -1  0  0  0  0  1 2 3 4 5 6 8  8 11 12 13 14 15 16

initialize 0𝑻1
for i from 1 to n do

0𝑻𝑖 =
0𝑻𝑝 𝑖

𝑝 𝑖
𝑻𝑖 𝑞𝑖𝑘
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DENAVIT-HARTENBERG 
NOTATION
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Computer Graphics
and VisualizationDenavit-Hartenberg notation

 input: joint axes 𝒑𝑖 + 𝜆 ⋅ ො𝒛𝑖

 output: joint input coordinate
frames 𝒐𝑖, ෝ𝒙𝑖, ෝ𝒚𝑖, ො𝒛𝑖 and four
parameters 𝑑𝑖, 𝜃𝑖, 𝑎𝑖 and 𝛼𝑖
per joint:
 𝑑𝑖… is the Euclidean distance

along axis ො𝒛𝑖−1 to the point
where the common perpendi-
cular intersects axis ො𝒛𝑖−1.
(parameter of prismatic variable)

 𝜃𝑖… joint angle / rotation angle around ො𝒛𝑖−1that rotates ෝ𝒙𝑖−1
axis onto ෝ𝒙𝑖 axis (parameter of revolute joint)

 𝑎𝑖… link length / perp. distance between joint axes

 𝛼𝑖… link twist / rotation angle between joint axes (around ෝ𝒙𝑖)


𝑖−1𝑻𝑖 = Rot𝒛 𝜃𝑖 ⋅ Trans𝒛 𝑑𝑖 ∙ Trans𝒙 𝑎𝑖 ∙ Rot𝒙 𝛼𝑖

 x-axis of base can be chosen freely
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https://www.youtube.com/watch?v=rA9tm0gTln8here 𝑎𝑖,𝛼𝑖, 𝑑𝑖, 𝜑𝑖 are denoted as 𝑟, 𝛼, 𝑑, 𝜃𝑖

https://www.youtube.com/watch?v=rA9tm0gTln8
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and VisualizationDH Frames and Translation Parameters

 new ෝ𝒙𝑖 axis is perpendicular to
both ො𝒛 axes:
ෝ𝒙𝑖 = ±normalize(ො𝒛𝑖−1 × ො𝒛𝑖)

 sign of ෝ𝒙𝑖 is determined from 
constraint that 𝑎𝑖 > 0, where 𝑎𝑖
is the projected distance from
𝒑𝑖 to 𝒑𝑖+1: 𝑎𝑖 = 𝒑𝑖+1 − 𝒑𝑖 , ෝ𝒙𝑖

 we get from origin 𝒐𝑖−1 to 𝒐𝑖 along the path
𝒐𝑖 = 𝒐𝑖−1 + 𝑑𝑖ො𝒛𝑖−1 + 𝑎𝑖ෝ𝒙𝑖

 𝒐𝑖 is on axis 𝑖: 𝒐𝑖 = 𝒑𝑖 + 𝜆 ⋅ ො𝒛𝑖 = 𝒐𝑖−1 + 𝑑𝑖ො𝒛𝑖−1 + 𝑎𝑖ෝ𝒙𝑖

 we can compute 𝑑𝑖 and 𝜆 by forming triple products:

𝑑𝑖 = ൗ𝒑𝑖 − 𝒐𝑖−1, ො𝒛𝑖 × ෝ𝒙𝑖 ො𝒛𝑖−1, ො𝒛𝑖 × ෝ𝒙𝑖

𝜆 = ൗ𝒐𝑖−1 − 𝒑𝑖 , ො𝒛𝑖−1 × ෝ𝒙𝑖 ො𝒛𝑖 , ො𝒛𝑖−1 × ෝ𝒙𝑖

 The frames are completed with ෝ𝒚𝑖 = ො𝒛𝑖 × ෝ𝒙𝑖
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and VisualizationDH 360° Angle Computation

 Take care when computing 
angles via arctan2 through
sin 𝛼𝑖 = ො𝒛𝑖−1 × ො𝒛𝑖 and
cos 𝛼𝑖 = ො𝒛𝑖−1, ො𝒛𝑖

 As the sine is always 
positive, the range of 𝛼𝑖 is 
0, 𝜋

 One needs to determine the 
sign of 𝛼𝑖 from the sign of 
ො𝒛𝑖−1 × ො𝒛𝑖 , ෝ𝒙𝑖 , i.e.

𝛼𝑖 = sgn ො𝒛𝑖−1 × ො𝒛𝑖 , ෝ𝒙𝑖 ⋅ arctan2 ො𝒛𝑖−1 × ො𝒛𝑖 , ො𝒛𝑖−1, ො𝒛𝑖
 Similarly one gets
𝜃𝑖 = sgn ෝ𝒙𝑖−1 × ෝ𝒙𝑖 , ො𝒛𝑖−1 ⋅ arctan2 ෝ𝒙𝑖−1 × ෝ𝒙𝑖 , ෝ𝒙𝑖−1, ෝ𝒙𝑖
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ො𝒛𝑖ො𝒛𝑖−1

ො𝒛𝑖−1 × ො𝒛𝑖
ෝ𝒙𝑖

𝛼𝑖

ො𝒛𝑖−1 × ො𝒛𝑖

ො𝒛𝑖

ො𝒛𝑖−1
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