Scientific Visualization

Part II - Particles 1. Glyphs \& Tubes 2. Many \& Derived Surface

Part II - Particles

1. Glyphs \& Tubes

- Particle Data
- Sources
- Basics
- Clusters
- Shader Based Particle Raycasting
- Spheres
- Cylinders
- Arrows
- Tube Based Visualization

2. Many \& Derived Surface

Sources and Types PARTICLE DATA

Particle Data - Sources

Particle tracking velocimetry

- measurement of 3D particle trajectories in fluid with multi-camera setup

https://www.openptv.net/

Particle Data - Sources

Cell-Tracking in Microscopy

- Analysis of 3D Microscopy video data with cell tracking approaches from computer vision

A fruit fly embryo from when it was about two-and-a-half hours old until it walked away from the microscope as a larva, filmed by a new microscope (MuVi-SPIM) developed at Luxendo. Credit to: Mette Handberg from Pavel Tomancak's lab, MPI-CBG, Dresden, Germany

Particle Data - Sources

https://girot.arch.ethz.ch/research/point-cloud-research-in-landscape-architecture Point Clouds from 3D Scanning

Particle Data - Sources

Discrete Element Method

- granular media can be simulated with differently shaped particles

https://www.becker3d.com/showcase

Particle Data - Sources

- Smoothed Particle Hydrodynamics

Particle Data - Sources

- N-Body Simulation (The Millennium Simulation)

Particle Data - Sources

Molecular Dynamics Simulation

Particle Data - Basics

- Particle data P is a set of N unorganized points indexed with i and carrying further m attributes $a_{k=1 \ldots m}$:

$$
P=\left\{P_{i}=\left(\underline{\boldsymbol{p}}_{i}, \overrightarrow{\boldsymbol{a}}_{i}\right) \mid \underline{\boldsymbol{p}}_{i} \in \boldsymbol{R}^{3}, \overrightarrow{\boldsymbol{a}}_{i} \in \boldsymbol{R}^{m}\right\}
$$

- Time dependent data is organized in n frames that are indexed with j and have at least the frame time $t_{j=1 \ldots n}$ as attribute.
- Particles have a life span $J_{i}=\left[j_{0}, j_{1}\right]$ of frame indices in which the particle exists.
- Integer typed particle IDs (typically equal to index i) are used to define inter-frame correspondences of the instances $P_{i j}=\left(\boldsymbol{p}_{i j}, \overrightarrow{\boldsymbol{a}}_{i j}\right)$ of each particle.
- Optional cluster information is specified by per particle instance cluster IDs. Clusters also have life span and can furthermore split and merge.

Particle Data - Lineage Tree

- cells evolving over time can split into descendants
- ancestor-descendant relationship forms a lineage tree
- this can be stored by one parent index per cell instance
- splits / bifurcations happen when several cell instances refer to the same ancestor cell

Integration of TF expression across equivalent cells

3D time-lapse imaging of developing C. elegans embryos

Lineage tree of C. elegans embryo from Ma, xuehua, et al. "Single-cell protein atlas of transcription factors reveals the combinatorial code for spatiotemporal patterning the C. elegans embryo." BioRxiv (2020).

Particle Data - Shape

- Shape can be
- the same for all particles,
- vary between particles or even
- vary per particle over time
- There is a variety of different shapes:
- OD (no shape): point,
- 2D (surfel): (elliptic) disk,
- standard shapes: sphere, ellipsoids, cylinder, box, cone, rod, torus, n-sided prisms
- general shapes: like crystals, stones, or linked particles,

S. Gumhold, Scientific Visualization, Particles - Glyphs \& Tubes

Particle Data - Orientation

- except for sphere and SPH kernels the orientation of a particle is an attribute
- It can be represented as a 3x3-matrix with the unit vectors of a local coordinate system in its rows

$$
\boldsymbol{O}=\left(\begin{array}{lll}
u_{x} & v_{x} & w_{x} \\
u_{y} & v_{y} & w_{y} \\
u_{z} & v_{z} & w_{z}
\end{array}\right)
$$

- Alternatively a quaternion is often used to represent O with a 4D vector

$$
\boldsymbol{q}=\left(\begin{array}{l}
S \\
x \\
y \\
z
\end{array}\right)=\binom{s}{\overrightarrow{\boldsymbol{v}}} \Rightarrow \boldsymbol{O}=\left(\begin{array}{ccc}
s^{2}+x^{2}-y^{2}-z^{2} & 2(x y-s z) & 2(x z+s y) \\
2(x y+s z) & s^{2}-x^{2}+y^{2}-z^{2} & 2(y z-s x) \\
2(x z-s y) & 2(y z+s x) & s^{2}-x^{2}-y^{2}+z^{2}
\end{array}\right)
$$

- For a rotation of angle α around axis $\widehat{\boldsymbol{n}}$, the entries of the corresponding quaternion are $s=\cos \frac{\alpha}{2} ; \overrightarrow{\boldsymbol{v}}=\sin \frac{\alpha}{2} \widehat{\boldsymbol{n}}$

Particle Data - Size

- size is specified in particle aligned coordinate system (e.g. height in local z-direction)
- surfel: one (circular) or two radii (elliptical)
- sphere, SPH kernel: radius r
- cylinder/cone/rod/n-sided prism: radius r + height h
- ellipsoid/box: 3d size vector $\overrightarrow{\boldsymbol{s}}$
- torus: minor radius r and major radius R

Particle Data - Orientation and Size

- Ellipsoids are the standard visual representtation of symmetric positive semi-definite
tensors: $\boldsymbol{T}=\left(\begin{array}{lll}a & d & e \\ d & b & f \\ e & f & c\end{array}\right), \operatorname{det} \boldsymbol{T} \geq 0$

- Symmetric tensors have a real valued eigenvalue decomposition:

$$
\boldsymbol{T}=\mathbf{0} \boldsymbol{\Lambda} \boldsymbol{O}^{T}=\left(\begin{array}{lll}
u_{x} & v_{x} & w_{x} \\
u_{y} & v_{y} & w_{y} \\
u_{z} & v_{z} & w_{z}
\end{array}\right)\left(\begin{array}{ccc}
\lambda_{u} & 0 & 0 \\
0 & \lambda_{v} & 0 \\
0 & 0 & \lambda_{w}
\end{array}\right)\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right)
$$

- For positive semi-definite tensors all $\lambda_{i} \geq 0$.
- T implicitly represents orientation \boldsymbol{O} and size with

$$
\overrightarrow{\boldsymbol{s}}^{T}=\left(\begin{array}{lll}
\lambda_{u} & \lambda_{v} & \lambda_{w}
\end{array}\right)
$$

Particle Cluster to Ellipsoid

- In some applications clusters are ellipsoidal

Particle Cluster to Ellipsoid

- Given the particles $\underline{\boldsymbol{p}}_{i}$ with radii R_{i} of a cluster, the tensor representation \boldsymbol{T} can be computed from the covariance matrix as follows:
- compute particle weights from particle sizes: $\omega_{i}=\frac{R_{i}^{3}}{\sum_{i^{\prime}} R_{i}^{3 /}}$
- compute cluster center: $\underline{\boldsymbol{c}}=\sum_{i} \omega_{i} \underline{\boldsymbol{p}_{i}}$
- Compute cluster covariance matrix and eigenvalue decomposition:

$$
\boldsymbol{C}=\sum_{i} \omega_{i}\left(\underline{\boldsymbol{p}}_{i}-\underline{\boldsymbol{c}}\right)\left(\underline{\boldsymbol{p}}_{i}-\underline{\boldsymbol{c}}\right)^{T}=\boldsymbol{O} \boldsymbol{\Gamma} \boldsymbol{O}^{T}
$$

- Form tensor with the square root of the diagonal entries $\boldsymbol{\Gamma}$ of the covariance decomposition: $\boldsymbol{T}=\boldsymbol{O} \sqrt{\boldsymbol{\Gamma}} \boldsymbol{O}^{T}$

Particle Data - Time Derivative

Velocity

- linear velocity \vec{v}_{i} of the particles is time derivative of position
- time derivative of the orientation is typically stored as angular velocity vector $\vec{\omega}_{i}$ with axis of rotation as direction and rotation angular speed in radiant per second as length
- Further velocities from time derivatives of other attributes like size

Acceleration

- Time derivative of velocity
- often interesting feature as it measures the speed of change with respect to a uniform motion

Particle Data - Further Attributes

- physics provides many more attributes:

Scalar

- mass/density, charge, capacity, load, temperature,

Vector

- linear and angular momentum, spin, field vectors (electric, magnetic, forces, ...)
- color, surface normal

Tensor

- positional uncertainty, directional diffusion, stress, strain, deformation, ...

Particles
 SHADER BASED RAYCASTING SPHERES

Shader Pipeline - Standard Usage

Indexed mesh rendering

S. Gumhold, Scientific Visualization, Particles - Glyphs \& Tubes

Shader Pipeline - Limitations

- points, lines and triangles are only supported graphics primitives

- all other primitives must be tesselated

triangles

too coarse tesselation gives bad results for intersecting spheres

$20 \times 20=400$ vertices plus 800 triangles

vs 4 floats

Billboard Spheres

- Billboard: use rgb α image of lit sphere with α channel used as mask.
- optionally add depth texture to support correct intersection between spheres
- Problems:
- 8-bit depths not sufficient
- not correct for perspective projection
- only directional lighting is possible
- texture fetch expensive

rgb

α

d

spheres wrongly intersect in perspective projection

perspective projection provides better spatial perception

Orthographic Projection

Perspective Projection

Particle Raycasting - Motivation

- Compute correct projected silhouette
- cover silhouette with graphics primitive[s]

- per fragment intersect ray with particle
- compute illumination

Shader Pipeline - Sphere Raycasting

S. Gumhold, Scientific Visualization, Particles - Glyphs \& Tubes

Sphere Raycasting - Silhouette

- Consider particle coordinates with sphere center $\underline{\boldsymbol{p}}_{i}$ in the origin
- silhouette points \underline{s} form a circle of radius $\rho<r_{i}$ around center \underline{m}.
- First compute length m of silhouette center \underline{m} :
$2 e m+V^{2}=\rho^{2}+e^{2}+m^{2}$
$2 e m=\rho^{2}+r_{i}^{2}+m^{2}=2 r_{i}^{2}$
- Thus we have $m=\frac{r_{i}^{2}}{e}$ and

$$
\underline{\boldsymbol{m}}=\frac{r_{i}^{2}}{e^{2}}\left(\underline{\boldsymbol{e}}-\underline{\boldsymbol{p}}_{i}\right), \rho^{2}=r_{i}^{2}\left(1-\frac{r_{i}^{2}}{e^{2}}\right)
$$

$$
V^{2}=\rho^{2}+(e-m)^{2}
$$

Sphere Raycasting - Silhouette

- To cover the sphere with a quad of corners $\vec{V}_{ \pm \pm \pm}$, two orthogonal directions \hat{x} and \hat{y} are computed
- The 4 quad corners are

$$
\vec{V}_{ \pm \pm}=\underline{\boldsymbol{m}} \pm \rho \widehat{\boldsymbol{x}} \pm \rho \widehat{\boldsymbol{y}}
$$

- Attaching texture coordinates $\boldsymbol{q} \in[-1,1]^{2}$ to the quad corners, the raysphere intersection test simplifies to:

$$
\|\underline{q}\|^{2} \leq 1
$$

Sphere Raycasting - Silhouette

- rasterizer interpolates $\vec{V}_{ \pm \pm}$ over quad to per fragment ray vector \vec{V}
- equations for ray-sphere intersection:

$$
\underline{x}=\underline{e}+\lambda \vec{V},\left\|\underline{x}-\underline{\boldsymbol{p}}_{i}\right\|^{2}=r_{i}^{2}
$$

\rightarrow two solutions (homework)

- special form where λ_{+}is first intersection along ray:

$$
\begin{aligned}
& \underline{x}_{ \pm}=\underline{e}+\lambda_{ \pm} \vec{V}, \lambda_{ \pm}=\frac{1}{1 \pm \beta} \\
& \beta=r_{i} \sqrt{1-\|\underline{q}\|^{2}} /\left\|\underline{e}-\underline{\boldsymbol{p}}_{i}\right\|
\end{aligned}
$$

- The surface normal
follows immediately:
$\widehat{n}=\frac{1}{\left\|\underline{x}-\underline{p}_{i}\right\|}\left(\underline{x}-\underline{\boldsymbol{p}}_{i}\right)$

Particles
 SHADER BASED RAYCASTING ELLIPSOIDS

©Moberts, Vilanova, van Wijk

©Kondratieva, Krüger, Westermann

Ellipsoid Raycasting

- A symmetric tensor $\boldsymbol{T}=\mathbf{0} \boldsymbol{\Lambda} \boldsymbol{O}^{T}$ can be used to transform points $\underline{\tilde{x}}$ on an arbitrary primitive according to

Examples of application of tensor to box, sphere and icosahedron primitives

Ellipsoid Raycasting

- For ellipsoid raycasting we apply inverse tensor transformation \boldsymbol{T}_{i}^{-1} to all points and vectors that are then denoted with a tilde on top
- As inversely transformed ellipsoid is a sphere of radius 1 , we drop r_{i} \& get

$$
\underline{\widetilde{\boldsymbol{m}}}=\frac{1}{\tilde{e}^{2}} \underline{\tilde{e}}, \tilde{\rho}^{2}=1-\frac{1}{\tilde{e}^{2}}
$$

- With orthonormal basis we get quad corners

$$
\widetilde{\vec{V}}_{ \pm \pm}=\underline{\widetilde{\boldsymbol{m}}} \pm \tilde{\rho} \widetilde{\tilde{x}} \pm \tilde{\rho} \widetilde{\tilde{y}}
$$

- Quad is transformed back to world or eye coordinates before rendering

Ellipsoid Raycasting - Intersection

- equations for rayellipsoid intersection:

$$
\underline{\tilde{x}}=\underline{\tilde{e}}+\lambda \widetilde{\vec{V}}, \tilde{\vec{V}}=\left(\begin{array}{l}
\tilde{x} \\
\tilde{y} \\
\tilde{u}
\end{array}\right), \tilde{u}=\frac{1}{\tilde{e}}
$$

- texture coordinates:

$$
\underline{\boldsymbol{q}}=\binom{ \pm 1}{ \pm 1}=\frac{1}{\tilde{\rho}}\binom{\tilde{x}}{\tilde{y}}
$$

- Skipping some steps, the solution of the quadratic equation for 1st inters. is:

$$
\lambda_{+}=\frac{1}{1+\tilde{u} \sqrt{1-\underline{q}^{2}}}
$$

- normal is transformed with inverse transposed:

$$
\vec{n}=\left(T^{-1}\right)^{t \widetilde{n}}=T^{-1} \widetilde{\tilde{n}}
$$

Ellipsoid Raycasting - Incremental

- transforming back to world coordinates yields:

$$
\begin{aligned}
& \underline{x}=\underline{e}+\lambda_{+}(\tilde{u}, \underline{\boldsymbol{q}}) \vec{V} \\
& \overrightarrow{\boldsymbol{n}}=\boldsymbol{T}^{-2}\left(\underline{e}-\underline{\boldsymbol{p}}_{i}\right)+\lambda_{+}(\tilde{\tilde{u}}, \underline{\boldsymbol{q}}) T^{-2} \vec{V}
\end{aligned}
$$

const per frame

const per ellipsoid

per silhouette vertex

- check if $\underline{\boldsymbol{q}}^{2} \leq 1$ and discard fragment otherwise; compute
$\lambda_{+}=\frac{1}{1+\tilde{u} \sqrt{1-\underline{q}^{2}}}, \underline{x}$ and $\overrightarrow{\boldsymbol{n}}$ in eye space for lighting

Ellipsoid Raycasting - Depth

- besides color, each fragment contains a depth value used for z-buffer based extraction of the visible surface
- By default, the depth is generated by the rasterizer and corresponds to the depth of the silhouette quad
- To overwrite the default value one can assign in the fragment shader a new depth to gl_FragDepth
- This depth value needs to be specified in window coordinates
- Last stage before rasterizer uses projection matrix \mathbf{P} to output z and w clip-coordinates
- Fragment shader inputs clip z and w and performs w-clip to compute z in normalized device coordinates
- Finally, depth is computed by remapping interval $[-1,1]$ to $[0,1]$

Early Depth Test

- If you overwrite the depth value in the fragment shader, by default no depth test is done before.
- Therefore fragment shader is executed also for all hidden fragments wasting compute power
- With the extension GL_ARB_conservative_depth one can enable an additional depth test on the fragment depth generated during rasterization
- For this to work correctly, the silhouette quad needs to be placed completely in front of primitive such that all rastierizer depth values are smaller or equal to fragment depths
- In this way most fragments hidden during rendering
 can be discarded before execution of fragment shader

```
#extension GL_ARB_conservative_depth : require
layout ( depth_greater ) out float gl_FragDepth;
```


Particles
 SHADER BASED RAYCASTING CYLINDERS

Cylinder Raycasting

Definition: start and end points $\underline{\boldsymbol{p}}_{0}$ and $\underline{\boldsymbol{p}}_{1}$ plus radius R.

Silhouette Cover

- tessellate object oriented bounding box (OOBB)
- view-dependently align single quad to silhouette

Ray Intersection

- represent cylinder as intersection of two planar half-spaces and cylinder barrel
- Intersection is first ray point that is inside of all three parts

Cylinder Raycasting - OOBB

OOBB Tessellation

- compute tangent vector $\hat{\boldsymbol{t}}$ from $\underline{\boldsymbol{p}}_{0 \mid 1}$
- extent to orthonormal object coordinate system \widehat{u}, \widehat{v} and \hat{t} :
$\widehat{\boldsymbol{u}}=$ normalize $\left(\hat{\boldsymbol{t}} \times\left\{\begin{array}{cc}\hat{\mathbf{z}} & t_{x}^{2}+t_{y}^{2}>\epsilon \\ \widehat{\boldsymbol{y}} & \text { sonst }\end{array}\right)\right.$ $\widehat{\boldsymbol{v}}=\hat{\boldsymbol{t}} \times \widehat{\boldsymbol{u}}$
- box corners: $\underline{\boldsymbol{b}}_{1.8}=\underline{\boldsymbol{p}}_{0 \mid 1} \pm R \widehat{\boldsymbol{u}} \pm R \widehat{\boldsymbol{v}}$
- For more efficient transformation encode

information in a single 4×4-matrix:

$$
\widetilde{\boldsymbol{B}}^{\text {world }}=\left(\begin{array}{cccc}
\frac{\boldsymbol{p}_{0}}{0} & \underline{\boldsymbol{p}}_{1} & R \widehat{\boldsymbol{u}} & R \widehat{\boldsymbol{v}} \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Cylinder Raycasting

OOBB Tessellation

- already in vertex shader transform to clip coordinates

$$
\widetilde{\boldsymbol{B}}^{\text {clip }}=\boldsymbol{M V P} \cdot \widetilde{\boldsymbol{B}}^{\text {world }}
$$

- Pass $\widetilde{\boldsymbol{B}}^{\text {clip }}$ to geometry shader, recover clip space corners and emit length 2 triangle strip per OOBB face

$$
\widetilde{\boldsymbol{b}}_{1.8}^{\text {clip }}=\widetilde{\boldsymbol{B}}_{0 \mid 1}^{\text {clip }} \pm \widetilde{\boldsymbol{B}}_{2}^{\text {clip }} \pm \widetilde{\boldsymbol{B}}_{3}^{\text {clip }}
$$

- Careful: this pre-transformation only works with points/vectors that have
 either 1 or 0 in the w-component.
- Optionally perform culling of backfacing facettes

Cylinder Raycasting

Silhouette Covering Quad

- View-dependently choose orthonormal coord.system $\widehat{\boldsymbol{u}}, \widehat{\boldsymbol{v}}, \hat{\boldsymbol{t}}$ to align $\hat{\boldsymbol{t}}$ with cylinder and $\widehat{\boldsymbol{u}}$ to span together with $\hat{\boldsymbol{t}}$ plane through eye \underline{e} and center line $\underline{p}_{0} \underline{p}_{1}$.
- Silhouette is bound by 2 lines parallel to $\hat{\boldsymbol{t}}$ with uv-coords from eye distance e to center line: $u=-\frac{R^{2}}{e}$ [see m on slide 25], $v_{1 \mid 2}= \pm \sqrt{R^{2}-u^{2}}$
- Extent rectangle in ut-plane according to middle figure

Cylinder Raycasting

Silhouette Covering Quad

- Construction from previous slide only valid if eye \underline{e} is outside of cylinder barrel and inside of both half spaces.
- The figure below shows all possible cases where \underline{e} can be with respect to cylinder. Previous approach can be applied with the extension corners shown in figure except if \underline{e} is in regions A/B/C:
- In regions A \& C silhouette is a circle that can be covered by quad
- Region B is inside of cylinder, where whole screen is covered

Particles
 SHADER BASED RAYCASTING ARROWS

Arrow Glyphs - Shape from length

- Arrow glyphs are used to visualize vector quantities
- Arrow shape is defined from
- \underline{p}_{0} and \underline{p}_{1}
- 2 radii R_{0} and R_{1}
- head length $l_{1}\left(l_{0}=l-l_{1}\right)$

- Given to be visualized vector, there are different strategies to adapt shape to vector length l :

1. radii and head length relative to l :

$$
\text { e.g.: } R_{0}=7,5 \% \cdot l, R_{1}=15 \% \cdot l, l_{1}=45 \% \cdot l
$$

2. radii fixed, head length relative:

$$
\text { e.g.: } R_{0}=\text { const, } R_{1}=2 \cdot R_{0}, l_{1}=45 \% \cdot l
$$

3. radii and head length fixed:

$$
\text { e.g.: } R_{0}=\text { const, } R_{1}=2 \cdot R_{0}, l_{1}=1.5 \cdot R_{1}
$$

Arrow Glyphs - Shape from length

Comparison of Strategies

$R_{0}=7,5 \% \cdot l$
$R_{1}=15 \% \cdot l$
$l_{1}=45 \% \cdot l$

$R_{0}=$ const
$R_{1}=2 \cdot R_{0}$,
$l_{1}=45 \% \cdot l$

$R_{0}=$ const
$R_{1}=2 \cdot R_{0}$,
$l_{1}=1.5 \cdot R_{1}$

Arrow Glyphs - Shape from length

$R_{0}=7,5 \% \cdot l \quad R_{0}=$ const $\quad R_{0}=$ const
$R_{1}=15 \% \cdot l \quad R_{1}=2 \cdot R_{0}, \quad R_{1}=2 \cdot R_{0}$,
$l_{1}=45 \% \cdot l \quad l_{1}=45 \% \cdot l \quad l_{1}=1.5 \cdot R_{1}$

Special cases:

1. radii and head length relative:

- exception for $l=0$

2. radii fix, head length relative:

- exception for $l=0$,
- arrow can become very obtuse:

3. radii and head length fix:

- exception for $l=0$,
- exception for $l_{1}>l$

Arrow Glyphs - Shape from length

Comparison of

 special cases$$
\begin{aligned}
& R_{0}=7,5 \% \cdot l \\
& R_{1}=15 \% \cdot l \\
& l_{1}=45 \% \cdot l
\end{aligned}
$$

```
\[
R_{0}=\text { const }
\]
\[
R_{1}=2 \cdot R_{0}
\]
\[
l_{1}=45 \% \cdot l
\]
```


Arrow Glyphs - Tessellation

- Tessellation is a reasonable option for cylinder and arrows as subdivision is only necessary radially
- To avoid limitiations on output vertex count of geometry-shader, tessellation shader or instancing can be used instead.
- Scaling radial vectors with $\frac{1}{\cos \frac{\alpha}{2}}$ covers the silhouette which is useful for arrow raycasting approaches, where a small subdivision count suffices

Arrow Glyphs - Tessellation

- When using instancing, per instance the blue polygon strip is generated: (from left to right)
- 1 triangle with constant normal \widehat{n}_{1}
- 1 quad with 2 normals \widehat{n}_{2} and \widehat{n}_{3}
- 1 quad with constant normal \widehat{n}_{1}
- 1 quad with 2 normals \widehat{n}_{4} and \widehat{n}_{5} ?

$$
\begin{aligned}
& \widehat{n}_{4} \propto l_{1} \cdot \widehat{n}_{2}+R_{1} \cdot \hat{t} \\
& \widehat{n}_{5} \propto l_{1} \cdot \widehat{n}_{3}+R_{1} \cdot \hat{t}
\end{aligned}
$$

Arrow Glyphs - Tessellation

- Despite using a quad with 4 normals, shading of the arrow head is not smooth
- same problem for color interpolation
- This is due to decom-
 position of quad into 2 very badly shaped triangles

Illumination artefacts due to splitting of quad into badly shaped triangles

Arrow Glyphs - Tessellation

- Surface normal needs to be recomputed in fragment shader:
- $\hat{v}=$ normalize $\left[\left(\underline{\boldsymbol{p}}-\underline{\boldsymbol{p}}_{0}\right)-\left\langle\underline{\boldsymbol{p}}-\underline{\boldsymbol{p}}_{0}, \hat{t}\right\rangle \hat{t}\right]$
- $\widehat{n}=\operatorname{normalize}\left(l_{1} \cdot \hat{v}+R_{1} \cdot \hat{t}\right)$;
- With this, arrow head can be rendered with single triangle without specifying
 normals at all

Arrow Glyphs - Ray Casting

- Silhouette cover by one/two screen aligned quads as in cylinder case or by radius corrected tessellation

Ray Intersection

- Arrow head is intersection of envelope of cone and half space
- Arrow tail is intersection of cylinder barell and 2 half spaces
- Arrow is union of head and tail
- intersection: first point of entry in all parts at same time (purpure ray)
- union: first point of entry in on part (green ray)

Sources and Types TUBE BASE VISUALIZATION

Particle Data - Tubes

- Time dependent particle data P describes the states $P_{i j}$ (also called particle instances) of $i=1 \ldots N$ particles over $j=1 \ldots n$ time frames with per particle life span $J_{i}=$ [j_{0}, j_{1}] and m further attributes $a_{k=1 \ldots m}$:

$$
P=\left\{P_{i j}=\left(\underline{\boldsymbol{p}}_{i j}, \overrightarrow{\boldsymbol{a}}_{i j}\right) \mid \underline{\boldsymbol{p}}_{i j} \in \boldsymbol{R}^{3}, \overrightarrow{\boldsymbol{a}}_{i j} \in \boldsymbol{R}^{m}, j \in J_{i}\right\}
$$

- By rearrangement of the data, we can extract N particle trajectories indexed over i as a sorted list of all particle instances of the $\mathrm{i}^{\text {th }}$ particle:

$$
T_{i}=\left(P_{i j} \mid j \in J_{i}\right)
$$

- If not given in the attributes, time derivatives can be estimated from finite differences:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{v}}_{i j} \approx\left(\underline{\boldsymbol{p}}_{i(j+1)}-\underline{\boldsymbol{p}}_{i(j-1)}\right) /\left(t_{j+1}-t_{j-1}\right) \text { or } \\
& \partial_{t} P_{i j} \approx\left(P_{i(j+1)}-P_{i(j-1)}\right) /\left(t_{j+1}-t_{j-1}\right)
\end{aligned}
$$

Tubes - Temporal Interpolation

- Trajectories are rendered with lines or tubes interpolated over time; where simplest is linear:

$$
\forall t \in\left[t_{j}, t_{j+1}\right]: P_{i}(t)=(1-\lambda) P_{i j}+\lambda P_{i(j+1)}, \lambda=\underbrace{\frac{t-t_{j}}{t_{j+1}-t_{j}}}_{\Delta_{j}}
$$

- If the temporal sampling is sparse, one can estimate the time derivatives and use Hermite interpolation:

$$
\begin{array}{r}
P_{i}(t)=H_{0}^{3}(\lambda) P_{i j}+\Delta_{j} H_{1}^{3}(\lambda) \partial_{t} P_{i j}+ \\
\Delta_{j+1} H_{2}^{3}(\lambda) \partial_{t} P_{i(j+1)}+H_{3}^{3}(\lambda) P_{i(j+1)}
\end{array}
$$

- with the Hermite polynomials

$$
\begin{aligned}
& H_{0}^{3}(\lambda)=(1-t)^{2}(1-2 t) \\
& H_{1}^{3}(\lambda)=(1-t)^{2} t \\
& H_{2}^{3}(\lambda)=t^{2}(t-1) \\
& H_{3}^{3}(\lambda)=t^{2}(3-2 t) t
\end{aligned}
$$

S. Gumhold, Scientific Visualization, Particles - Glyphs

Tubes - Temporal Interpolation

- Orientations as quaternions q_{j} or orientation matrices \boldsymbol{O}_{j} need to be interpolated differently
- Simplest approach is to correct linear interpolant:

$$
\operatorname{QLERP} q\left(q_{0}, \lambda, q_{1}\right)=\frac{(1-\lambda) q_{0}+\lambda q_{1}}{\left\|(1-\lambda) q_{0}+\lambda q_{1}\right\|}
$$

(for orientation matrix use polar decomposition)

- For two quaternions one can use the slerp (spherical linear interpolation) operations that produces uniform interpolation speed:

$$
\begin{gathered}
\text { SLERP }_{q\left(q_{0}, \lambda, q_{1}\right)=\frac{\sin ((1-\lambda) \theta) q_{0}+\sin (\lambda \theta) q_{1}^{\prime}}{\sin (\theta)}}^{\text {with } q_{1}^{\prime}=\left\{\begin{array}{cc}
q_{1} & \left\langle q_{0}, q_{1}\right\rangle \geq 0 \\
-q_{1} & \text { othermite interpolation: } \\
\text { convert to Bepierer re- }
\end{array} \text { and } \cos \theta=\left\langle q_{0}, q_{1}^{\prime}\right\rangle\right.} \begin{array}{l}
\text { presentation and build } \\
\text { Decastelijua algorithm } \\
\text { on SLERP operations }
\end{array}
\end{gathered}
$$

Tubes - 2D Rendering Primitives

- Visual attributes: color and size (width/radius)
- Thick lines with the vaserenderer
- corner types

- tessellation with help of anchor geometry
- caps

anchor geometry
- fade region for antialiasing
- support for color mapping

Tubes - 3D Rendering Primitives I

Generalized Cylinders

- Idea: trajectory is center line along which closed profile curve is swept

Images from Handy Potter design

- Typical profiles: circle, ellipse, rectangle, super-quadric
- Approach:
- Sample time t along trajectory
- compute tangent $\hat{t}(t)=\overrightarrow{\boldsymbol{v}}(t) /\|\overrightarrow{\boldsymbol{v}}(t)\|$
- extent with \widehat{x}, \widehat{y} to orthonormal frame \widehat{x}

- minimize twist between frame along trajectory (optionally introduce twist by mapping some attribute)
- at each sample, tessellate profile curve in xy-coordinates
- connect corresponding edges of successive samples with quad strip

Tubes - Generalized Cylinders

- optionally define texture coordinates with/without twist mapping to map lines or arrow glyphs to tube

S. Gumhold, Scientific Visualization, Particles - Glyphs \& Tubes

Tubes - Generalized Cylinders

Limitations of generalized cylinders

- If the curvature radius of the center curve is smaller than the maximum radius of the profile curve, selfintersection can arise (see relative curvature condition)

- The problem can be removed by allowing profile curves in planes not orthogonal to tangent:
Skeleton-based Generalized Cylinder Deformation under the Relative Curvature Condition
S. Gumhold, Scientific Visualization, Particles - Glyphs \& Tubes

Tubes - Generalized Cylinders

- For efficient rendering one splits the generalized cylinder tubes into segments tangential to screen plane and segments parallel to viewing direction

- hybrid rendering: screen aligned segments with single quad and tessellate view direction aligned segments

Tubes - Generalized Cylinders

- Comparison of the use of only single quad per generalized cylinder segment with hybrid approach

see paper: Visualization with Stylized Line Primitives

Tubes - Extrusion

- In diffusion tensor imaging of the brain, tractography integrates fiber bundles of nerves (nerve tracts)
- This is a trajectory with the diffusion tensor as attribute
- So called Hyperstreamlines are geometric representations of nerve tracts where ellipsoids representing the diffusion tensors are extruded along the nerve tracts.

Example images from paper: Visualizing second-order tensor fields with hyperstreamlines

Tubes - Ribbons

- To visualize multiple scalar attributes along trajectories one can use view-aligned 2 D ribbons as plotting area

partially screen aligned ribbon showing 4 scalar attributes in their spatial context

ribbons used to visualize attributes of particle clusters for a temporal context
- During 3D rotation of screen aligned ribbons, fold overs cannot be avoided completely (see also demo here)
- a trade-off between screen alignment and rotational stability is necessary see paper: Temporal Focus+Context for Clusters in Particle Data

