

Scientific Visualization

Volume Visualization and Rendering

Intro & Data Preparation

Data Sources

- driver application is medical imaging: CT, MRI, ultra sound, etc.
- material science: engine block, 3D print preview, etc.
- biology: 3D microscopy, electron microscopy, NanoCT, etc.
- simulation: particles, finite elementes, feature film, etc.

image: Mark Müller

Data Specification

- Observation space: **R**³
- Grid types:
 - Mostly regular grids (voxel grids)
 - unstructured grids (tetrahedral mesh)
 - curvi-linear grids
 - scattered data without grid
 - sliced data
- Feature space: S ∈ [a, b]
 e.g. [0, 255]
 - Often we only consider a single scalar feature at a time

curvi-linear grid from simulation

slices from microscope

S. Gumhold, Scientific Visualization, Volume Preparation

Data Specification – Voxels

Voxel Grid

- voxel (volume element) corresponds to observation point with feature value (vertices of voxel grid)
- edge connects two voxels
- cell cube/tet spanned by 8/4 voxels
- face separates two cells

Dual grid

- **dual cell** one per vertex corresponding to Voronoi cell
- dual vertex one per cell
- **dual edge** one per face: connects dual vertices

interpolation schemes

- nearest neighbor: voxel values are constant over dual cells
- trilinear: voxel defines value at corner of 2³ = 8 incident cells

voxel with its Voronoi cell

Volume Visualization Pipeline

Example for Cutting

Volume Visualization – Overview

Content

- Data Preparation
 - Reconstruction
 - Tetrahedral meshes
 - Filtering
- Indirect Volume Visualization
 - Slicing
 - Contouring
- Direct Volume Visualization
 - Compositing
 - Volume Rendering Integral
 - Transfer Functions & Pre-Integration
 - Rendering Algorithms
 - Continuous Histograms & Scatter Plots
 - Multi-Dimensional Transfer Functions
- S. Gumhold, Scientific Visualization, Volume Preparation

Data Preparation **RECONSTRUCTION**

Grids – Linear Interpolation

 $x_{\rm max}$

Input

- extent: $[x_{\min}, x_{\max}]$
- N + 1 scalars S_i sampled at $x_i = x_{\min} + i \cdot \Delta x$, $\Delta x = \frac{x_{\max} - x_{\min}}{N}$

Point Location

 for given x we need to determine index i and local coordinates α first

Interpolation

• Finally the scalar is interpolated from adjacent samples with function $s_i(x)$

$$i = \text{floor}\left(\frac{x - x_{\min}}{\Delta x}\right)$$
$$\alpha = \frac{x - (x_{\min} + i \cdot \Delta x)}{\Delta x}$$

 $\forall x \in [x_i, x_i + 1]:$

 Δx

 x_{\min}

 $\mathbf{i} = 0$

X

 $\alpha \in [0, 1]$

$$s_i(x) \coloneqq \min(S_i, S_{i+1}, \alpha) = (1 - \alpha)S_i + \alpha S_{i+1}$$

Grids – Multi-Linear Interpolation

Input

- extent: $[x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}]$
- $(N + 1) \times (M + 1)$ samples S_{ii} at $\begin{pmatrix} x_i \\ y_i \end{pmatrix} = \begin{pmatrix} x_{\min} + i \cdot \Delta x \\ y_{\min} + i \cdot \Delta y \end{pmatrix},$

Point Location

• for given (x, y) determine indices *i*, *j* and local coordinates α , β as in linear case

Interpolation

 Bilinear interpolation function is linear interpolation along y of linear interpolants along x (tensor product construction)

S. Gumhold, Scientific Visualization, Volume Preparation

10

linear function with a jump

in the derivative at the samples

 It is basically a degree 1 Bspline:

$$s(x) = \sum_{i=0}^{N} S_i N_i^1(x)$$

• With the natural basis function $N_i^1(x)$ that have a triangular shape

B-Spline Interpretation

Linear interpolation gives

continuous piecewise

S. Gumhold, Scientific Visualization, Volume Preparation

(d) Trilinear

Why cubic interpolation?

$$\Pi r$$

where

 $\rho(x, y, z) = \frac{(1 - \sin(\pi z/2) + \alpha(1 + \rho_r(\sqrt{x^2 + y^2})))}{2(1 + \alpha)},$

 $\rho_r(r) = \cos(2\pi f_M \cos(\frac{m}{2})).$ Marschner, S. R., & Lobb, R. J. (1994, October). An evaluation of reconstruction filters for volume

rendering. In *Proceedings Visualization'94* (pp. 100-107). IEEE. Figure 5: The unsampled test signal.

isosurface $\rho(x, y, z) = 0.5$

(a) B-spline

12

Convolution Interpretation

• Given the filter kernel $h(x) = N_0^1(x)$

 The linear interpolant at x can be computed with a discrete convolution directly:

$$s(x) = \sum_{i=0}^{N} S_i \cdot h\left(\frac{x_{\min} + i\Delta x - x}{\Delta x}\right)$$

• As h(x) has support [-1,1], the convolution simplifies with $x = (\alpha + i) \cdot \Delta x + x_{\min}$ to: $s(x) = h(-\alpha)S_i + h(1 - \alpha)S_{i+1}$ $= \omega_0(\alpha)S_i + \omega_1(\alpha)S_{i+1}$ $= (1 - \alpha)S_i + \alpha \cdot S_{i+1}$

Cubic Interpolation

 Keys developed 1981 a one parameter family h(x; v) of interpolating cubic kernels, where derivative can also be computed with unsymmetric derivative filter d(x; v):

Cubic Interpolation

• Keys found that parameter v = -0.5 yields the best approximation performance

$$h(x; -0.5) = \begin{cases} 0 & x \le -2 \\ 0.5 (x+2.)^2 (x+1.) & x \le -1 \\ 1-1.5 x^3 - 2.5 x^2 & x < 0 \\ 1+1.5 x^3 - 2.5 x^2 & x < 1 \\ -0.5 (x-1.) (x-2.)^2 & x < 2 \\ 0 & 2 \le x \end{cases} \qquad d(x; -0.5)$$

$$d(x; -0.5) = \begin{cases} 0 & x \le -2 \\ 1.5 x^2 + 5.0 x + 4.0 & x \le -1 \\ -4.5 x^2 - 5.0 x & x \le 0 \\ 4.5 x^2 - 5.0 x & x < 1 \\ -1.5 x^2 + 5.0 x - 4.0 & x < 2 \\ 0 & 2 \le x \end{cases}$$

S. Gumhold, Scientific Visualization, Volume Preparation

Cubic Interpolation

- For a 1D cubic interpolation one also first determines *i* and *α*.
- From α one computes the weights $\omega_i(\alpha)$ and or $\delta_i(\alpha)$ for the function value and or its derivative: $\omega_0(\alpha) = \nu \alpha^3 - 2\nu \alpha^2 + \nu \alpha$ $\omega_1(\alpha) = (\nu + 2)\alpha^3 - (\nu + 3)\alpha^2 + 1$ $\omega_2(\alpha) = -(\nu + 2)\alpha^3 + (2\nu + 3)\alpha^2 - \nu\alpha$ $\omega_3(\alpha) = -\nu\alpha^3 + \nu\alpha^2$ $\delta_0(\alpha) = 3\nu\alpha^2 - 4\nu\alpha + \nu$ $\delta_1(\alpha) = 3(\nu + 2)\alpha^2 - 2(\nu + 3)\alpha$ $\delta_2(\alpha) = -3(\nu+2)\alpha^2 + 2(2\nu+3)\alpha - \nu$ $\delta_3(\alpha) = -3\nu\alpha^2 + 2\nu\alpha$
- And then function value and or deriv.

- $$\begin{split} s(x) &= \omega_{0(\alpha)}S_{i-1} + \omega_{1(\alpha)}S_i + \\ & \omega_{2(\alpha)}S_{i+1} + \omega_{3(\alpha)}S_{i+2} \end{split}$$
- $s'(x) = \delta_{0(\alpha)}S_{i-1} + \delta_{1(\alpha)}S_i + \\ \delta_{2(\alpha)}S_{i+1} + \delta_{3(\alpha)}S_{i+2}$

BC-Splines

• Mitchell et al. proposed 1988 a two parameter kernel family h(x; B, C) without the interpolation constraint: $h(x; B, C) = \frac{1}{6} \begin{cases} (12) \\ (-1)$

it includes several known cases for appropriate (*B*, *C*):

- (1,0) ... standard B-Spline
- (0,0.5) ... Catmull Rom Spline (Hermite Spline with derivatives from finite differences)
- (1.5, -0.25) ... notch-spline with good antialiasing
- (1/3,1/3) ... best looking results for 2D image reconstruction

$$\begin{cases} (12-9B-6C)|x|^3 + & \text{if } |x| < 1 \\ (-18+12B+6C)|x|^2 + (6-2B) \\ (-B-6C)|x|^3 + (6B+30C)|x|^2 + & \text{if } 1 \le |x| < 2 \\ (-12B-48C)|x| + (8B+24C) \\ 0 & \text{otherwise} \end{cases}$$

plot of known spline cases colored is in text

Multi-Cubic Interpolation

- For the 2D and 3D case one uses again the tensor product construction on the matrix j+1
- $\mathbf{S}^{ij} = \begin{bmatrix} S_{(i-1)(j-1)} & S_{i(j-1)} & S_{(i+1)(j-1)} & S_{(i+2)(j-1)} \\ S_{(i-1)j} & S_{ij} & S_{(i+1)j} & S_{(i+2)j} \\ S_{(i-1)(j+1)} & S_{i(j+1)} & S_{(i+1)(j+1)} & S_{(i+2)(j+1)} \\ S_{(i-1)(j+2)} & S_{i(j+2)} & S_{(i+1)(j+2)} & S_{(i+2)(j+2)} \end{bmatrix} \xrightarrow{j-1}_{i-1} \xrightarrow{i-1}_{i-1} \xrightarrow{i-1}_{i$
- Similarly the derivatives for x and y compute to $\partial_x s_{ij}(\alpha, \beta) = \vec{\omega}^T(\beta) S^{ij} \vec{\delta}(\alpha)$ $\partial_y s_{ij}(\alpha, \beta) = \vec{\delta}^T(\beta) S^{ij} \vec{\omega}(\alpha)$

Multi-Cubic Interpolation

Tensor product kernels for $\nu = 0.5$, **left to right:** $h(x; \nu) \otimes h(y; \nu)$, $d(x; \nu) \otimes h(y; \nu)$, $h(x; \nu) \otimes d(y; \nu)$

Fast GPU-Evaluation of Cubic Interp.

- GPUs are highly optimized for bilinear and trilinear interpolated texture access
- Ruijters et. al extended 2008 the work of Hartwinger et al. from 2005, in which cubic interpolation in ndimensional space can be evaluated with 2ⁿ multilinear texture lookups instead of 4ⁿ unfiltered lookups
- The basic idea in 1D:
 - goal: $s(x) = \omega_0(\alpha)S_{i-1} + \omega_1(\alpha)S_i + \omega_2(\alpha)S_{i+1} + \omega_3(\alpha)S_{i+2}$
 - Observation: $a \cdot S_i + b \cdot S_{i+1} = (a+b) \cdot \min\left(S_i, S_{i+1}, \frac{b}{a+b}\right)$

$$mix\left(S_{i}, S_{i+1}, \frac{b}{a+b}\right) = \left(1 - \frac{b}{a+b}\right)S_{i} + \frac{b}{a+b}S_{i+1} = \frac{a}{a+b}S_{i} + \frac{b}{a+b}S_{i+1}$$

• With this: $s(x) = w_0 \cdot \min(S_{i-1}, S_i, a_0) + w_1 \cdot \min(S_{i+1}, S_{i+2}, a_1)$

$$w_0 = \omega_0 + \omega_1; w_1 = \omega_2 + \omega_3; a_0 = \frac{\omega_1}{w_0}; a_1 = \frac{\omega_3}{w_1}$$

Fast GPU-Evaluation of Cubic Interp.

GLSL code on right can be generalized:

- to 3D cubic interpolation by working with vec3 and 4 additional mix operations for z direction
- for other cubic versions by computing the ω_i with formula of other kernels

```
vec4 interpolate bicubic(in sampler2D tex, vec2 pnt)
      // point location extracts index and fractional part
      vec2 coord_grid = pnt - vec2(0.5);
      vec2 index = floor(coord_grid);
      vec2 fraction = coord grid - index;
      vec2 one frac = 1.0 - fraction;
      vec2 one_frac2 = one_frac * one_frac;
      vec2 fraction2 = fraction * fraction;
      // compute b-spline weights
      vec2 omega0 = 1.0/6.0 * one frac2 * one frac;
      vec2 omega1 = 2.0/3.0 - 0.5 * fraction2 * (2.0-fraction);
      vec2 omega2 = 2.0/3.0 - 0.5 * one_frac2 * (2.0-one_frac);
      vec2 omega3 = 1.0/6.0 * fraction2 * fraction;
      // prepare fast interpolation
      vec2 w0 = omega0 + omega1;
      vec2 w1 = omega2 + omega3;
      vec2 a0 = (omega1 / w0) - 0.5 + index;
      vec2 a1 = (omega3 / w1) + 1.5 + index;
      // fetch the four bilinear interpolations
      float tex00 = texture(tex, vec2(a0.x, a0.y));
      float tex10 = texture(tex, vec2(a1.x, a0.y));
      float tex01 = texture(tex, vec2(a0.x, a1.y));
      float tex11 = texture(tex, vec2(a1.x, a1.y));
      // weigh along the y-direction
      tex00 = mix(tex01, tex00, w0.y);
      tex10 = mix(tex11, tex10, w0.y);
      // weigh along the x-direction
      return mix(tex10, tex00, w0.x); }
```


Volume Preparation **TETRAHEDRAL MESHES**

Tetrahedral Meshes

Minimalistic Definition

- a tetrahedral mesh M = (V, T) is given by a set V of n_v vertices v_i and a set T of n_t tetrahedra or tets t_j
- each vertex v_i has a position $\underline{x}_i \in \mathbb{R}^3$ and further attributes like scalar density S_i
- each tet $t_j = (i_{j,0}, i_{j,1}, i_{j,2}, i_{j,3})$ is an ordered quadrupel of vertex indices

Tet Mesh Generation

 Tetrahedral meshes can be generated from a set of points through a Delaunay Tetrahedralization that minimizes largest circum sphere. (compare <u>qhull</u>)

Tetrahedral Meshes

Tet Meshes – Barycentric Interpolation

- On individual tet with corner locations $\underline{x}_0, \underline{x}_1, \underline{x}_2, \underline{x}_3$ linear interpolation of an attribute fsampled at the corners S_0, S_1, S_2, S_3 can be defined with barycentric coordinates $\sigma_0, \sigma_1, \sigma_2, \sigma_3$ suming to 1
- Location \underline{x} and its attribute value $S(\underline{x})$ are mixed from corner locations and attributes with barycentric coordinates
- barycentric interpolation is continuous on tet mesh but not differentiable over face adjacencies

tetrahedron

TetMesh – Point Location 1

- Input: Target point
- **Output:** Tetrahedron that contains target point in case point falls inside of tetmesh

Algorithm for Point Localization

- Start with random tetrahedron
- repeat
 - Check for each tet face whether target point is on the outside
 - In case all checks fail, target tet is found
 - Otherwise move to tet adjacent to edge where point was outside first or in case of boundary triangle terminate and output boundary triangle

S. Gumhold, Scientific Visualization, Volume Preparation

TetMesh – Point Location 2

• **Tet Volume** can be computed from corners: $V = \frac{1}{6} \cdot \det \begin{pmatrix} \underline{x}_0 & \underline{x}_1 & \underline{x}_2 & \underline{x}_3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

Tet Face Localization

only one geometric check necessary:

- Target point is outside of tet face if it is on different side than fourth point of tet
- This can be checked from sign switch of determinant of the point matrices extended by a homogeneous component:

$$\operatorname{sgn}\left[\operatorname{det}\begin{pmatrix}\underline{x}_{0} & \underline{x}_{1} & \underline{x}_{2} & \underline{x}_{3}\\ 1 & 1 & 1 & 1\end{pmatrix}\right] = -\operatorname{sgn}\left[\operatorname{det}\begin{pmatrix}\underline{x} & \underline{x}_{1} & \underline{x}_{2} & \underline{x}_{3}\\ 1 & 1 & 1 & 1\end{pmatrix}\right] \\ \Rightarrow \underline{x} \text{ is outside}$$

 \underline{x}_1

 \underline{x}_2

Further acceleration of the point

localization approach by use of a hierarchy

S. Gumhold, Scientific Visualization, Volume Preparation

TetMesh – Point Location 3

• To compute barycentric coordinates of \underline{x} with respect to the \underline{x}_i one introduces matrix-vector notation: $\langle \sigma_0 \rangle$

$$\begin{pmatrix} \underline{x} \\ 1 \end{pmatrix} = \begin{pmatrix} \underline{x}_0 & \underline{x}_1 & \underline{x}_2 & \underline{x}_3 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix}$$
$$\longrightarrow \quad \widetilde{x} = \widetilde{X}\widetilde{\sigma}$$

$$\underline{x}_{1}$$

 $\widetilde{\boldsymbol{\sigma}} = \widetilde{\boldsymbol{X}}^{-1} \widetilde{\boldsymbol{X}}$

Tet Meshes – Half-Face Data Structure

- Vertex position and other attributes are stored in arrays
- The face of a tet is called halfface HF_{id} and is identified with opposite vertex V_{id}
- The basic connectivity of a tet mesh is stored with 4 indices per tet – for each half-face the index of the opposite vertex
- To support access to neighbor tet for each half-face the incident half-face in the adjacent tet is stored and called opposite half-face.

O[HF_{id}]

HE.

Tet Meshes - Opposite Half-Face Matching Computer Graphics and Visualization

similar to inverse matching to build half-edge data structure (compare CG1) we can link opposite half-faces by sorting:

- 1. first sort vertex indices of each half-face internally
- 2. next sort half-faces externally according to their internally sorted vertex triple
- 3. finally, go through sorted list of half-faces and link half-faces with identical internally sorted vertex triple
- Runtime:
 - internal sort $O(n_t)$
 - external sort $O(n_t \log n_t)$ or $O(n_v + n_t)$ with bucket sort
 - linking $O(n_t)$
 - In summary this can be implemented in $O(n_t)$

Tet Meshes - Opposite Half-Face Matching

	4 tets	16 half-faces	internal	external	link
		(0:1,2,3),	(0 : 1,2,3),	(3:0,1,2),	
		(1:0,3,2),	(1:0,2,3),	(2:0,1,3),	
	(0,1,2,3),	〈 (2:0,1,3),	(2:0,1,3),	(1:0,2,3),	$O[1] \coloneqq 7$
		(3: 1,0,2),	(<mark>3:</mark> 0,1,2),	(7:0,2,3),	$O[7] \coloneqq 1$
		(4:3,2,4),	(4:2,3,4),	(<mark>5:</mark> 0,2,4),	
	(0,3,2,4),	(5:0,4,2),	(5: 0,2,4),	(<mark>6:</mark> 0,3,4),	
$T = \langle$		(6: 0,3,4),	(<mark>6</mark> : 0,3,4),	(<mark>0</mark> :1,2,3),	
		(7:3,0,2),	(7:0,2,3),	(4 : 2,3,4),	$O[4] \coloneqq B$
	(3246)	∫ (8:2,4,6),	(8:2,4,6),	(B: 2,3,4),	$O[B] \coloneqq 4$
	(0)2)1)0))	(9: 3,6,4),	(<mark>9</mark> : 3,4,6),	(A: 2,3,6),	
		(A : 3,2,6),	(A : 2,3,6),	(<mark>8:</mark> 2,4,6),	
		B : 2,3,4),	(B : 2,3,4),	(D: 3,4,5),	
	(3,6,4,5)	<pre>/</pre>	(C: 4,5,6),	(<mark>9:</mark> 3,4,6),	$O[9] \coloneqq F$
V	V4 V4 V4	(D: 3,5,4),	(D: 3,4,5),	(F : 3,4,6)	$O[F] \coloneqq 9$
v5	V3 13/V3	(E: 3,6,5),	(E: 3,5,6),	(E: 3,5,6),	
		(F: 6,3,4)	(F : 3,4,6)	(C: 4,5,6),	

TetMesh – Gradient Computation 1

• We extend matrix-vector notation to attribute values

$$S(\underline{x}) = \sum_{i=0}^{3} \sigma_i S_i = (\sigma_0 \quad \sigma_1 \quad \sigma_2 \quad \sigma_3) \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_2 \\ S_3 \end{pmatrix}$$

$$S(\underline{x}) = \langle \widetilde{\sigma}, \widetilde{S} \rangle = \langle \widetilde{S}, \widetilde{\sigma} \rangle = \widetilde{S}^T \widetilde{\sigma}$$

• and plug in
$$\tilde{\sigma} = \tilde{X}^{-1}\tilde{x}$$
 resulting in
 $S(\underline{x}) = \langle \tilde{S}, \tilde{\sigma} \rangle = \tilde{S}^T \tilde{X}^{-1} \tilde{x}$

• Applying the gradient operator yields $\nabla_{\underline{x}} S^{\text{tet}}(\underline{x}) = \tilde{S}^T \widetilde{X}^{-1} (\nabla_{\underline{x}} \widetilde{x}) = (\tilde{S}^T \widetilde{X}^{-1}) \Big|_{xyz} = \text{const}$

• which is constant over a tetrahedron

TetMesh – Gradient Computation 2

- To provide continuous gradients over the tetmesh one can estimate per vertex v_i gradients ∇S_i^{vtx} and baryzentrically interpolate them $\nabla S_i^{\text{vtx}}(\underline{x}) = \nabla S_i^{\text{vtx}}(\underline{x})$
- $\nabla_{\underline{x}} S^{\text{vtx}}(\underline{x}) = \sum_{k=0}^{\infty} \sigma_k \nabla S_{i(k)}^{\text{vtx}}$ Given a vertex *i* with incident tets $j \in N_i$ of volume V_j and constant gradients ∇S_j^{tet} the vertex gradient ∇S_i^{vtx} can be estimated to

$$\nabla S_i^{\text{vtx}} = \frac{1}{\sum_{j \in N_i} V_j} \sum_{j \in N_i} V_j \nabla S_j^{\text{tet}}$$

$$Volume \quad V_j = \frac{1}{6} \cdot \det \begin{pmatrix} \underline{x}_{i_{j,0}} & \underline{x}_{i_{j,1}} & \underline{x}_{i_{j,2}} & \underline{x}_{i_{j,3}} \\ 1 & 1 & 1 \end{pmatrix}$$

With tet volume

Regular Grid Gradient

- Similarly one can precompute the gradient on a regular grid and interpolate it during rendering
- Finite differences are typically not sufficient and yield staircase artefacts in the illumination
- The discussed cubic interpolation filters can be used for gradient estimation, centered on grid vertex and evaluated on a 3x3x3 neighborhood. For proper scaling check on test function with known gradient
- As an alternative, one can use Sobel Operator normalized with $\frac{1}{44}$:

$$\frac{\partial S}{\partial x}(x_0, y_0, z_0) = \frac{1}{44} \sum_{\substack{i,j,k=-1}}^{1} d_{ijk}^x \cdot S(x_i, y_j, z_k)$$

with rotated masks d_{ijk}^{y} and d_{ijk}^{z} for the other partial derivatives

Regular Grid Gradient – Comparison

Forward differences

Central differences

Sobel Operator

Volume Preparation **FILTERING**

Filtering

Figure 8: Examples of volume denoising with our FGT-based fast bilateral filter: two iterations with $\sigma^{g_2} = s_d$ and $(\varepsilon, r) = (10^2, 2)$. Left-most: original noisy cell-cytokinesis volumetric dataset of size $256 \times 256 \times 60$ voxels obtained using a confocal laser microscope. Middle-left: it takes only 9.3 s for our FGT-based bilateral denoising with $\sigma^{g_1} = (1.6, 1.6, 5)$. Middle-right: noisy CT-foot volume with 256^3 voxels. Right-most: it takes 450 s for our FGT-based bilateral denoising with $\sigma^{g_1} = (8, 8, 8)$.

 Yoshizawa, S., Belyaev, A., & Yokota, H. (2010, March). Fast gauss bilateral filtering. In *Computer Graphics Forum* (Vol. 29, No. 1, pp. 60-74). Oxford, UK: Blackwell Publishing Ltd.

Filtering

- Imaging noise can be removed by convolving volume with filter kernel, e.g. Gaussian $c \cdot e^{-d^2/\sigma^2}$ depending on distance *d* to sample
- with separable filters $h^{\otimes}(x, y, z) = h(x)h(y)h(z)$ the complexity of convolving a N^3 volume with a filter with M^3 support can be reduced from $N^3 \cdot M^3$ to $3N^3M$ by applying the linear filters in each dimension one after the other
- Bilateral filter multiplies secondary kernel that depends on distance r (range) in scalar value $c \cdot e^{-d^2/\sigma_d^2} \cdot e^{-r^2/\sigma_r^2}$ and supports preservation of edges which are important in volume rendering (see intro at <u>https://people.csail.mit.edu/sparis/bf_course/slides/03_definition_bf.pdf</u>)
- To exploit separation property also for bilateral filtering one can use fast implementation with permutohedral (tet) lattice: <u>https://graphics.stanford.edu/papers/permutohedral/</u>

Volume **REFERENCES**

References

- Keys, R. (1981). Cubic convolution interpolation for digital image processing. *IEEE transactions on acoustics, speech, and signal processing, 29*(6), 1153-1160.
- Mitchell, D. P., & Netravali, A. N. (1988, August). Reconstruction filters in computergraphics. In *ACM Siggraph Computer Graphics* (Vol. 22, No. 4, pp. 221-228). ACM.
- Moller, T., Machiraju, R., Mueller, K., & Yagel, R. (1996, October). Classification and local error estimation of interpolation and derivative filters for volume rendering. In proceedings of 1996 Symposium on Volume Visualization (pp. 71-78). IEEE.
- Ruijters, D., ter Haar Romeny, B. M., & Suetens, P. (2008). Efficient GPU-based texture interpolation using uniform B-splines. *Journal of Graphics Tools*, *13*(4), 61-69.
- Adams, A., Baek, J., & Davis, M. A. (2010, May). Fast high-dimensional filtering using the permutohedral lattice. In *Computer Graphics Forum* (Vol. 29, No. 2, pp. 753-762). Oxford, UK: Blackwell Publishing Ltd.
- Yoshizawa, S., Belyaev, A., & Yokota, H. (2010, March). Fast gauss bilateral filtering. In *Computer Graphics Forum* (Vol. 29, No. 1, pp. 60-74). Oxford, UK: Blackwell Publishing Ltd.