
TECHNISCHE
UNIVERSITÄT
DRESDEN

Computer Graphics
and Visualization

Volume Visualization
Mapping

Scientific
Visualization

S. Gumhold, Scientific Visualization, Volume 1

Computer Graphics
and VisualizationContent

 Data Preparation

 Reconstruction

 Tetrahedral meshes

 Filtering

 Indirect Volume Visualization

 Slicing

 Contouring

 Direct Volume Visualization

 Compositing

 Volume Rendering Integral

 Transfer Functions & Pre-Integration

 Rendering Algorithms

 Continuous Histograms & Scatter Plots

 Multi-Dimensional Transfer Functions
S. Gumhold, Scientific Visualization, Volume Preparation 2

Computer Graphics
and Visualization

SLICING
Indirect Volume Visualization

S. Gumhold, Scientific Visualization, Volume 3

Computer Graphics
and VisualizationSliced Image Ackquisition

 Voxel datasets in TIFF or DICOM format are organized in image
stacks of slices orthogonal to z

 In memory one linearizes the three indices 𝑖,𝑗,𝑘 of the 𝑥,𝑦,𝑧
direction to single index 𝐼:

𝐼 = 𝑖 + 𝑗 ⋅ 𝑛𝑥 + 𝑘 ⋅ 𝑛𝑥 ⋅ 𝑛𝑦

 The slice distance in physical space is typically different from the
pixel distance inside a slice

 physicians often work directly on 2D visualization of the slices

S. Gumhold, Scientific Visualization, Volume 4

Slice 20 30 40 50 60

CT data set

Computer Graphics
and VisualizationOrthogonal Slicing

 for slicing along planes orthogonal
to the main axes 𝑥,𝑦,𝑧 the voxel
values 𝑆𝑖𝑗𝑘 are permuted

 The pixels 𝑋 Ƹ𝑖 Ƹ𝑗 of slice 𝑖 = 𝑖0 with

Ƹ𝑖 = 0…𝑛𝑦 − 1 and Ƹ𝑗 = 0…𝑛𝑧 − 1 are for

example computed from:

𝑋 Ƹ𝑖 Ƹ𝑗 = 𝑋 መ𝐼 = Ƹ𝑖 + 𝑛𝑦 ⋅ Ƹ𝑗

= 𝑆 𝐼 = 𝑖0 + Ƹ𝑖 ⋅ 𝑛𝑥 + Ƹ𝑗 ⋅ 𝑛𝑥 ⋅ 𝑛𝑦 = 𝑆𝑖0 Ƹ𝑖 Ƹ𝑗

 Often three orthogonal slices around
reference point are shown together

S. Gumhold, Scientific Visualization, Volume 5

Computer Graphics
and VisualizationOblique Slicing

 An oblique Slicing is defined by a plane

 A plane can be defined by three points 𝒑,

𝒒, 𝒓 or by a plane normal ෝ𝒏 and the signed

orthogonal distance 𝑑 of the plane from
the origin 𝟎 of the coordinate system (𝑑 >

0 if 𝟎 is on opposite side of plane as ෝ𝒏)

 For a given point 𝒙 we can compute its
signed distance from the plane according
to

dist 𝒙 = ෝ𝒏, 𝒙 − 𝑑

 dist 𝒙 is 0 if 𝒙 is on plane, <0 / >0 if it is on

opposite / on same side as ෝ𝒏

 We can project orthogonally onto the
plane:

Proj 𝒙 = 𝒙 − dist 𝒙 ⋅ ෝ𝒏

 To slice a voxel grid, interpolation
(trilinear or cubic) is needed

S. Gumhold, Scientific Visualization, Volume 6




Proj 𝒙
𝑑

𝒙

ෝ𝒙

ෝ𝒚

ො𝒛

𝟎

ෝ𝒏

𝒓

𝒑

𝒒

𝒓

2D version
of slicing

ෝ𝒏

Computer Graphics
and VisualizationRendering Oblique Slices

 Rendering of oblique slices through
regular voxel grids can be implemented
with 3D texture mapping, along two
approaches

 CPU approach:

 compute intersection polygon of plane with
volume box:

 use distance function to classify box corners in
inside and outside

 construct edge point on each edge connecting
differently classified corners

 arrange edge points along face adjacencies

 render resulting polygon as triangle fan
with texture coordinates and 3D texturing

 GPU approach: tessellate infinite plane
and use the clipping functionality of the
GPU, with 6 clipping planes set to the
sides of the volume box

S. Gumhold, Scientific Visualization, Volume 7

l

Computer Graphics
and VisualizationCutting

Planes can be used for cutting to

 cut away parts of the volume

 to split the volume into several parts and transform the parts
individually

 to switch rendering styles, e.g. iso-surface on one side and direct
volume rendering on the other side

S. Gumhold, Scientific Visualization, Volume 8

Computer Graphics
and Visualization

CONTOURING
Indirect Volume Visualization

S. Gumhold, Scientific Visualization, Volume 9

Computer Graphics
and VisualizationContouring – Motivation

 In volume contouring we
want to extract surfaces that
separate different materials

 We can define different
entities:

 iso-surfaces from an
iso-value 𝑆0:
∀ 𝑥, 𝑦, 𝑧 : 𝑆 𝑥, 𝑦, 𝑧 = 𝑆0

 iso-bands from two
iso-values 𝑆0 and 𝑆1:
∀ 𝑥, 𝑦, 𝑧 : 𝑆0 ≤ 𝑆 𝑥, 𝑦, 𝑧 ≤ 𝑆1

 volume segments on labeled
data composed of all grid
faces where one adjacent
voxel belongs to the segment
and the other not

S. Gumhold, Scientific Visualization, Volume 10

Image: multiple iso-surfaces

inside label

other labels

http://wwwvis.informatik.uni-stuttgart.de/~engel/pre-integrated/updates.html

Computer Graphics
and VisualizationContouring – Method Comparison

S. Gumhold, Scientific Visualization, Volume 11

Cuberille
Dual

Contouring

Marching
Cubes

Marching
Cubes
with

short edges
collapsed

Primal
Methods

Dual
Methods

Computer Graphics
and VisualizationContouring – Method Overview

 Cuberille

 Classify all voxels in inside ⊖ /
outside⊕

 fill dual cell of interior voxels

 For all edges connecting interior
with exterior, add dual face to
the Cuberille-surface

 Dual Contouring (see paper)

 move dual vertices onto iso-
surface

 Cuberville surface is a pure
quadrilateral mesh

 Marching Cubes

 Marching Tetrahedra

S. Gumhold, Scientific Visualization, Volume 12

⊕ ⊖⊕

⊕

⊕⊕

⊖

⊖⊖

⊖⊖

⊖

http://sites.fas.harvard.edu/~cs277/papers/dualcontour.pdf

Computer Graphics
and VisualizationContouring – Marching Cubes

 William E. Lorensen, Harvey E. Cline, Marching Cubes:
A high resolution 3d surface construction algorithm,
Siggraph’87, (pdf) … 20346 Zitationen10.06.24

 Proposed algorithm defines regular grid over domain and
marches cubes through all grid cells

 Outputs 0 … 4 triangles per cube

 Fast implementation by using lookup tables

 Algorithm:

 iterate all voxel cells ...

1. classify 8 knots in inside / outside & create 8-bit index

2. Lookup cut edges and compute edge points with
normals of interpolated voxel gradients

3. Lookup triangulation

S. Gumhold, Scientific Visualization, Volume 13

https://dl.acm.org/citation.cfm?id=37422

Computer Graphics
and VisualizationContouring – MC – Index Computations

 Define numbering 𝑣1 to 𝑣8 of the voxels in a cell

 One bit of classification per voxel

 8-bit index from concatenation of the bits gives a total of 256
cases

S. Gumhold, Scientific Visualization, Volume 14

𝑣1 𝑣2

𝑣3

𝑣6
𝑣5

𝑣7𝑣8

𝑣4

11001000

11001111

8-bit index:

𝒗𝟖 𝒗𝟕 𝒗𝟔 𝒗𝟓 𝒗𝟒 𝒗𝟑 𝒗𝟐 𝒗𝟏

128 64 32 16 8 4 2 1

…outside: 0

…inside: 1

Computer Graphics
and VisualizationContouring – MC – Lookup Edges

 Define numbering 𝑒1 to 𝑒12 of the cell edges

 For each case, store a list of edges that intersect iso-surface

 Compute locations of edge points by assuming linear
interpolation along edge or a bisection technique, and
interpolated gradients

S. Gumhold, Scientific Visualization, Volume 15

𝑒1

𝑒2
𝑒3𝑒4

𝑒5
𝑒6

𝑒7
𝑒8

𝑒9 𝑒10

𝑒12𝑒11

𝑒1

𝑒2

𝑒7
𝑒8

𝑒9

𝑒12

𝑒1 𝑒2 𝑒7 𝑒8 𝑒9 𝑒12

𝑒1
𝑒2

𝑒7𝑒8

𝑒9
𝑒12

Computer Graphics
and VisualizationContouring – MC – Edge Point

 If an edge connects the inside
with the outside, there must be
an iso-surface crossing on the
edge.

 If you assume a linear
interpolation along the edge
(correct for trilinear
interpolation), you can estimate
the position of the iso-surface
crossing.

 If the linear approximation is
not accurate enough, the edge
can be divided and iterated at
the estimated iso-surface
crossing until the desired
accuracy is reached.

S. Gumhold, Scientific Visualization, Volume 16

+

- +

+

++

-

-

+

𝑆

𝛼

Computer Graphics
and VisualizationContouring – MC – Lookup Triangles

 Table-Index = 01110010 = 114

 Entry:

 6 edges: 𝑒1, 𝑒2, 𝑒7, 𝑒8, 𝑒9, 𝑒12

 4 triangles:
𝑒2, 𝑒1, 𝑒9 , 𝑒2, 𝑒9, 𝑒12 ,
𝑒12, 𝑒9, 𝑒8 , (𝑒12, 𝑒8, 𝑒7)

 lookup table stores cut-edge-
and triangle-lists for all 256
cases without exploiting
symmetries (otherwise only 15
cases)

 Fixed resolution of ambiguities
(to account for trilinear interpolation
asymptotic decider per face necessary: per
face connect in x-, y- or z-sort order)

S. Gumhold, Scientific Visualization, Volume 17

𝑒1

𝑒2

𝑒7
𝑒8

𝑒9

𝑒12

Computer Graphics
and VisualizationContouring – Marching Tetrahedra

 For tetrahedral meshes, only 2 cases exist
such that no lookup table is necessary

 One can convert any voxel grid into a
tetrahedral mesh but

 one can split each cube in 5 or 6 tetrahedral

 tetrahedralizations of adjacent cells need to be
compatible on incident faces

S. Gumhold, Scientific Visualization, Volume 18

cube decomposition into 6 tetrahedra cube decomposition into 5 tetrahedra

The two cases of
marching tetrahedra

Computer Graphics
and Visualization

COMPOSITING
Direct Volume Rendering

S. Gumhold, Scientific Visualization, Volume 19

Computer Graphics
and VisualizationCompositing

 In direct volume visualization we want to show at each pixel a
combination of all values 𝑆𝑡 along a ray from the eye point through
the pixel

 For this we need to sample the locations along the ray

 The techniques to aggregate the samples’ scalar values into a final
pixel color are called compositing techniques

 Compositing needs to heavily compress the sampled data

S. Gumhold, Scientific Visualization, Volume 20

image source: https://www.safaribooksonline.com/library/view/opengl-
development-cookbook/9781849695046/ch07s03.html

https://www.safaribooksonline.com/library/view/opengl-development-cookbook/9781849695046/ch07s03.html

Computer Graphics
and VisualizationCompositing Strategies

S. Gumhold, Scientific Visualization, Volume 21

Depth

Density

Max

Average

Blending

First

Max

Average

Blending

First

Computer Graphics
and VisualizationCompositing – Blending

Absorption

 Each layer has a transparency value 𝑇𝑖 ∈ [0,1] that tells us the percentage
of light that passes the layer

 Opacity 𝑂𝑖 ∈ [0,1] is percentage of light absorpted in layer: 𝑂𝑖 = 1 − 𝑇𝑖

Emission

 Emission ሸ𝑬𝑖 is the amount of light emitted by the layer as color value (RGB)

 Often emission is set proportional to opacity and chromaticity: ሸ𝑬𝑖 = 𝑂𝑖 ⋅ ഺ𝒄𝑖

Blending or Over-Operator

 Order „back (z = ∞) to front“: ሸ𝑰𝑖,∞ = 1 − 𝑇𝑖 ഺ𝒄𝑖 + 𝑇𝑖ሸ𝑰𝑖+1,∞

 Order „front (𝑧 = 0) to back“: ሸ𝑰0,𝑖 = ሸ𝑰0,𝑖−1 + 𝑇0,𝑖−1ሸ𝑬𝑖 ,

accumulate transparency: 𝑇0,𝑖 = 𝑇𝑖 ⋅ 𝑇0,𝑖−1

S. Gumhold, Scientific Visualization, Volume 22

⊕ 𝑇𝑖
ሸ𝑬𝑖

ሸ𝑰[𝑖+1,∞)

𝑇𝑖ሸ𝑰[𝑖+1,∞)

ሸ𝑰[𝑖,∞) = ሸ𝑬𝑖 + 𝑇𝑖ሸ𝑰[𝑖+1,∞)

„back to front“-order:

Computer Graphics
and Visualization

THE VOLUME RENDERING
INTEGRAL

Direct Volume Rendering

S. Gumhold, Scientific Visualization, Volume 23

Computer Graphics
and VisualizationIterated Blending

symbols used for discrete blending-operator

 𝑇𝑖 ∈ [0,1] … transparency of layer 𝑖

 𝑂𝑖 ∈ [0,1] … opacity (𝑂𝑖 = 1 − 𝑇𝑖)

 ሸ𝑬𝑖 = 𝑂𝑖 ⋅ ഺ𝒄𝑖… emission (RGB) of layer 𝑖

 𝑖 ∈ 1, 𝑛 ∪ {∞} … layer index (∞ … background)

 ሸ𝑰𝑖,𝑗 … intensity in front of layer 𝑖, accumulated over layers 𝑖…𝑗

 𝑇𝑖,𝑗 … transparency through layers 𝑖…𝑗

blending-operator

 „back to front“:
ሸ𝑰𝑛+1,∞ = ሸ𝑰∞ → ∀𝑖 = 𝑛…1: ሸ𝑰𝑖,∞ = 1 − 𝑇𝑖 ഺ𝒄𝑖 + 𝑇𝑖ሸ𝑰𝑖+1,∞

 „front to back“:
ሸ𝑰1,0 = ሸ𝟎 → ∀𝑖 = 1…𝑛: ሸ𝑰1,𝑖 = ሸ𝑰1,𝑖−1 + 𝑇1,𝑖−1ሸ𝑬𝑖,
𝑇1,0 = 1 → ∀𝑖 = 1…𝑛: 𝑇1,𝑖 = 𝑇1,𝑖 ⋅ 𝑇𝑖
ሸ𝑰1,∞ = ሸ𝑰1,𝑛 + 𝑇1,𝑛ሸ𝑰∞

S. Gumhold, Scientific Visualization, Volume 24

ሸ𝑬3

ሸ𝑰∞
𝑇3

ሸ𝑬2
ሸ𝑬1

𝑇2𝑇1

ሸ𝑰2,3

Computer Graphics
and VisualizationIterated Blending – Layer Width Variation

 The result of iterated blending should not
depend on subdivision into layers.

 How to choose 𝑇𝑖 and ሸ𝑬𝑖 in dependence of
layer depth Δ𝑧𝑖?

 Ansatz: 𝑂𝑖 = 𝑜𝑖 ⋅ Δ𝑧𝑖, ሸ𝑬𝑖 = ഺ𝜺𝑖 ⋅ Δ𝑧𝑖

 Validation:

 2 layers with 𝑜𝑖 =
1

2
, 𝜀𝑖 = 1, Δ𝑧𝑖 = 1:

𝑇𝑖 = 1 − 𝑂𝑖 =
1

2
, 𝐸𝑖 = 1  𝐼1,2 = 𝐸1 + 𝑇1𝐸2 = 1

1

2

 4 layers with 𝑜𝑖 =
1

2
, 𝜀𝑖 = 1, Δ𝑧𝑖 =

1

2
:

𝑇𝑖 = 1 − 𝑂𝑖 =
3

4
, 𝐸𝑖 =

1

2

 𝐼1,4 =
1

2
+

3

4

1

2
+

3

4

1

2
+

3

4

1

2
≈ 1.367

 This does not work as the result should not
depend on the chosen sampling density

S. Gumhold, Scientific Visualization, Volume 25

𝛥𝑧1

𝛥𝑧2

𝛥𝑧3

Computer Graphics
and VisualizationIterated Blending – As a sum

 Blending: 𝐼0,∞ = 𝐸1 + 𝑇1 𝐸2 + 𝑇2 𝐸3 + 𝑇3(…+ 𝑇𝑛−1𝐸𝑛) + 𝑇1 ⋅ ⋯ ⋅ 𝑇𝑛𝐼∞

 expanding:
𝐼0,∞ = 𝐸1 + 𝑇1𝐸2 + 𝑇1𝑇2𝐸3 + 𝑇1𝑇2𝑇3𝐸4 +⋯+ 𝑇1 ⋅ ⋯ ⋅ 𝑇𝑛𝐼∞

 This can be written as a sum of products:

𝐼0,∞ =෍

𝑖=1

𝑛

ෑ

𝑗=1

𝑖−1

𝑇𝑗 𝐸𝑖 + ෑ

𝑗=1

𝑛

𝑇𝑗 𝐼∞

 The product can be converted to a sum when transformed to log space:

𝑇1,𝑛 = exp logෑ

𝑗=1

𝑛

𝑇𝑗 = exp ෍

𝑗=1

𝑛

log 𝑇𝑗

 If 𝑇𝑗 ∈ [0,1] then log 𝑇𝑗 ∈ [−∞, 0] define Ω𝑗 = − log𝑇𝑗 ≥ 0

 Iterated blending as a sum:

𝐼1,∞ =෍

𝑖=1

𝑛

𝑇1,𝑖−1𝐸𝑖 + 𝑇1,𝑛𝐼∞, 𝑇1,𝑘 = exp −෍

𝑗=1

𝑘

Ω𝑗

S. Gumhold, Scientific Visualization, Volume 26

Computer Graphics
and VisualizationVolume-Rendering Integral

𝐼1,∞ =෍

𝑖=1

𝑛

𝑇1,𝑖−1𝐸𝑖 + 𝑇1,𝑛𝐼∞, 𝑇1,𝑘 = exp −෍

𝑗=1

𝑘

Ω𝑗

 A continuous version with integrals instead of sums can be derived
with the following replacements with maximum 𝑧 value 𝑧max:

𝑖 → 𝑧 ∈ 𝑧min, 𝑧max

𝐸𝑖 → 𝜀 𝑧 =
𝜕𝐸

𝜕𝑧
𝑧

Ω𝑖 → 𝜔 𝑧 =
𝜕Ω

𝜕𝑧
𝑧

 The viewing ray is parameterized by the depth 𝑧 = 𝑧min…𝑧max and
we arrive at the Volume-Rendering Integral:

ሸ𝑰0,∞ = න
𝑧min

𝑧max

𝑇 𝑧min, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 + 𝑇 𝑧min, 𝑧max
ሸ𝑰∞,

𝑇 𝑎, 𝑏 = 𝑒− 𝑎׬
𝑏
𝜔 ෤𝑧 𝑑 ෤𝑧

S. Gumhold, Scientific Visualization, Volume 27

Computer Graphics
and VisualizationVolume Density Optical Model

Density or Particle Interpretation

 First idea: volume is filled with particles that absorb and
emit light. Emission and Absorption are proportional to
particle density

 Peter Williams and& Nelson Max proposed 1992 a
continous model where emission and absorption are
derived from optical density 𝜔 and chromaticity ഺ𝒄

𝜔 𝑧 … is called optical density and describes how
much light is absorbed per path length 𝑑𝑧. Typically,
assumed to be a wavelength independent scalar.

 ഺ𝜺 𝑧 = 𝜔 𝑧 ഺ𝒄 𝑧 … is wavelength dependent emission
per path length (RGB) and proportional to optical
density and chromaticity

S. Gumhold, Scientific Visualization, Volume 28

Computer Graphics
and VisualizationEmission

 Figures show difference between defining emission
independent of optical density (left) and with
multiplying 𝜔, i.e. ഺ𝜺 = 𝜔 ⋅ ഺ𝒄(𝑆) (right)

 Notice that emission becomes too strong on left side
S. Gumhold, Scientific Visualization, Volume 29

Computer Graphics
and VisualizationVR Integral – Constant Case

Volume-Rendering Integral:

 𝜔 𝑧 … absorption strength per path length

 ഺ𝜺 𝑧 = 𝜔 𝑧 ഺ𝒄 𝑧 … emission per path length (RGB)

 Ω 𝑎, 𝑏 = 𝑎׬
𝑏
𝜔 ǁ𝑧 𝑑 ǁ𝑧 … absorption strength per layer from 𝑎 to 𝑏

 𝑇 𝑎, 𝑏 = exp −Ω 𝑎, 𝑏 … transparency per layer

 𝑂 𝑎, 𝑏 = 1 − exp −Ω 𝑎, 𝑏 … opacity per layer

 ሸ𝑬 𝑎, 𝑏 = 𝑎׬
𝑏
𝑇 𝑎, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 … emission per layer

 ሸ𝑰0,∞ = 0׬
∞
𝑇 0, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 + 𝑇 0,∞ ሸ𝑰∞ … intensity along viewing ray

Constant Case with layer depth Δ𝑧 (see exercise)

𝑇 Δ𝑧 = 𝑒−𝜔0Δ𝑧

ሸ𝑬 Δ𝑧 =
ഺ𝜺0
𝜔0

1 − 𝑒−𝜔0Δ𝑧 = 𝑂 Δ𝑧 ഺ𝒄0, lim
𝜔0→0

ሸ𝑬 Δ𝑧 = Δ𝑧 ⋅ ഺ𝜺0

S. Gumhold, Scientific Visualization, Volume 30

𝑂 Δ𝑧

Computer Graphics
and VisualizationVR Integral – Discretization

 compute contribution of a layer from 𝑎 to 𝑏 from

ሸ𝑬 𝑎, 𝑏 = 𝑎׬
𝑏
𝑇 𝑎, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 , 𝑇 𝑎, 𝑏 = 𝑒− 𝑎׬

𝑏
𝜔 ෤𝑧 𝑑 ෤𝑧

 Constant case: ഺ𝜺 𝑧 ≡ ഺ𝜺0 and 𝜔 𝑧 ≡ 𝜔0

ሸ𝑬 𝑎, 𝑏 = ഺ𝜺0න
𝑎

𝑏

𝑒−𝜔0(𝑧−𝑎) 𝑑𝑧 , 𝑇 𝑎, 𝑏 = 𝑒−𝜔0(𝑏−𝑎)

 with Δ𝑧 = 𝑏 − 𝑎 we get

ሸ𝑬(Δ𝑧) =
ഺ𝜺0
𝜔0

1 − 𝑒−𝜔0Δ𝑧 , 𝑇 Δ𝑧 = 𝑒−𝜔0Δ𝑧

 validation for 𝜀0 ≡ 1 and 𝜔0 ≡ 1

 2 layers with Δ𝑧 ≡ 1: 𝐸𝑖 = 1 −
1

𝑒
, 𝑇𝑖 =

1

𝑒

 𝐼1,2 = 𝐸1 + 𝑇1𝐸2 = 1 +
1

𝑒
1 −

1

𝑒
= 1 −

1

𝑒2

 4 layers with Δ𝑧 =
1

2
: 𝐸𝑖 = 1 −

1

𝑒
, 𝑇𝑖 =

1

𝑒

 𝐼1,2 = 1 +
1

𝑒
1 −

1

𝑒
= 1 −

1

𝑒
𝐼1,4 = 1 −

1

𝑒2

S. Gumhold, Scientific Visualization, Volume 31

𝛥𝑧1

𝛥𝑧2

𝛥𝑧3



Computer Graphics
and VisualizationConstant Case –Intensity Range

 If we choose 𝜀0 proportional to 𝜔0 (left plot) then the emitted
intensity 𝐸(Δ𝑧) converges for Δ𝑧 → ∞ always to 1.

 If 𝜀0 is greater than 𝜔0 (right plot) then 𝐸(Δ𝑧) becomes larger than 1

 to have pixel values in [0,1] one sets: 𝜀 = 𝜔 ⋅ 𝑐 with 𝑐 ∈ [0,1]

 this makes constant case numerically stable: ሸ𝑬(Δ𝑧) = ഺ𝒄0 1 − 𝑒−𝜔0Δ𝑧

S. Gumhold, Scientific Visualization, Volume 32

𝜀0 = 𝜔0 = 1

𝜀0 = 𝜔0 = 1/2

𝜀0 = 𝜔0 = 1/4

𝜀0 = 𝜔0 = 1/8

𝜔0 = 1
𝜔0 = 1/2
𝜔0 = 1/4
𝜔0 = 1/8𝜀0 = 1

𝐸(Δ𝑧) =
𝜀0
𝜔0

1 − 𝑒−𝜔0Δ𝑧

Δ𝑧 Δ𝑧

Computer Graphics
and VisualizationIs VolRen scale invariant? – no

S. Gumhold, Scientific Visualization, Volume 33

extent:
400x300x350

extent:
40x30x35

extent:
4x3x3.5

extent:
0.4x0.3x0.35

Computer Graphics
and VisualizationVR-Integral – Scale Adaptation

S. Gumhold, Scientific Visualization, Volume 34

𝜔0 = 1

𝜔0 = 1/2
𝜔0 = 1/4

𝜔0 = 1/8

ሸ𝑬(Δ𝑧) = ሸ෤𝜺0 1 − 𝑒−𝜔0Δ𝑧

 If we increase/decrease size of volume,
volume rendering integral yields more
opaque/transparent results

 To scale the volume, one can simply multiply
the differential path length with a factor 𝑠𝑉 in
order to integrate over scaled length:

ሸ𝑰0,∞ = න
0

𝑧max

𝑇 0, 𝑧 ഺ𝜺 𝑧 ⋅ 𝑠𝑉𝑑𝑧 + 𝑇 0,∞ ሸ𝑰∞, 𝑇 𝑎, 𝑏 = 𝑒− 𝑎׬
𝑏
𝜔 ෤𝑧 ⋅𝑠𝑉𝑑 ෤𝑧

 This results in a joint scaling of ഺ𝜺(𝑧) and 𝜔 𝑧 by 𝑠𝑉

 The optimal scale depends on the value distribution inside the
Volume. From total / per value 𝑆 voxel counts #/#𝑆 and transfer

function 𝜔(𝑆) one can estimate the average value ഥ𝜔 =
1

#
σ𝑆#𝑆𝜔(𝑆)

 For expected opacity of ෠𝑂 and bounding box diagonal 𝑑, one can
estimate 𝑠𝑉 through constant case approximation:

෡O = 1 − 𝑒−𝑠𝑉ഥ𝜔𝑑 => ǁ𝑠𝑉 ෠𝑂, ഥ𝜔 =
log 1− ෠𝑂

ഥ𝜔𝑑
. E.g. ǁ𝑠𝑉 95%,

1

8
≈ 24/𝑑

Computer Graphics
and Visualization

TRANSFER FUNCTIONS PART 1
Direct Volume Rendering

S. Gumhold, Scientific Visualization, Volume 35

Computer Graphics
and VisualizationTransfer Function Design

 Let 𝑆 ∈ [𝑆min, 𝑆max] be the scalar attribute of the volume dataset

 In the simplest approach a transfer function maps the scalar
values 𝑆 to an chromaticity ഺ𝒄 𝑆 and opacity 𝑂(𝑆)

 Based on volume extent opacity is converted to absorption
strength 𝜔(𝑆) per traveled length and emission strength ഺ𝜺 𝑆 per
traveled length is computed according to ഺ𝜺 𝑆 = 𝜔 𝑆 ⋅ ഺ𝒄 𝑆 .

 typical editors are similar to curve editors and use control points

S. Gumhold, Scientific Visualization, Volume 36

Paraview-Editor (https://blog.kitware.com/using-the-color-map-editor-in-paraview-the-basics)

https://blog.kitware.com/using-the-color-map-editor-in-paraview-the-basics

Computer Graphics
and VisualizationHounsfield Scale

 Scalar values of volumetric CT images measure the
linear attenuation coefficient 𝜇 of x-ray radiation

 Values can be scaled according to Hounsfield units:

 number format: 16Bit signed integer with 12 significant bits

 encoding range: [−1024, 3071]

 scale is linear and based on 𝜇 values for air and water:

𝑣HU(𝜇) = 1000 ×
𝜇 − 𝜇water
𝜇water − 𝜇air

 Some values / value ranges:

 air: -1000, water: 0

 lung: -700 … -600, fatt: -120 … -90, blood: +13 … +50,

 soft tissue: +100 … +300, bone: +1800 … +1900

 due to noise and overlapping ranges, different soft tissue
organs cannot be segmented based only on scalar values

 Bit depth reduction to 8bit unsigned ints: 𝑣8bit = 256
𝑣HU+1024

4096
S. Gumhold, Scientific Visualization, Volume 37

Sir Godfrey Newbold Hounsfield

https://en.wikipedia.org/wiki/Godfrey_Hounsfield

Computer Graphics
and VisualizationTransfer Function Design Galleries

 Design Galleries provide a simplified user interface:

 Parameterize transfer function with about 20-30 curve parameters

 sample parameter space randomly and generate volume rendering for
each sample

 choose Design Gallery as a subset of samples so that their volume
rendering differ maximally

 show the gallery to the user and ask for one or more samples

 iterate with local sampling of the parameter space

S. Gumhold, Scientific Visualization, Volume 38

Marks, Joe, et al. "Design
galleries: A general approach to

setting parameters for
computer graphics and

animation." Proceedings of the
24th annual conference on

Computer graphics and
interactive techniques. ACM

Press/Addison-Wesley
Publishing Co., 1997.

acm-link

https://dl.acm.org/citation.cfm?id=258887

Computer Graphics
and VisualizationTransfer Function – Pre- vs Post-Interpolation

 One can apply the transfer function to the voxel values
resulting in a rgba volume. This is called pre-interpola-
tion as the rgba values are interpolated afterwards

 In post-interpolation one first interpolates the scalar
values and then applies the transfer function

 For high frequency transfer functions pre-interpolation
yields significant artefacts  use post-interpolation

S. Gumhold, Scientific Visualization, Volume 39

pre-interpolation post-interpolation

©Markus Hadwiger

Computer Graphics
and VisualizationTransfer Function – Pre-integration

 During raycasting emission intensity and absorption

probability are a function of depth 𝑧: 𝜺 𝑆 𝑧 , 𝜔(𝑆 𝑧)

 Even for a linear scalar function

𝑆 𝑧 =
𝑧1 − 𝑧

Δ𝑧
𝑆0 +

𝑧 − 𝑧0
Δ𝑧

𝑆1, Δ𝑧 = 𝑧1 − 𝑧0

both functions can vary significantly & non-linearly in 𝑧

 But for linear functions the volume rendering integral
only depends on the three parameters 𝑆0, 𝑆1 and Δ𝑧.

 To show this we change the integration variable from 𝑧

to 𝑆: 𝑑𝑆 𝑧 =
Δ𝑆

Δ𝑧
𝑑𝑧, Δ𝑆 = 𝑆1 − 𝑆0:

ሸ𝑬 𝑆0, 𝑆1, Δ𝑧 = න
𝑧0

𝑧1

𝑇 𝑧0, 𝑧 ഺ𝜺 𝑧 𝑑𝑧 =
Δ𝑧

Δ𝑆
න
𝑆0

𝑆1

𝑇 𝑆0, 𝑆, Δ𝑧 ഺ𝜺 𝑆 𝑑𝑆

𝑇 𝑆0, 𝑆1, Δ𝑧 = 𝑒
− 𝑧0׬

𝑧1 𝜔 ෤𝑧 𝑑෤𝑧
= 𝑒

−
Δ𝑧
Δ𝑆 𝑆0׬

𝑆1 𝜔 ሚ𝑆 𝑑 ሚ𝑆

S. Gumhold, Scientific Visualization, Volume 40

Computer Graphics
and VisualizationTransfer Function – Pre-integration

 Transfer function is typically defined over discretization

of 𝑆 into 𝑛 values: ∀𝑖 = 0…𝑛 − 1: 𝑆𝑖 = 𝑖 ⋅ 𝛿𝑆, 𝛿𝑆 =
1

𝑛−1

 For the transparency integral one can work with a 1D

integral table of the antiderivative Ω 𝑆𝑖 = 0׬
𝑆𝑖𝜔 ሚ𝑆 𝑑 ሚ𝑆:

𝑇𝑖𝑗 = 𝑇 𝑆𝑖 , 𝑆𝑗 , Δ𝑧 = 𝑒
−

Δ𝑧
𝑆𝑗−𝑆𝑖

׬
𝑆𝑖

𝑆𝑗
𝜔 ሚ𝑆 𝑑 ሚ𝑆

= 𝑒
−

Δ𝑧
𝑆𝑗−𝑆𝑖

⋅ Ω 𝑆𝑗 −Ω 𝑆𝑖

 Special case for 𝑆𝑖 = 𝑆𝑗: 𝑇𝑖𝑖 = 𝑒−𝜔 𝑆𝑖 Δ𝑧

 The table Ω𝑖 = Ω(𝑆𝑖) can be computed in 𝑂(𝑛):

Ω0 = 0,Ω𝑖+1 = Ω𝑖 +න
𝑆𝑖

𝑆𝑖+1

𝜔 ሚ𝑆 𝑑 ሚ𝑆 ≈ Ω𝑖 + 𝜔
𝑆𝑖 + 𝑆𝑖+1

2
𝛿𝑆

 Summary: 𝑇𝑖𝑗 Δ𝑧 = ቐ
exp −𝜔 𝑆𝑖 ⋅ Δ𝑧 𝑖 = 𝑗

exp −
Δ𝑧

𝑗−𝑖 ⋅𝛿𝑆
Ω𝑗 − Ω𝑖 𝑖 ≠ 𝑗

S. Gumhold, Scientific Visualization, Volume 41

Computer Graphics
and VisualizationTransfer Function – Pre-integration

 For the emission integral the trick to integrate
independent of Δ𝑧 does not work.

 Depending on the rendering algorithm one discretizes
Δ𝑧 into 𝑚 values: Δ𝑧𝑘=0…𝑚−1

S. Gumhold, Scientific Visualization, Volume 42

Ray Casting ProjektionTexture-Slicing

Δ𝑍

Δ𝑧𝑘 = 1 +
𝑘

𝑚 − 1
Δ𝑍 Δ𝑧𝑘 = 2𝑘 ⋅ Δ𝑧min

Δ𝑧𝑘 =
𝑘

𝑚 − 1
⋅ Δ𝑧max

𝑚 ≈ 5 𝑚 ≈ 5 𝑚 ≈ 20

Computer Graphics
and VisualizationTransfer Function – Pre-integration

 For emission a 3D pre-integration lookup is necessary:

ሸ𝑬𝑖𝑗𝑘 = ሸ𝑬 𝑆𝑖 , 𝑆𝑗 , Δ𝑧𝑘 =
Δ𝑧𝑘

𝑆𝑗 − 𝑆𝑖
න
𝑆𝑖

𝑆𝑗

𝑇 𝑆𝑖 , 𝑆, Δ𝑧𝑘 ഺ𝜺 𝑆 𝑑𝑆

 Special case for 𝑖 = 𝑗: ሸ𝑬𝑖𝑖𝑘 = ഺ𝒄 𝑆𝑖 1 − 𝑒−𝜔 𝑆𝑖 Δ𝑧

 2D antiderivative ሸ𝜩𝑖𝑘 = 0׬
𝑆𝑖 𝑇 0, ሚ𝑆, Δ𝑧𝑘 ഺ𝜺 ሚ𝑆 𝑑 ሚ𝑆 table:

ሸ𝑬𝑖𝑗𝑘 =
Δ𝑧𝑘

𝑆𝑗 − 𝑆𝑖

ሸ𝜩𝑗𝑘 − ሸ𝜩𝑖𝑘
𝑇 0, 𝑆𝑖 , Δ𝑧𝑘

,

where we define 𝑇 0,0, Δ𝑧 := 1.

 Incremental computation of ሸ𝜩𝑖𝑘:

ሸ𝜩0𝑘 = ሸ𝟎, ሸ𝜩 𝑖+1 𝑘 = ሸ𝜩𝑖𝑘 +න
𝑆𝑖

𝑆𝑖+1

𝑇 0, ሚ𝑆, Δ𝑧𝑘 ഺ𝜺 ሚ𝑆 𝑑 ሚ𝑆

≈ ሸ𝜩𝑖𝑘 + 𝑇 0, 𝑆
𝑖+

1

2

, Δ𝑧𝑘 ഺ𝜺 𝑆
𝑖+

1

2

𝛿𝑆

S. Gumhold, Scientific Visualization, Volume 43

Computer Graphics
and VisualizationTransfer Function – Pre-integration

 Precomputation runtime
and space consumption
for 𝑛 scalar values 𝑆𝑖 and
𝑚 step widths Δ𝑧𝑘:

 Ω𝑖 … 𝑂(𝑛)

 ሸ𝜩𝑖𝑘 … 𝑂 𝑚 ⋅ 𝑛

 Per table entry runtime:

 𝑇𝑖𝑗(Δ𝑧) … 𝑂(1)

 ሸ𝑬𝑖𝑗𝑘 =
Δ𝑧𝑘

𝑆𝑗−𝑆𝑖

ሸ𝜩𝑗𝑘−ሸ𝜩𝑖𝑘

𝑇 0,𝑆𝑖,Δ𝑧𝑘
… 𝑂(1)

 Overall runtime: 𝑂(𝑚 ⋅ 𝑛2)

S. Gumhold, Scientific Visualization, Volume 44

no pre-integration with pre-integration

Computer Graphics
and Visualization

S. Gumhold, Scientific Visualization, Volume 45

no pre-integration with pre-integration

Computer Graphics
and VisualizationTransfer Function – Pre-integration

 Pre-integration provides fast access to the volume
rendering integral for the case where 𝑆 varies linearly

 In the simplest implementation one works with a 3D
lookup function stored in a 3D RGBA texture, but
changes in the transfer function demand for long re-
computation times of the 3D lookup table

 Pre-integration only works for 1D transfer functions

S. Gumhold, Scientific Visualization, Volume 46

