## Scientific

Computer Graphics and Visualization

## Visualization

## Volume Visualization Mapping

## Content

- Data Preparation
- Reconstruction
- Tetrahedral meshes
- Filtering
- Indirect Volume Visualization
- Slicing
- Contouring
- Direct Volume Visualization
- Compositing
- Volume Rendering Integral
- Transfer Functions \& Pre-Integration
- Rendering Algorithms
- Continuous Histograms \& Scatter Plots
- Multi-Dimensional Transfer Functions


## Indirect Volume Visualization SLICING

## Sliced Image Ackquisition

- Voxel datasets in TIFF or DICOM format are organized in image stacks of slices orthogonal to $z$
- In memory one linearizes the three indices $i, j, k$ of the $x, y, z$ direction to single index $I$ :

$$
I=i+j \cdot n_{x}+k \cdot n_{x} \cdot n_{y}
$$

- The slice distance in physical space is typically different from the pixel distance inside a slice
- physicians often work directly on 2D visualization of the slices


Slice 20


30


40


50


60

CT data set

## Orthogonal Slicing

- for slicing along planes orthogonal to the main axes $x, y, z$ the voxel values $S_{i j k}$ are permuted
- The pixels $X_{\hat{\imath} \hat{\jmath}}$ of slice $i=i_{0}$ with $\hat{\imath}=0 \ldots n_{y}-1$ and $\hat{\jmath}=0 \ldots n_{z}-1$ are for example computed from:

$$
\begin{aligned}
X_{\hat{\imath} \hat{\jmath}} & =X\left[\hat{I}=\hat{\imath}+n_{y} \cdot \hat{\jmath}\right] \\
& =S\left[I=i_{0}+\hat{\imath} \cdot n_{x}+\hat{\jmath} \cdot n_{x} \cdot n_{y}\right]=S_{i_{0} \hat{\imath}}
\end{aligned}
$$

- Often three orthogonal slices around reference point are shown together



## Oblique Slicing

- An oblique Slicing is defined by a plane
- A plane can be defined by three points $\underline{p}$, $\underline{q}, \underline{r}$ or by a plane normal $\widehat{n}$ and the signed orthogonal distance $d$ of the plane from the origin $\underline{0}$ of the coordinate system ( $d>$ 0 if $\underline{0}$ is on opposite side of plane as $\widehat{n}$ )
- For a given point $\underline{x}$ we can compute its signed distance from the plane according to

$$
\operatorname{dist}(\underline{x})=\langle\widehat{n}, \underline{x}\rangle-d
$$

- $\operatorname{dist}(\underline{x})$ is 0 if $\underline{x}$ is on plane, $<0 />0$ if it is on opposite / on same side as $\widehat{n}$
- We can project orthogonally onto the plane:

$$
\operatorname{Proj}(\underline{x})=\underline{x}-\operatorname{dist}(\underline{x}) \cdot \widehat{n}
$$

- To slice a voxel grid, interpolation (trilinear or cubic) is needed

2D version of slicing


## Rendering Oblique Slices

- Rendering of oblique slices through regular voxel grids can be implemented with 3D texture mapping, along two approaches
- CPU approach:
- compute intersection polygon of plane with volume box:
- use distance function to classify box corners in inside $\bigcirc$ and outside
- construct edge point on each edge connecting differently classified corners
- arrange edge points along face adjacencies
- render resulting polygon as triangle fan with texture coordinates and 3D texturing
- GPU approach: tessellate infinite plane and use the clipping functionality of the GPU, with 6 clipping planes set to the sides of the volume box



## Cutting

Planes can be used for cutting to

- cut away parts of the volume
- to split the volume into several parts and transform the parts individually
- to switch rendering styles, e.g. iso-surface on one side and direct volume rendering on the other side



## Indirect Volume Visualization CONTOURING

## Contouring - Motivation

- In volume contouring we want to extract surfaces that separate different materials
- We can define different entities:
- iso-surfaces from an iso-value $S_{0}$ :

$$
\forall(x, y, z): S(x, y, z)=S_{0}
$$



Image: multiple iso-surfaces iso-values $S_{0}$ and $S_{1}$ :

$$
\forall(x, y, z): S_{0} \leq S(x, y, z) \leq S_{1}
$$

- volume segments on labeled data composed of all grid faces where one adjacent voxel belongs to the segment and the other not



## Contouring - Method Comparison



## Contouring - Method Overview

- Cuberille
- Classify all voxels in inside $\ominus$ / outside $\oplus$
- fill dual cell of interior voxels
- For all edges connecting interior with exterior, add dual face to the Cuberille-surface
- Dual Contouring (see paper)

- move dual vertices onto isosurface
- Cuberville surface is a pure quadrilateral mesh
- Marching Cubes
- Marching Tetrahedra


## Contouring - Marching Cubes

- William E. Lorensen, Harvey E. Cline, Marching Cubes: A high resolution 3d surface construction algorithm, Siggraph'87, (pdf) ... 20346 Zitationen ${ }^{10.06 .24}$
- Proposed algorithm defines regular grid over domain and marches cubes through all grid cells
- Outputs 0 ... 4 triangles per cube
- Fast implementation by using lookup tables
- Algorithm:
- iterate all voxel cells ...


1. classify 8 knots in inside / outside \& create 8 -bit index
2. Lookup cut edges and compute edge points with normals of interpolated voxel gradients
3. Lookup triangulation

## Contouring - MC - Index Computations

- Define numbering $v_{1}$ to $v_{8}$ of the voxels in a cell
- One bit of classification per voxel
- 8-bit index from concatenation of the bits gives a total of 256 cases

- ...outside: 0

- ...inside: 1



## Contouring - MC - Lookup Edges

- Define numbering $e_{1}$ to $e_{12}$ of the cell edges
- For each case, store a list of edges that intersect iso-surface
- Compute locations of edge points by assuming linear interpolation along edge or a bisection technique, and interpolated gradients


$$
\begin{array}{|l|l|l|l|l|l|}
\hline e_{1} & e_{2} & e_{7} & e_{8} & e_{9} & e_{12} \\
\hline
\end{array}
$$

## Contouring - MC - Edge Point

- If an edge connects the inside with the outside, there must be an iso-surface crossing on the edge.
- If you assume a linear interpolation along the edge (correct for trilinear interpolation), you can estimate the position of the iso-surface crossing.
- If the linear approximation is not accurate enough, the edge can be divided and iterated at the estimated iso-surface crossing until the desired accuracy is reached.



## Contouring - MC - Lookup Triangles

- Table-Index $=01110010=114$
- Entry:
- 6 edges: $e_{1}, e_{2}, e_{7}, e_{8}, e_{9}, e_{12}$
- 4 triangles:

$$
\begin{aligned}
& \left(e_{2}, e_{1}, e_{9}\right),\left(e_{2}, e_{9}, e_{12}\right) \\
& \left(e_{12}, e_{9}, e_{8}\right),\left(e_{12}, e_{8}, e_{7}\right)
\end{aligned}
$$

- lookup table stores cut-edgeand triangle-lists for all 256 cases without exploiting symmetries (otherwise only 15 cases)
- Fixed resolution of ambiguities (to account for trilinear interpolation asymptotic decider per face necessary: per face connect in $x-, y$ - or $z$-sort order)


## Contouring - Marching Tetrahedra

- For tetrahedral meshes, only 2 cases exist such that no lookup table is necessary
- One can convert any voxel grid into a tetrahedral mesh but
- one can split each cube in 5 or 6 tetrahedral
- tetrahedralizations of adjacent cells need to be compatible on incident faces

cube decomposition into 6 tetrahedra



## Direct Volume Rendering COMPOSITING

## Compositing

- In direct volume visualization we want to show at each pixel a combination of all values $S_{t}$ along a ray from the eye point through the pixel
- For this we need to sample the locations along the ray
- The techniques to aggregate the samples' scalar values into a final pixel color are called compositing techniques
- Compositing needs to heavily compress the sampled data



## Compositing Strategies



## Compositing - Blending

„back to front"-order:


## Absorption

- Each layer has a transparency value $T_{i} \in[0,1]$ that tells us the percentage of light that passes the layer
- Opacity $O_{i} \in[0,1]$ is percentage of light absorpted in layer: $O_{i}=1-T_{i}$


## Emission

- Emission $\dddot{\boldsymbol{E}}_{i}$ is the amount of light emitted by the layer as color value (RGB)
- Often emission is set proportional to opacity and chromaticity: $\dddot{E}_{i}=O_{i} \cdot \dddot{c}_{i}$


## Blending or Over-Operator

- Order „back $(\mathrm{z}=\infty)$ to front": $\dddot{\boldsymbol{I}}_{i, \infty}=\left(1-T_{i}\right) \ddot{\boldsymbol{c}}_{i}+T_{i} \ddot{I}_{i+1, \infty}$
- Order „front $(z=0)$ to back": $\dddot{I}_{0, i}=\dddot{I}_{0, i-1}+T_{0, i-1} \dddot{E}_{i}$, accumulate transparency: $T_{0, i}=T_{i} \cdot T_{0, i-1}$


# Direct Volume Rendering THE VOLUME RENDERING INTEGRAL 

## Iterated Blending

## symbols used for discrete blending-operator

- $T_{i} \in[0,1]$... transparency of layer $i$
- $O_{i} \in[0,1] \ldots$ opacity $\left(O_{i}=1-T_{i}\right)$
- $\dddot{\boldsymbol{E}}_{i}=O_{i} \cdot \dddot{\boldsymbol{c}}_{i} \ldots$ emission (RGB) of layer $i$
- $i \in\{1, n\} \cup\{\infty\}$... layer index ( $\infty$... background)

- $\dddot{I}_{i, j} \ldots$ intensity in front of layer $i$, accumulated over layers $i \ldots . . j$
- $T_{i, j}$... transparency through layers $i \ldots . . j$


## blending-operator

- „back to front":

$$
\dddot{I}_{n+1, \infty}=\dddot{I}_{\infty} \rightarrow \forall i=n \ldots 1: \dddot{I}_{i, \infty}=\left(1-T_{i}\right) \dddot{\boldsymbol{c}}_{i}+T_{i} \dddot{I}_{i+1, \infty}
$$

- „front to back":

$$
\begin{aligned}
& \dddot{I}_{1,0}=\dddot{\mathbf{0}} \rightarrow \forall i=1 \ldots n: \dddot{I}_{1, i}=\dddot{\boldsymbol{I}}_{1, i-1}+T_{1, i-1} \dddot{\boldsymbol{E}}_{i}, \\
& T_{1,0}=1 \rightarrow \forall i=1 \ldots n: T_{1, i}=T_{1, i} \cdot T_{i} \\
& \dddot{\boldsymbol{I}}_{1, \infty}=\dddot{\boldsymbol{I}}_{1, n}+T_{1, n} \dddot{I}_{\infty}
\end{aligned}
$$

## Iterated Blending - Layer Width Variation

- The result of iterated blending should not depend on subdivision into layers.
- How to choose $T_{i}$ and $\dddot{E}_{i}$ in dependence of layer depth $\Delta z_{i}$ ?
- Ansatz: $O_{i}=o_{i} \cdot \Delta z_{i}, \dddot{\boldsymbol{E}}_{i}=\dddot{\boldsymbol{\varepsilon}}_{i} \cdot \Delta z_{i}$
- Validation:
- 2 layers with $o_{i}=\frac{1}{2}, \varepsilon_{i}=1, \Delta z_{i}=1$ :

$$
T_{i}=1-O_{i}=\frac{1}{2^{\prime}} E_{i}=1 \rightarrow I_{1,2}=E_{1}+T_{1} E_{2}=1 \frac{1}{2}
$$

- 4 layers with $o_{i}=\frac{1}{2}, \varepsilon_{i}=1, \Delta z_{i}=\frac{1}{2}$ :

$$
\begin{aligned}
& T_{i}=1-O_{i}=\frac{3}{4}, E_{i}=\frac{1}{2} \\
& \rightarrow I_{1,4}=\frac{1}{2}+\frac{3}{4}\left(\frac{1}{2}+\frac{3}{4}\left(\frac{1}{2}+\frac{3}{4} \frac{1}{2}\right)\right) \approx 1.367
\end{aligned}
$$

- This does not work as the result should not depend on the chosen sampling density



## Iterated Blending - As a sum

- Blending: $I_{0, \infty}=E_{1}+T_{1}\left(E_{2}+T_{2}\left(E_{3}+T_{3}\left(\ldots+T_{n-1} E_{n}\right)\right)\right)+T_{1} \cdot \cdots \cdot T_{n} I_{\infty}$
- expanding:

$$
I_{0, \infty}=E_{1}+T_{1} E_{2}+T_{1} T_{2} E_{3}+T_{1} T_{2} T_{3} E_{4}+\cdots+T_{1} \cdots T_{n} I_{\infty}
$$

- This can be written as a sum of products:

$$
I_{0, \infty}=\sum_{i=1}^{n}\left(\prod_{j=1}^{i-1} T_{j}\right) E_{i}+\left(\prod_{j=1}^{n} T_{j}\right) I_{\infty}
$$

- The product can be converted to a sum when transformed to log space:

$$
T_{1, n}=\exp \left(\log \prod_{j=1}^{n} T_{j}\right)=\exp \left(\sum_{j=1}^{n} \log T_{j}\right)
$$

- If $T_{j} \in[0,1]$ then $\log T_{j} \in[-\infty, 0] \rightarrow$ define $\Omega_{j}=-\log T_{j} \geq 0$
- Iterated blending as a sum:

$$
I_{1, \infty}=\sum_{i=1}^{n} T_{1, i-1}^{n} E_{i}+T_{1, n} I_{\infty}, \quad T_{1, k}=e x p \quad \Omega_{j}
$$

## Volume-Rendering Integral

$$
I_{1, \infty}=\sum_{i=1}^{n} T_{1, i-1} E_{i}+T_{1, n} I_{\infty}, \quad T_{1, k}=\exp \left(-\sum_{j=1}^{k} \Omega_{j}\right)
$$

- A continuous version with integrals instead of sums can be derived with the following replacements with maximum $z$ value $z_{\text {max }}$ :

$$
\begin{aligned}
& i \rightarrow z \in\left[z_{\min }, z_{\max }\right] \\
& E_{i} \rightarrow \varepsilon(z)=\frac{\partial E}{\partial z}(z) \\
& \Omega_{i} \rightarrow \omega(z)=\frac{\partial \Omega}{\partial z}(z)
\end{aligned}
$$

- The viewing ray is parameterized by the depth $z=z_{\min } \ldots z_{\text {max }}$ and we arrive at the Volume-Rendering Integral:

$$
\begin{aligned}
& \dddot{I}_{0, \infty}=\int_{z_{\min }}^{z_{\max }} T\left(z_{\min }, z\right) \dddot{\varepsilon}(z) d z+T\left(z_{\min }, z_{\max }\right) \dddot{I}_{\infty} \\
& T(a, b)=e^{-\int_{a}^{b} \omega(\tilde{z}) d \tilde{z}}
\end{aligned}
$$

## Volume Density Optical Model

## Density or Particle Interpretation

- First idea: volume is filled with particles that absorb and emit light. Emission and Absorption are proportional to particle density
- Peter Williams and\& Nelson Max proposed 1992 a continous model where emission and absorption are derived from optical density $\omega$ and chromaticity $\dddot{c}$
- $\omega(z)$... is called optical density and describes how much light is absorbed per path length $d z$. Typically, assumed to be a wavelength independent scalar.
- $\ddot{\varepsilon}(z)=\omega(z) \ddot{c}(z)$... is wavelength dependent emission per path length (RGB) and proportional to optical density and chromaticity


## Emission



- Figures show difference between defining emission independent of optical density (left) and with multiplying $\omega$, i.e. $\dddot{\boldsymbol{\varepsilon}}=\omega \cdot \dddot{\boldsymbol{c}}(S)$ (right)
- Notice that emission becomes too strong on left side


## VR Integral - Constant Case

## Volume-Rendering Integral:

- $\omega(z)$... absorption strength per path length
- $\dddot{\boldsymbol{\varepsilon}}(z)=\omega(z) \dddot{\boldsymbol{c}}(z)$... emission per path length (RGB)
- $\Omega(a, b)=\int_{a}^{b} \omega(\tilde{z}) d \tilde{z} \ldots$ absorption strength per layer from $a$ to $b$
- $T(a, b)=\exp (-\Omega(a, b))$... transparency per layer
- $O(a, b)=1-\exp (-\Omega(a, b))$... opacity per layer
- $\dddot{E}(a, b)=\int_{a}^{b} T(a, z) \dddot{\varepsilon}(z) d z \ldots$ emission per layer
- $\dddot{I}_{0, \infty}=\int_{0}^{\infty} T(0, z) \ddot{\varepsilon}(z) d z+T(0, \infty) \dddot{I}_{\infty} \ldots$ intensity along viewing ray

Constant Case with layer depth $\Delta z$ (see exercise)

$$
\begin{aligned}
& T(\Delta z)=e^{-\omega_{0} \Delta z} O(\Delta z) \\
& \dddot{\boldsymbol{E}}(\Delta z)=\frac{\dddot{\boldsymbol{\varepsilon}}_{0}}{\omega_{0}} \overbrace{\left(1-e^{-\omega_{0} \Delta z}\right)}^{O(\Delta z) \dddot{\boldsymbol{c}}_{0}}, \lim _{\omega_{0} \rightarrow 0} \dddot{\boldsymbol{E}}(\Delta z)=\Delta z \cdot \dddot{\boldsymbol{\varepsilon}}_{0}
\end{aligned}
$$

## VR Integral - Discretization

- compute contribution of a layer from $a$ to $b$ from $\dddot{\boldsymbol{E}}(a, b)=\int_{a}^{b} T(a, z) \dddot{\boldsymbol{\varepsilon}}(z) d z, T(a, b)=e^{-\int_{a}^{b} \omega(\tilde{z}) d \tilde{z}}$
- Constant case: $\dddot{\varepsilon}(z) \equiv \dddot{\varepsilon}_{0}$ and $\omega(z) \equiv \omega_{0}$

$$
\dddot{\boldsymbol{E}}(a, b)=\dddot{\boldsymbol{\varepsilon}}_{0} \int_{a}^{b} e^{-\omega_{0}(z-a)} d z, T(a, b)=e^{-\omega_{0}(b-a)}
$$



- with $\Delta z=b-a$ we get

$$
\dddot{\mathscr{E}}(\Delta z)=\frac{\dddot{\varepsilon}_{0}}{\omega_{0}}\left(1-e^{-\omega_{0} \Delta z}\right), \quad T(\Delta z)=e^{-\omega_{0} \Delta z}
$$

- validation for $\varepsilon_{0} \equiv 1$ and $\omega_{0} \equiv 1$

- 2 layers with $\Delta z \equiv 1: E_{i}=1-\frac{1}{e}, T_{i}=\frac{1}{e}$
$\rightarrow I_{1,2}=E_{1}+T_{1} E_{2}=\left(1+\frac{1}{e}\right)\left(1-\frac{1}{e}\right)=1-\frac{1}{e^{2}}$
- 4 layers with $\Delta z=\frac{1}{2}: E_{i}=1-\frac{1}{\sqrt{e}}, T_{i}=\frac{1}{\sqrt{e}}$
$\rightarrow I_{1,2}=\left(1+\frac{1}{\sqrt{e}}\right)\left(1-\frac{1}{\sqrt{e}}\right)=1-\frac{1}{e} \rightarrow I_{1,4}=1-\frac{1}{e^{2}}$



## Constant Case -Intensity Range



- If we choose $\varepsilon_{0}$ proportional to $\omega_{0}$ (left plot) then the emitted intensity $E(\Delta z)$ converges for $\Delta z \rightarrow \infty$ always to 1 .
- If $\varepsilon_{0}$ is greater than $\omega_{0}$ (right plot) then $E(\Delta z)$ becomes larger than 1
- to have pixel values in $[0,1]$ one sets: $\varepsilon=\omega \cdot c$ with $c \in[0,1]$
- this makes constant case numerically stable: $\dddot{E}(\Delta z)=\dddot{\boldsymbol{c}}_{0}\left(1-e^{-\omega_{0} \Delta z}\right)$


## Is VolRen scale invariant? - no

extent: $400 \times 300 \times 350$
extent: $40 \times 30 \times 35$

extent: $4 \times 3 \times 3.5$
extent:
0.4x0.3x0.35

## VR-Integral - Scale Adaptation

- If we increase/decrease size of volume, volume rendering integral yields more opaque/transparent results
- To scale the volume, one can simply multiply the differential path length with a factor $s_{V}$ in order to integrate over scaled length:


$$
\dddot{I}_{0, \infty}=\int_{0}^{z_{\max }} T(0, z) \dddot{\varepsilon}(z) \cdot s_{V} d z+T(0, \infty) \dddot{I}_{\infty}, \quad T(a, b)=e^{-\int_{a}^{b} \omega(\tilde{z}) \cdot s_{V} d \tilde{z}}
$$

- This results in a joint scaling of $\ddot{\varepsilon}(z)$ and $\omega(z)$ by $s_{V}$
- The optimal scale depends on the value distribution inside the Volume. From total / per value $S$ voxel counts \#/\# $\#_{S}$ and transfer function $\omega(S)$ one can estimate the average value $\bar{\omega}=\frac{1}{\#} \sum_{S} \#_{S} \omega(S)$
- For expected opacity of $\hat{O}$ and bounding box diagonal $d$, one can estimate $s_{V}$ through constant case approximation:

$$
\widehat{\mathrm{O}}=1-e^{-s_{V} \bar{\omega} d}=>\tilde{s}_{V}(\widehat{O}, \bar{\omega})=\frac{\log (1-\hat{o})}{\bar{\omega} d} \text {. E.g. } \tilde{s}_{V}\left(95 \%, \frac{1}{8}\right) \approx 24 / d
$$

## Direct Volume Rendering TRANSFER FUNCTIONS PART 1

## Transfer Function Design

- Let $S \in\left[S_{\text {min }}, S_{\text {max }}\right]$ be the scalar attribute of the volume dataset
- In the simplest approach a transfer function maps the scalar values $S$ to an chromaticity $\dddot{\boldsymbol{c}}(S)$ and opacity $O(S)$
- Based on volume extent opacity is converted to absorption strength $\omega(S)$ per traveled length and emission strength $\ddot{\varepsilon}(S)$ per traveled length is computed according to $\dddot{\boldsymbol{\varepsilon}}(S)=\omega(S) \cdot \dddot{\boldsymbol{c}}(S)$.
- typical editors are similar to curve editors and use control points


Paraview-Editor (https://blog.kitware.com/using-the-color-map-editor-in-paraview-the-basics)

## Hounsfield Scale

- Scalar values of volumetric CT images measure the linear attenuation coefficient $\mu$ of $x$-ray radiation
- Values can be scaled according to Hounsfield units:
- number format: 16Bit signed integer with 12 significant bits
- encoding range: [-1024,3071]
- scale is linear and based on $\mu$ values for air and water:

$$
v_{\mathrm{HU}}(\mu)=1000 \times \frac{\mu-\mu_{\mathrm{water}}}{\mu_{\mathrm{water}}-\mu_{\mathrm{air}}}
$$

- Some values / value ranges:
- air: -1000, water: 0
- lung: -700 ... -600, fatt: -120 ... -90, blood: +13 ... +50,
- soft tissue: +100 ... +300, bone: +1800 ... +1900
- due to noise and overlapping ranges, different soft tissue organs cannot be segmented based only on scalar values
- Bit depth reduction to 8bit unsigned ints: $v_{8 b i t}=\left\lfloor 256 \frac{v_{\mathrm{HU}}+1024}{4096}\right\rfloor$


## Transfer Function Design Galleries

- Design Galleries provide a simplified user interface:
- Parameterize transfer function with about 20-30 curve parameters
- sample parameter space randomly and generate volume rendering for each sample
- choose Design Gallery as a subset of samples so that their volume rendering differ maximally
- show the gallery to the user and ask for one or more samples
- iterate with local sampling of the parameter space


Marks, Joe, et al. "Design galleries: A general approach to setting parameters for computer graphics and animation." Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997. acm-link

## Transfer Function - Pre- vs Post-Interpolation

- One can apply the transfer function to the voxel values resulting in a rgba volume. This is called pre-interpolation as the rgba values are interpolated afterwards
- In post-interpolation one first interpolates the scalar values and then applies the transfer function
- For high frequency transfer functions pre-interpolation yields significant artefacts $\rightarrow$ use post-interpolation

pre-interpolation


## Transfer Function - Pre-integration

- During raycasting emission intensity and absorption probability are a function of depth $z: \varepsilon(S(z)), \omega(S(z))$
- Even for a linear scalar function

$$
S(z)=\frac{z_{1}-z}{\Delta z} S_{0}+\frac{z-z_{0}}{\Delta z} S_{1}, \quad \Delta z=z_{1}-z_{0}
$$

both functions can vary significantly \& non-linearly in $z$

- But for linear functions the volume rendering integral only depends on the three parameters $S_{0}, S_{1}$ and $\Delta z$.
- To show this we change the integration variable from $z$

$$
\text { to } S: d S(z)=\frac{\Delta S}{\Delta z} d z, \Delta S=S_{1}-S_{0} \text { : }
$$

$$
\dddot{\boldsymbol{E}}\left(S_{0}, S_{1}, \Delta z\right)=\int_{z_{0}}^{z_{1}} T\left(z_{0}, z\right) \dddot{\varepsilon}(z) d z=\frac{\Delta z}{\Delta S} \int_{S_{0}}^{S_{1}} T\left(S_{0}, S, \Delta z\right) \ddot{\varepsilon}(S) d S
$$

$$
T\left(S_{0}, S_{1}, \Delta z\right)=e^{-\int_{z_{0}}^{z_{1}} \omega(\tilde{z}) d \tilde{z}}=e^{-\frac{\Delta z}{\Delta S} \int_{S_{0}}^{S_{1}} \omega(\tilde{S}) d \tilde{S}}
$$

## Transfer Function - Pre-integration

- Transfer function is typically defined over discretization of $S$ into $n$ values: $\forall i=0 \ldots n-1: S_{i}=i \cdot \delta S, \delta S=\frac{1}{n-1}$
- For the transparency integral one can work with a 1D integral table of the antiderivative $\Omega\left(S_{i}\right)=\int_{0}^{S_{i}} \omega(\tilde{S}) d \tilde{S}$ :

$$
T_{i j}=T\left(S_{i}, S_{j}, \Delta z\right)=e^{-\frac{\Delta z}{S_{j}-S_{i}} \int_{S_{i}}^{S_{j}} \omega(\tilde{S}) d \tilde{S}}=e^{-\frac{\Delta z}{S_{j}-S_{i}}\left(\Omega\left(S_{j}\right)-\Omega\left(S_{i}\right)\right)}
$$

- Special case for $S_{i}=S_{j}: T_{i i}=e^{-\omega\left(S_{i}\right) \Delta z}$
- The table $\Omega_{i}=\Omega\left(S_{i}\right)$ can be computed in $O(n)$ :
$\Omega_{0}=0, \Omega_{i+1}=\Omega_{i}+\int_{S_{i}}^{S_{i+1}} \omega(\tilde{S}) d \tilde{S} \approx \Omega_{i}+\omega\left(\frac{S_{i}+S_{i+1}}{2}\right) \delta S$
- Summary: $T_{i j}(\Delta z)=\left\{\begin{array}{cl}\exp \left[-\omega\left(S_{i}\right) \cdot \Delta z\right] & i=j \\ \exp \left[-\frac{\Delta z}{(j-i) \cdot \delta s}\left(\Omega_{j}-\Omega_{i}\right)\right] & i \neq j\end{array}\right.$


## Transfer Function - Pre-integration

- For the emission integral the trick to integrate independent of $\Delta z$ does not work.
- Depending on the rendering algorithm one discretizes $\Delta z$ into $m$ values: $\Delta z_{k=0 \ldots m-1}$


Texture-Slicing
$\Delta z_{k}=\left(1+\frac{k}{m-1}\right) \Delta Z$
$m \approx 5$


Ray Casting
$\Delta z_{k}=2^{k} \cdot \Delta z_{\text {min }}$
$m \approx 5$


Projektion
$\Delta z_{k}=\frac{k}{m-1} \cdot \Delta z_{\max }$
$m \approx 20$

## Transfer Function - Pre-integration

- For emission a 3D pre-integration lookup is necessary:

$$
\dddot{\boldsymbol{E}}_{i j k}=\dddot{\boldsymbol{E}}\left(S_{i}, S_{j}, \Delta z_{k}\right)=\frac{\Delta z_{k}}{S_{j}-S_{i}} \int_{S_{i}}^{S_{j}} T\left(S_{i}, S, \Delta z_{k}\right) \dddot{\boldsymbol{\varepsilon}}(S) d S
$$

- Special case for $i=j: \dddot{\boldsymbol{E}}_{i i k}=\dddot{\boldsymbol{c}}\left(S_{i}\right)\left(1-e^{-\omega\left(S_{i}\right) \Delta z}\right)$
- 2D antiderivative $\dddot{\Xi}_{i k}=\int_{0}^{S_{i}} T\left(0, \tilde{S}, \Delta z_{k}\right) \dddot{\varepsilon}(\tilde{S}) d \tilde{S}$ table:

$$
\dddot{E}_{i j k}=\frac{\Delta z_{k}}{S_{j}-S_{i}} \frac{\dddot{\Xi}_{j k}-\dddot{\Xi}_{i k}}{T\left(0, S_{i}, \Delta z_{k}\right)},
$$

where we define $T(0,0, \Delta z):=1$.

- Incremental computation of $\dddot{\Xi}_{i k}$ :

$$
\begin{aligned}
\dddot{\Xi}_{0 k} & =\dddot{0}, \dddot{\Xi}_{(i+1) k}=\dddot{\Xi}_{i k}+\int_{S_{i}}^{S_{i+1}} T\left(0, \tilde{S}, \Delta z_{k}\right) \ddot{\varepsilon}(\tilde{S}) d \tilde{S} \\
& \approx \dddot{\Xi}_{i k}+T\left(0, S_{i+\frac{1}{2}}, \Delta z_{k}\right) \ddot{\varepsilon}\left(S_{i+\frac{1}{2}}\right) \delta S
\end{aligned}
$$

## Transfer Function - Pre-integration

- Precomputation runtime and space consumption for $n$ scalar values $S_{i}$ and $m$ step widths $\Delta z_{k}$ :
- $\Omega_{i} \ldots O(n)$
- $\dddot{\Xi}_{i k} \ldots O(m \cdot n)$
- Per table entry runtime:
- $T_{i j}(\Delta z) \ldots O(1)$
- $\dddot{E}_{i j k}=\frac{\Delta z_{k}}{s_{j}-S_{i}} \frac{\dddot{\dddot{z}}_{j k}-\dddot{\dddot{z}}_{i k}}{T\left(0, S_{i}, \Delta z_{k}\right)} \ldots O(1)$
- Overall runtime: $O\left(m \cdot n^{2}\right)$


no pre-integration


## Transfer Function - Pre-integration

- Pre-integration provides fast access to the volume rendering integral for the case where $S$ varies linearly
- In the simplest implementation one works with a 3D lookup function stored in a 3D RGBA texture, but changes in the transfer function demand for long recomputation times of the 3D lookup table
- Pre-integration only works for 1D transfer functions

