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Computer Graphics
and VisualizationContent

 Data Preparation

 Reconstruction

 Tetrahedral meshes

 Filtering

 Indirect Volume Visualization

 Slicing

 Contouring

 Direct Volume Visualization

 Compositing

 Volume Rendering Integral

 Transfer Functions & Pre-Integration

 Rendering Algorithms

 Continuous Histograms & Scatter Plots

 Multi-Dimensional Transfer Functions
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Computer Graphics
and Visualization

SLICING
Indirect Volume Visualization
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Computer Graphics
and VisualizationSliced Image Ackquisition

 Voxel datasets in TIFF or DICOM format are organized in image
stacks of slices orthogonal to z

 In memory one linearizes the three indices 𝑖,𝑗,𝑘 of the 𝑥,𝑦,𝑧
direction to single index 𝐼:

𝐼 = 𝑖 + 𝑗 ⋅ 𝑛𝑥 + 𝑘 ⋅ 𝑛𝑥 ⋅ 𝑛𝑦

 The slice distance in physical space is typically different from the
pixel distance inside a slice

 physicians often work directly on 2D visualization of the slices
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Computer Graphics
and VisualizationOrthogonal Slicing

 for slicing along planes orthogonal
to the main axes 𝑥,𝑦,𝑧 the voxel
values 𝑆𝑖𝑗𝑘 are permuted

 The pixels 𝑋 Ƹ𝑖 Ƹ𝑗 of slice 𝑖 = 𝑖0 with

Ƹ𝑖 = 0…𝑛𝑦 − 1 and Ƹ𝑗 = 0…𝑛𝑧 − 1 are for

example computed from:

𝑋 Ƹ𝑖 Ƹ𝑗 = 𝑋 መ𝐼 = Ƹ𝑖 + 𝑛𝑦 ⋅ Ƹ𝑗

= 𝑆 𝐼 = 𝑖0 + Ƹ𝑖 ⋅ 𝑛𝑥 + Ƹ𝑗 ⋅ 𝑛𝑥 ⋅ 𝑛𝑦 = 𝑆𝑖0 Ƹ𝑖 Ƹ𝑗

 Often three orthogonal slices around
reference point are shown together
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Computer Graphics
and VisualizationOblique Slicing

 An oblique Slicing is defined by a plane

 A plane can be defined by three points 𝒑,

𝒒, 𝒓 or by a plane normal ෝ𝒏 and the signed 

orthogonal distance 𝑑 of the plane from 
the origin 𝟎 of the coordinate system (𝑑 >

0 if 𝟎 is on opposite side of plane as ෝ𝒏)

 For a given point 𝒙 we can compute its 
signed distance from the plane according 
to

dist 𝒙 = ෝ𝒏, 𝒙 − 𝑑

 dist 𝒙 is 0 if 𝒙 is on plane, <0 / >0 if it is on 

opposite / on same side as ෝ𝒏

 We can project orthogonally onto the 
plane:

Proj 𝒙 = 𝒙 − dist 𝒙 ⋅ ෝ𝒏

 To slice a voxel grid, interpolation 
(trilinear or cubic) is needed
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Computer Graphics
and VisualizationRendering Oblique Slices

 Rendering of oblique slices through 
regular voxel grids can be implemented 
with 3D texture mapping, along two 
approaches

 CPU approach:

 compute intersection polygon of plane with 
volume box:

 use distance function to classify box corners in 
inside       and outside

 construct edge point on each edge connecting 
differently classified corners

 arrange edge points along face adjacencies

 render resulting polygon as triangle fan 
with texture coordinates and 3D texturing

 GPU approach: tessellate infinite plane 
and use the clipping functionality of the 
GPU, with 6 clipping planes set to the 
sides of the volume box
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Computer Graphics
and VisualizationCutting

Planes can be used for cutting to 

 cut away parts of the volume 

 to split the volume into several parts and transform the parts 
individually

 to switch rendering styles, e.g. iso-surface on one side and direct 
volume rendering on the other side
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Computer Graphics
and Visualization

CONTOURING
Indirect Volume Visualization
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Computer Graphics
and VisualizationContouring – Motivation

 In volume contouring we 
want to extract surfaces that 
separate different materials

 We can define different 
entities:

 iso-surfaces from an 
iso-value 𝑆0:
∀ 𝑥, 𝑦, 𝑧 : 𝑆 𝑥, 𝑦, 𝑧 = 𝑆0

 iso-bands from two 
iso-values 𝑆0 and 𝑆1:
∀ 𝑥, 𝑦, 𝑧 : 𝑆0 ≤ 𝑆 𝑥, 𝑦, 𝑧 ≤ 𝑆1

 volume segments on labeled 
data composed of all grid 
faces where one adjacent 
voxel belongs to the segment 
and the other not
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Computer Graphics
and VisualizationContouring – Method Comparison
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Computer Graphics
and VisualizationContouring – Method Overview

 Cuberille

 Classify all voxels in inside ⊖ / 
outside⊕

 fill dual cell of interior voxels

 For all edges connecting interior
with exterior, add dual face to
the Cuberille-surface

 Dual Contouring (see paper)

 move dual vertices onto iso-
surface

 Cuberville surface is a pure 
quadrilateral mesh

 Marching Cubes

 Marching Tetrahedra
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Computer Graphics
and VisualizationContouring – Marching Cubes

 William E. Lorensen, Harvey E. Cline, Marching Cubes: 
A high resolution 3d surface construction algorithm, 
Siggraph’87, (pdf) … 20346 Zitationen10.06.24

 Proposed algorithm defines regular grid over domain and 
marches cubes through all grid cells

 Outputs 0 … 4 triangles per cube

 Fast implementation by using lookup tables

 Algorithm:

 iterate all voxel cells ...

1. classify 8 knots in inside / outside & create 8-bit index

2. Lookup cut edges and compute edge points with 
normals of interpolated voxel gradients

3. Lookup triangulation
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Computer Graphics
and VisualizationContouring – MC – Index Computations

 Define numbering 𝑣1 to 𝑣8 of the voxels in a cell

 One bit of classification per voxel

 8-bit index from concatenation of the bits gives a total of 256 
cases
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Computer Graphics
and VisualizationContouring – MC – Lookup Edges

 Define numbering 𝑒1 to 𝑒12 of the cell edges

 For each case, store a list of edges that intersect iso-surface

 Compute locations of edge points by assuming linear 
interpolation along edge or a bisection technique, and 
interpolated gradients
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Computer Graphics
and VisualizationContouring – MC – Edge Point

 If an edge connects the inside 
with the outside, there must be 
an iso-surface crossing on the 
edge.

 If you assume a linear 
interpolation along the edge 
(correct for trilinear 
interpolation), you can estimate 
the position of the iso-surface 
crossing.

 If the linear approximation is 
not accurate enough, the edge 
can be divided and iterated at 
the estimated iso-surface 
crossing until the desired 
accuracy is reached.
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Computer Graphics
and VisualizationContouring – MC – Lookup Triangles

 Table-Index = 01110010 = 114

 Entry:

 6 edges: 𝑒1, 𝑒2, 𝑒7, 𝑒8, 𝑒9, 𝑒12

 4 triangles: 
𝑒2, 𝑒1, 𝑒9 , 𝑒2, 𝑒9, 𝑒12 ,
𝑒12, 𝑒9, 𝑒8 , (𝑒12, 𝑒8, 𝑒7)

 lookup table stores cut-edge-
and triangle-lists for all 256 
cases without exploiting 
symmetries (otherwise only 15 
cases)

 Fixed resolution of ambiguities 
(to account for trilinear interpolation 
asymptotic decider per face necessary: per 
face connect in x-, y- or z-sort order)
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Computer Graphics
and VisualizationContouring – Marching Tetrahedra

 For tetrahedral meshes, only 2 cases exist 
such that no lookup table is necessary

 One can convert any voxel grid into a 
tetrahedral mesh but

 one can split each cube in 5 or 6 tetrahedral

 tetrahedralizations of adjacent cells need to be 
compatible on incident faces
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cube decomposition into 6 tetrahedra cube decomposition into 5 tetrahedra

The two cases of
marching tetrahedra



Computer Graphics
and Visualization

COMPOSITING
Direct Volume Rendering
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Computer Graphics
and VisualizationCompositing

 In direct volume visualization we want to show at each pixel a 
combination of all values 𝑆𝑡 along a ray from the eye point through
the pixel

 For this we need to sample the locations along the ray

 The techniques to aggregate the samples’ scalar values into a final 
pixel color are called compositing techniques

 Compositing needs to heavily compress the sampled data
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image source: https://www.safaribooksonline.com/library/view/opengl-
development-cookbook/9781849695046/ch07s03.html
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Computer Graphics
and VisualizationCompositing Strategies
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Computer Graphics
and VisualizationCompositing – Blending

Absorption

 Each layer has a transparency value 𝑇𝑖 ∈ [0,1] that tells us the percentage
of light that passes the layer

 Opacity 𝑂𝑖 ∈ [0,1] is percentage of light absorpted in layer: 𝑂𝑖 = 1 − 𝑇𝑖

Emission

 Emission ሸ𝑬𝑖 is the amount of light emitted by the layer as color value (RGB)

 Often emission is set proportional to opacity and chromaticity: ሸ𝑬𝑖 = 𝑂𝑖 ⋅ ഺ𝒄𝑖

Blending or Over-Operator

 Order „back (z = ∞) to front“: ሸ𝑰𝑖,∞ = 1 − 𝑇𝑖 ഺ𝒄𝑖 + 𝑇𝑖ሸ𝑰𝑖+1,∞

 Order „front (𝑧 = 0) to back“: ሸ𝑰0,𝑖 = ሸ𝑰0,𝑖−1 + 𝑇0,𝑖−1ሸ𝑬𝑖 ,

accumulate transparency: 𝑇0,𝑖 = 𝑇𝑖 ⋅ 𝑇0,𝑖−1
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⊕ 𝑇𝑖
ሸ𝑬𝑖

ሸ𝑰[𝑖+1,∞)
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ሸ𝑰[𝑖,∞) = ሸ𝑬𝑖 + 𝑇𝑖ሸ𝑰[𝑖+1,∞)

„back to front“-order: 



Computer Graphics
and Visualization

THE VOLUME RENDERING 
INTEGRAL

Direct Volume Rendering
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Computer Graphics
and VisualizationIterated Blending

symbols used for discrete blending-operator

 𝑇𝑖 ∈ [0,1] … transparency of layer 𝑖

 𝑂𝑖 ∈ [0,1] … opacity (𝑂𝑖 = 1 − 𝑇𝑖)

 ሸ𝑬𝑖 = 𝑂𝑖 ⋅ ഺ𝒄𝑖… emission (RGB) of layer 𝑖

 𝑖 ∈ 1, 𝑛 ∪ {∞} … layer index (∞ … background)

 ሸ𝑰𝑖,𝑗 … intensity in front of layer 𝑖, accumulated over layers 𝑖…𝑗

 𝑇𝑖,𝑗 … transparency through layers 𝑖…𝑗

blending-operator

 „back to front“:
ሸ𝑰𝑛+1,∞ = ሸ𝑰∞ → ∀𝑖 = 𝑛…1: ሸ𝑰𝑖,∞ = 1 − 𝑇𝑖 ഺ𝒄𝑖 + 𝑇𝑖ሸ𝑰𝑖+1,∞

 „front to back“:
ሸ𝑰1,0 = ሸ𝟎 → ∀𝑖 = 1…𝑛: ሸ𝑰1,𝑖 = ሸ𝑰1,𝑖−1 + 𝑇1,𝑖−1ሸ𝑬𝑖,
𝑇1,0 = 1 → ∀𝑖 = 1…𝑛: 𝑇1,𝑖 = 𝑇1,𝑖 ⋅ 𝑇𝑖
ሸ𝑰1,∞ = ሸ𝑰1,𝑛 + 𝑇1,𝑛ሸ𝑰∞
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Computer Graphics
and VisualizationIterated Blending – Layer Width Variation

 The result of iterated blending should not 
depend on subdivision into layers.

 How to choose 𝑇𝑖 and ሸ𝑬𝑖 in dependence of
layer depth Δ𝑧𝑖?

 Ansatz: 𝑂𝑖 = 𝑜𝑖 ⋅ Δ𝑧𝑖, ሸ𝑬𝑖 = ഺ𝜺𝑖 ⋅ Δ𝑧𝑖

 Validation: 

 2 layers with 𝑜𝑖 =
1

2
, 𝜀𝑖 = 1, Δ𝑧𝑖 = 1:

𝑇𝑖 = 1 − 𝑂𝑖 =
1

2
, 𝐸𝑖 = 1  𝐼1,2 = 𝐸1 + 𝑇1𝐸2 = 1

1

2

 4 layers with 𝑜𝑖 =
1

2
, 𝜀𝑖 = 1, Δ𝑧𝑖 =

1

2
:

𝑇𝑖 = 1 − 𝑂𝑖 =
3

4
, 𝐸𝑖 =

1

2

 𝐼1,4 =
1

2
+

3

4

1

2
+

3

4

1

2
+

3

4

1

2
≈ 1.367

 This does not work as the result should not 
depend on the chosen sampling density
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Computer Graphics
and VisualizationIterated Blending – As a sum

 Blending: 𝐼0,∞ = 𝐸1 + 𝑇1 𝐸2 + 𝑇2 𝐸3 + 𝑇3(…+ 𝑇𝑛−1𝐸𝑛) + 𝑇1 ⋅ ⋯ ⋅ 𝑇𝑛𝐼∞

 expanding: 
𝐼0,∞ = 𝐸1 + 𝑇1𝐸2 + 𝑇1𝑇2𝐸3 + 𝑇1𝑇2𝑇3𝐸4 +⋯+ 𝑇1 ⋅ ⋯ ⋅ 𝑇𝑛𝐼∞

 This can be written as a sum of products:

𝐼0,∞ =෍

𝑖=1

𝑛

ෑ

𝑗=1

𝑖−1

𝑇𝑗 𝐸𝑖 + ෑ

𝑗=1

𝑛

𝑇𝑗 𝐼∞

 The product can be converted to a sum when transformed to log space:

𝑇1,𝑛 = exp logෑ

𝑗=1

𝑛

𝑇𝑗 = exp ෍

𝑗=1

𝑛

log 𝑇𝑗

 If 𝑇𝑗 ∈ [0,1] then log 𝑇𝑗 ∈ [−∞, 0] define Ω𝑗 = − log𝑇𝑗 ≥ 0

 Iterated blending as a sum:

𝐼1,∞ =෍

𝑖=1

𝑛

𝑇1,𝑖−1𝐸𝑖 + 𝑇1,𝑛𝐼∞, 𝑇1,𝑘 = exp −෍

𝑗=1

𝑘

Ω𝑗
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Computer Graphics
and VisualizationVolume-Rendering Integral

𝐼1,∞ =෍

𝑖=1

𝑛

𝑇1,𝑖−1𝐸𝑖 + 𝑇1,𝑛𝐼∞, 𝑇1,𝑘 = exp −෍

𝑗=1

𝑘

Ω𝑗

 A continuous version with integrals instead of sums can be derived
with the following replacements with maximum 𝑧 value 𝑧max:

𝑖 → 𝑧 ∈ 𝑧min, 𝑧max

𝐸𝑖 → 𝜀 𝑧 =
𝜕𝐸

𝜕𝑧
𝑧

Ω𝑖 → 𝜔 𝑧 =
𝜕Ω

𝜕𝑧
𝑧

 The viewing ray is parameterized by the depth 𝑧 = 𝑧min…𝑧max and 
we arrive at the Volume-Rendering Integral:

ሸ𝑰0,∞ = න
𝑧min

𝑧max

𝑇 𝑧min, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 + 𝑇 𝑧min, 𝑧max
ሸ𝑰∞,

𝑇 𝑎, 𝑏 = 𝑒− 𝑎׬
𝑏
𝜔 ෤𝑧 𝑑 ෤𝑧
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Computer Graphics
and VisualizationVolume Density Optical Model

Density or Particle Interpretation

 First idea: volume is filled with particles that absorb and 
emit light. Emission and Absorption are proportional to 
particle density

 Peter Williams and& Nelson Max proposed 1992 a 
continous model where emission and absorption are 
derived from optical density 𝜔 and chromaticity ഺ𝒄

𝜔 𝑧 … is called optical density and describes how 
much light is absorbed per path length 𝑑𝑧. Typically, 
assumed to be a wavelength independent scalar.

 ഺ𝜺 𝑧 = 𝜔 𝑧 ഺ𝒄 𝑧 … is wavelength dependent emission 
per path length (RGB) and proportional to optical 
density and chromaticity
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Computer Graphics
and VisualizationEmission

 Figures show difference between defining emission
independent of optical density (left) and with
multiplying 𝜔, i.e. ഺ𝜺 = 𝜔 ⋅ ഺ𝒄(𝑆) (right)

 Notice that emission becomes too strong on left side
S. Gumhold, Scientific Visualization, Volume 29



Computer Graphics
and VisualizationVR Integral – Constant Case

Volume-Rendering Integral:

 𝜔 𝑧 … absorption strength per path length

 ഺ𝜺 𝑧 = 𝜔 𝑧 ഺ𝒄 𝑧 … emission per path length (RGB)

 Ω 𝑎, 𝑏 = 𝑎׬
𝑏
𝜔 ǁ𝑧 𝑑 ǁ𝑧 … absorption strength per layer from 𝑎 to 𝑏

 𝑇 𝑎, 𝑏 = exp −Ω 𝑎, 𝑏 … transparency per layer

 𝑂 𝑎, 𝑏 = 1 − exp −Ω 𝑎, 𝑏 … opacity per layer

 ሸ𝑬 𝑎, 𝑏 = 𝑎׬
𝑏
𝑇 𝑎, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 … emission per layer

 ሸ𝑰0,∞ = 0׬
∞
𝑇 0, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 + 𝑇 0,∞ ሸ𝑰∞ … intensity along viewing ray

Constant Case with layer depth Δ𝑧 (see exercise)

𝑇 Δ𝑧 = 𝑒−𝜔0Δ𝑧

ሸ𝑬 Δ𝑧 =
ഺ𝜺0
𝜔0

1 − 𝑒−𝜔0Δ𝑧 = 𝑂 Δ𝑧 ഺ𝒄0, lim
𝜔0→0

ሸ𝑬 Δ𝑧 = Δ𝑧 ⋅ ഺ𝜺0

S. Gumhold, Scientific Visualization, Volume 30
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Computer Graphics
and VisualizationVR Integral – Discretization

 compute contribution of a layer from 𝑎 to 𝑏 from

ሸ𝑬 𝑎, 𝑏 = 𝑎׬
𝑏
𝑇 𝑎, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 , 𝑇 𝑎, 𝑏 = 𝑒− 𝑎׬

𝑏
𝜔 ෤𝑧 𝑑 ෤𝑧

 Constant case: ഺ𝜺 𝑧 ≡ ഺ𝜺0 and 𝜔 𝑧 ≡ 𝜔0

ሸ𝑬 𝑎, 𝑏 = ഺ𝜺0න
𝑎

𝑏

𝑒−𝜔0(𝑧−𝑎) 𝑑𝑧 , 𝑇 𝑎, 𝑏 = 𝑒−𝜔0(𝑏−𝑎)

 with Δ𝑧 = 𝑏 − 𝑎 we get

ሸ𝑬(Δ𝑧) =
ഺ𝜺0
𝜔0

1 − 𝑒−𝜔0Δ𝑧 , 𝑇 Δ𝑧 = 𝑒−𝜔0Δ𝑧

 validation for 𝜀0 ≡ 1 and 𝜔0 ≡ 1

 2 layers with Δ𝑧 ≡ 1: 𝐸𝑖 = 1 −
1

𝑒
, 𝑇𝑖 =

1

𝑒

 𝐼1,2 = 𝐸1 + 𝑇1𝐸2 = 1 +
1

𝑒
1 −

1

𝑒
= 1 −

1

𝑒2

 4 layers with Δ𝑧 =
1

2
: 𝐸𝑖 = 1 −

1

𝑒
, 𝑇𝑖 =

1

𝑒

 𝐼1,2 = 1 +
1

𝑒
1 −

1

𝑒
= 1 −

1

𝑒
𝐼1,4 = 1 −

1

𝑒2
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𝛥𝑧1

𝛥𝑧2

𝛥𝑧3





Computer Graphics
and VisualizationConstant Case –Intensity Range

 If we choose 𝜀0 proportional to 𝜔0 (left plot) then the emitted
intensity 𝐸(Δ𝑧) converges for Δ𝑧 → ∞ always to 1.

 If 𝜀0 is greater than 𝜔0 (right plot) then 𝐸(Δ𝑧) becomes larger than 1

 to have pixel values in [0,1] one sets: 𝜀 = 𝜔 ⋅ 𝑐 with 𝑐 ∈ [0,1]

 this makes constant case numerically stable: ሸ𝑬(Δ𝑧) = ഺ𝒄0 1 − 𝑒−𝜔0Δ𝑧
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𝜀0 = 𝜔0 = 1

𝜀0 = 𝜔0 = 1/2

𝜀0 = 𝜔0 = 1/4

𝜀0 = 𝜔0 = 1/8

𝜔0 = 1
𝜔0 = 1/2
𝜔0 = 1/4
𝜔0 = 1/8𝜀0 = 1

𝐸(Δ𝑧) =
𝜀0
𝜔0

1 − 𝑒−𝜔0Δ𝑧

Δ𝑧 Δ𝑧



Computer Graphics
and VisualizationIs VolRen scale invariant? – no

S. Gumhold, Scientific Visualization, Volume 33

extent:
400x300x350

extent:
40x30x35

extent:
4x3x3.5

extent:
0.4x0.3x0.35



Computer Graphics
and VisualizationVR-Integral – Scale Adaptation
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𝜔0 = 1

𝜔0 = 1/2
𝜔0 = 1/4

𝜔0 = 1/8

ሸ𝑬(Δ𝑧) = ሸ෤𝜺0 1 − 𝑒−𝜔0Δ𝑧

 If we increase/decrease size of volume, 
volume rendering integral yields more 
opaque/transparent results

 To scale the volume, one can simply multiply
the differential path length with a factor 𝑠𝑉 in
order to integrate over scaled length:

ሸ𝑰0,∞ = න
0

𝑧max

𝑇 0, 𝑧 ഺ𝜺 𝑧 ⋅ 𝑠𝑉𝑑𝑧 + 𝑇 0,∞ ሸ𝑰∞, 𝑇 𝑎, 𝑏 = 𝑒− 𝑎׬
𝑏
𝜔 ෤𝑧 ⋅𝑠𝑉𝑑 ෤𝑧

 This results in a joint scaling of ഺ𝜺(𝑧) and 𝜔 𝑧 by 𝑠𝑉

 The optimal scale depends on the value distribution inside the 
Volume. From total / per value 𝑆 voxel counts #/#𝑆 and transfer 

function 𝜔(𝑆) one can estimate the average value ഥ𝜔 =
1

#
σ𝑆#𝑆𝜔(𝑆)

 For expected opacity of ෠𝑂 and bounding box diagonal 𝑑, one can 
estimate 𝑠𝑉 through constant case approximation: 

෡O = 1 − 𝑒−𝑠𝑉ഥ𝜔𝑑 => ǁ𝑠𝑉 ෠𝑂, ഥ𝜔 =
log 1− ෠𝑂

ഥ𝜔𝑑
. E.g. ǁ𝑠𝑉 95%,

1

8
≈ 24/𝑑
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TRANSFER FUNCTIONS PART 1
Direct Volume Rendering
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Computer Graphics
and VisualizationTransfer Function Design

 Let 𝑆 ∈ [𝑆min, 𝑆max] be the scalar attribute of the volume dataset

 In the simplest approach a transfer function maps the scalar 
values 𝑆 to an chromaticity ഺ𝒄 𝑆 and opacity 𝑂(𝑆)

 Based on volume extent opacity is converted to absorption 
strength 𝜔(𝑆) per traveled length and emission strength ഺ𝜺 𝑆 per 
traveled length is computed according to ഺ𝜺 𝑆 = 𝜔 𝑆 ⋅ ഺ𝒄 𝑆 .

 typical editors are similar to curve editors and use control points
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Paraview-Editor (https://blog.kitware.com/using-the-color-map-editor-in-paraview-the-basics)

https://blog.kitware.com/using-the-color-map-editor-in-paraview-the-basics


Computer Graphics
and VisualizationHounsfield Scale

 Scalar values of volumetric CT images measure the
linear attenuation coefficient 𝜇 of x-ray radiation

 Values can be scaled according to Hounsfield units:

 number format: 16Bit signed integer with 12 significant bits

 encoding range: [−1024, 3071]

 scale is linear and based on 𝜇 values for air and water:

𝑣HU(𝜇) = 1000 ×
𝜇 − 𝜇water
𝜇water − 𝜇air

 Some values / value ranges:

 air: -1000, water: 0 

 lung: -700 … -600, fatt: -120 … -90, blood: +13 … +50, 

 soft tissue: +100 … +300, bone: +1800 … +1900

 due to noise and overlapping ranges, different soft tissue
organs cannot be segmented based only on scalar values

 Bit depth reduction to 8bit unsigned ints: 𝑣8bit = 256
𝑣HU+1024

4096
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Sir Godfrey Newbold Hounsfield

https://en.wikipedia.org/wiki/Godfrey_Hounsfield


Computer Graphics
and VisualizationTransfer Function Design Galleries

 Design Galleries provide a simplified user interface:

 Parameterize transfer function with about 20-30 curve parameters

 sample parameter space randomly and generate volume rendering for 
each sample

 choose Design Gallery as a subset of samples so that their volume 
rendering differ maximally

 show the gallery to the user and ask for one or more samples

 iterate with local sampling of the parameter space
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Marks, Joe, et al. "Design 
galleries: A general approach to 

setting parameters for 
computer graphics and 

animation." Proceedings of the 
24th annual conference on 

Computer graphics and 
interactive techniques. ACM 

Press/Addison-Wesley 
Publishing Co., 1997.

acm-link

https://dl.acm.org/citation.cfm?id=258887


Computer Graphics
and VisualizationTransfer Function – Pre- vs Post-Interpolation

 One can apply the transfer function to the voxel values 
resulting in a rgba volume. This is called pre-interpola-
tion as the rgba values are interpolated afterwards

 In post-interpolation one first interpolates the scalar 
values and then applies the transfer function

 For high frequency transfer functions pre-interpolation 
yields significant artefacts  use post-interpolation
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pre-interpolation post-interpolation

©Markus Hadwiger



Computer Graphics
and VisualizationTransfer Function – Pre-integration 

 During raycasting emission intensity and absorption 

probability are a function of depth 𝑧:  𝜺 𝑆 𝑧 , 𝜔(𝑆 𝑧 )

 Even for a linear scalar function

𝑆 𝑧 =
𝑧1 − 𝑧

Δ𝑧
𝑆0 +

𝑧 − 𝑧0
Δ𝑧

𝑆1, Δ𝑧 = 𝑧1 − 𝑧0

both functions can vary significantly & non-linearly in 𝑧

 But for linear functions the volume rendering integral 
only depends on the three parameters 𝑆0, 𝑆1 and Δ𝑧.

 To show this we change the integration variable from 𝑧

to 𝑆: 𝑑𝑆 𝑧 =
Δ𝑆

Δ𝑧
𝑑𝑧, Δ𝑆 = 𝑆1 − 𝑆0:

ሸ𝑬 𝑆0, 𝑆1, Δ𝑧 = න
𝑧0

𝑧1

𝑇 𝑧0, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 =
Δ𝑧

Δ𝑆
න
𝑆0

𝑆1

𝑇 𝑆0, 𝑆, Δ𝑧 ഺ𝜺 𝑆 𝑑𝑆

𝑇 𝑆0, 𝑆1, Δ𝑧 = 𝑒
− 𝑧0׬

𝑧1 𝜔 ෤𝑧 𝑑෤𝑧
= 𝑒

−
Δ𝑧
Δ𝑆 𝑆0׬

𝑆1 𝜔 ሚ𝑆 𝑑 ሚ𝑆
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Computer Graphics
and VisualizationTransfer Function – Pre-integration

 Transfer function is typically defined over discretization 

of 𝑆 into 𝑛 values:  ∀𝑖 = 0…𝑛 − 1: 𝑆𝑖 = 𝑖 ⋅ 𝛿𝑆, 𝛿𝑆 =
1

𝑛−1

 For the transparency integral one can work with a 1D 

integral table of the antiderivative Ω 𝑆𝑖 = 0׬
𝑆𝑖𝜔 ሚ𝑆 𝑑 ሚ𝑆:

𝑇𝑖𝑗 = 𝑇 𝑆𝑖 , 𝑆𝑗 , Δ𝑧 = 𝑒
−

Δ𝑧
𝑆𝑗−𝑆𝑖

׬
𝑆𝑖

𝑆𝑗
𝜔 ሚ𝑆 𝑑 ሚ𝑆

= 𝑒
−

Δ𝑧
𝑆𝑗−𝑆𝑖

⋅ Ω 𝑆𝑗 −Ω 𝑆𝑖

 Special case for 𝑆𝑖 = 𝑆𝑗: 𝑇𝑖𝑖 = 𝑒−𝜔 𝑆𝑖 Δ𝑧

 The table Ω𝑖 = Ω(𝑆𝑖) can be computed in 𝑂(𝑛):

Ω0 = 0,Ω𝑖+1 = Ω𝑖 +න
𝑆𝑖

𝑆𝑖+1

𝜔 ሚ𝑆 𝑑 ሚ𝑆 ≈ Ω𝑖 + 𝜔
𝑆𝑖 + 𝑆𝑖+1

2
𝛿𝑆

 Summary: 𝑇𝑖𝑗 Δ𝑧 = ቐ
exp −𝜔 𝑆𝑖 ⋅ Δ𝑧 𝑖 = 𝑗

exp −
Δ𝑧

𝑗−𝑖 ⋅𝛿𝑆
Ω𝑗 − Ω𝑖 𝑖 ≠ 𝑗
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Computer Graphics
and VisualizationTransfer Function – Pre-integration

 For the emission integral the trick to integrate 
independent of Δ𝑧 does not work.

 Depending on the rendering algorithm one discretizes 
Δ𝑧 into 𝑚 values: Δ𝑧𝑘=0…𝑚−1
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Ray Casting ProjektionTexture-Slicing

Δ𝑍

Δ𝑧𝑘 = 1 +
𝑘

𝑚 − 1
Δ𝑍 Δ𝑧𝑘 = 2𝑘 ⋅ Δ𝑧min

Δ𝑧𝑘 =
𝑘

𝑚 − 1
⋅ Δ𝑧max

𝑚 ≈ 5 𝑚 ≈ 5 𝑚 ≈ 20



Computer Graphics
and VisualizationTransfer Function – Pre-integration 

 For emission a 3D pre-integration lookup is necessary:

ሸ𝑬𝑖𝑗𝑘 = ሸ𝑬 𝑆𝑖 , 𝑆𝑗 , Δ𝑧𝑘 =
Δ𝑧𝑘

𝑆𝑗 − 𝑆𝑖
න
𝑆𝑖

𝑆𝑗

𝑇 𝑆𝑖 , 𝑆, Δ𝑧𝑘 ഺ𝜺 𝑆 𝑑𝑆

 Special case for 𝑖 = 𝑗: ሸ𝑬𝑖𝑖𝑘 = ഺ𝒄 𝑆𝑖 1 − 𝑒−𝜔 𝑆𝑖 Δ𝑧

 2D antiderivative ሸ𝜩𝑖𝑘 = 0׬
𝑆𝑖 𝑇 0, ሚ𝑆, Δ𝑧𝑘 ഺ𝜺 ሚ𝑆 𝑑 ሚ𝑆 table:

ሸ𝑬𝑖𝑗𝑘 =
Δ𝑧𝑘

𝑆𝑗 − 𝑆𝑖

ሸ𝜩𝑗𝑘 − ሸ𝜩𝑖𝑘
𝑇 0, 𝑆𝑖 , Δ𝑧𝑘

,

where we define 𝑇 0,0, Δ𝑧 := 1.

 Incremental computation of ሸ𝜩𝑖𝑘:

ሸ𝜩0𝑘 = ሸ𝟎, ሸ𝜩 𝑖+1 𝑘 = ሸ𝜩𝑖𝑘 +න
𝑆𝑖

𝑆𝑖+1

𝑇 0, ሚ𝑆, Δ𝑧𝑘 ഺ𝜺 ሚ𝑆 𝑑 ሚ𝑆

≈ ሸ𝜩𝑖𝑘 + 𝑇 0, 𝑆
𝑖+

1

2

, Δ𝑧𝑘 ഺ𝜺 𝑆
𝑖+

1

2

𝛿𝑆
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Computer Graphics
and VisualizationTransfer Function – Pre-integration 

 Precomputation runtime 
and space consumption 
for 𝑛 scalar values 𝑆𝑖 and 
𝑚 step widths Δ𝑧𝑘:

 Ω𝑖 … 𝑂(𝑛)

 ሸ𝜩𝑖𝑘 … 𝑂 𝑚 ⋅ 𝑛

 Per table entry runtime:

 𝑇𝑖𝑗(Δ𝑧) … 𝑂(1)

 ሸ𝑬𝑖𝑗𝑘 =
Δ𝑧𝑘

𝑆𝑗−𝑆𝑖

ሸ𝜩𝑗𝑘−ሸ𝜩𝑖𝑘

𝑇 0,𝑆𝑖,Δ𝑧𝑘
… 𝑂(1)

 Overall runtime: 𝑂(𝑚 ⋅ 𝑛2)
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no pre-integration with pre-integration



Computer Graphics
and Visualization

S. Gumhold, Scientific Visualization, Volume 45

no pre-integration with pre-integration



Computer Graphics
and VisualizationTransfer Function – Pre-integration 

 Pre-integration provides fast access to the volume
rendering integral for the case where 𝑆 varies linearly

 In the simplest implementation one works with a 3D 
lookup function stored in a 3D RGBA texture, but 
changes in the transfer function demand for long re-
computation times of the 3D lookup table

 Pre-integration only works for 1D transfer functions
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