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Morse Function

e Domain D: R™"€1123} or manifold (curve or surface)
e We start with a smooth function: f:D —» R
e A point p € D is called critical with respect to f, if

gradient V'f (B) = 0 vanishes. (All other points are called regular)

e A critical point is ordinary/degenerate, if Hessian He (2)

(n X n-dimensional matrix of 2"d derivatives of f) is non-
singular/singular.

e The function f is called Morse, iff all its critical points
are ordinary and have distinct function values.

e The index of a critical point is the number of negative

eigenvalues of H (p) and separates minima, maxima,
and saddles
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e 1D-Example where gradient is first and Hessian second
derivative of function

\./ /O\
Index-0 Index-1
minimum  maximum
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None Morse Functions

e left: f(x) = x3 with degenerate critical pointat x = 0
(f"(0) = 0) that is a saddle

e right: f(x) = x* with degenerate critical point at x = 0
(f""(0) = 0) that is @ minimum
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e For values v in the range of f,
the preimage or level set

@ =ipeolf(p) = v}
can consist of several
components that are

e isolated points

e simple closed contours

e contours with touching points

e sublevel set:
£ ={p el (p) <v}
e superlevel set:

£ @) ={p el (p) =7}
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e A sweep of the level sets through all v = —c0 - o0 is
called a filtration.

e During a filtration the topological changes are tracked
A A A

d A connected Topology _of
component is born subdomain
at a minimum changes

range = [c,d] f

I\ . I\
maximum
d merges
components
range = [c, d] f /
v ......................... RN - Ty Suasemmsser | me
cfh
1 :> \ H
a b a

domain = [a, b] domain = [a, b] domain = [a, b]
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e Def.: Given domain D and function f(D) — R, Reeb graph is
defined as quotion space of D with respect to equivalence
relation ~, with p~q iff f(p) = f(q@) = v and p, q are in same
connected component of f~1(v).

e To construct the Reeb Graph one
identifies contours of all points
that map to same value and splits
them into connected components.

e Contour components are tracked
over v and form edges of the Reeb
Graph

e Topology changes (birth, split, join,
death) in the contours arise at
critical points, which form nodes
of Reeb Graph

S. Gumbhold, Scientific Visualization, Topology
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e If the domain is simply connected (every closed loop
can be contracted to a point), the Reeb Graph is a tree,
which is called contour tree

e tree edges correspond to areas in domain

scalar density field over 2D domain contours colored and contour tree overlayed
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e contour Tree can be used to explore volume data set by
selection of tree edges

Topoview is a tool that can be used to interactively explore 2D and 3D scalar
functions using its Reeb graph

S. Gumbhold, Scientific Visualization, Topology 11
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e examines the joining/merging of the superlevel sets
during filtration and captures birth and join events of
contours

'!'-' L Lo -

Filteration and generated segmentation
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e examines the splitting of the sublevel sets during
filtration and captures events of
contours

\
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Filteration and generated segmentation
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Contour Tree

e Contour tree coincides in 1D with join tree

e In n>1 dimensions the contour tree can be computed

from split and join trees according to simple rules
- join

split

min

join e by min
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Definition of Topology-Based Vis

Heine, C., Leitte, H., Hlawitschka, M., luricich, F., De Floriani, L., Scheuermann, G., ... & Garth, C.
(2016, June). A survey of topology-based methods in visualization. In Computer Graphics Forum (Vol.
35, No. 3, pp. 643-667).

e Topology-based visualization uses topological concepts
to describe, reduce, or organize data in order to be
used in visualization.

e Typical topological concepts are, e.g., topological space,
cell complex, homotopy equivalence, homology,
connectedness, quotient space.

e Typical visualization uses are, e.g. to highlight data
subsets, to provide a structural overview, or to guide
interactive exploration.

S. Gumbhold, Scientific Visualization, Topology 15
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Classification of Topological Methods

e domain: topological dimension (e.g. 2 for surfaces), discretization
(piecewise const, linear, structured, unstructured, combinatorial)

e field type: scalar, vector, tensor, multi-variate (several values over
the same domain)

® aspects: certainty, time dependence, topological model, algorithms

e visualization use: highlight, guidance, abstraction, feature
identification & tracking, compression

Table 1: Typology of Topological Models

certain uncertain
time-independent time-dependent time-independent time-dependent
critical points, persistent homology, critical point tracking,

mandatory critical points,

scalar merge tree, contour tree, Reeb graph, dynamic merge tree, " . . ,
0 drep Y ] critical point confidence region

Morse-Smale complex, extremum graph dynamic contour tree

critical points, invariant sets, critical point tracking, LCS, "
. . stable Morse decomposition, .
vector separatrices, saddle connectors, streak line topology, : , uncertain LCS
. ; uncertain vector field toplogy
Morse decomposition unsteady vector field topology

tensor degenerate points & lines, separatrices  tensor topology tracking

Jacobi set, Reeb space

multi
joint contour net, Pareto sets

S. Gumbhold, Scientific Visualization, Topology 17



Vam,
‘4(( VA\; Computer Graphics
\QYJ and Visualization

MORSE-SMALE COMPLEX
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Morse-Smale Function

e An integral line is a path p(¢) in the domain of

a Morse function f such that—(t) = Vf(p().
e lim p(t) and hm p(t) are called origin and destlnatlon\.»

{—>—o00

@ origin and destlnat|on are critical points

e critical points are formally defined as one-point integral lines
such that the domain is partitioned into integral lines

e descending (stable) / ascending (unstable) manifolds of a
critical point p of index p is p / (n — p)-dimensional union of

integral lines with p as destination / origin
e Union of descending / ascending manifolds forms the Morse
Complex of f/ —f.

® f is a Morse-Smale function, if Morse complexes of f and —f
only intersect transversally.

S. Gumhold, Scientific Visualization, Topology 19
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e The Morse-Smale complex is the intersection of the
Morse complexes of f and - f.

e It captures features that are related to the gradient.

Example of Example of
ascending descending int:g:gﬂienes
(unstable) (stable) have same
manifold manifold origin and
destination

of

Fig. 2.18 Ascending (left) and descending (center) manifolds and Morse-Smale complex (right)
of a PL Morse scalar field f defined on a PL 2-manifold

S. Gumbhold, Scientific Visualization, Topology 20
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e Two submanifolds of a given finite-dimensional smooth
manifold are said to intersect transversally if at every
point of intersection, their separate tangent spaces at
that point together generate the tangent space of the
ambient manifold at that point.

non-transversal intersection

transversal intersection
(union of 1d submanifold tanget spaces is only 1d)

(union of 1d submanifold tanget spaces is only 2d)

S. Gumbhold, Scientific Visualization, Topology 21
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@ The torus standing on one side with
the height as function is the
standard example of a function that
IS not a Morse-Smale function

e It has a minimum, two saddles and
a maximum. The two saddle are
connected together by the two
inner half circles. stable manifolds:

a. lated a
b.. ;Sggiilerik?lrgtgh b and a excluding a
I I c. le th hc lud
® The descendlng manIfC)ld Of the d.. 12C<IjClerJifZ;cergfut%)rusaenxilﬁgl);lcgqthg]%lglrcles
upper saddle intersects with the  unstable manifolds:
. . lated
ascending manifold of the lower £ 13 through c and d excluding a
. b ... 1d circle through b and c excluding ¢
Saddle a|0ng these half CII’C|€S a ... 2d surface of torus excluding the 2 circles
yielding a non-transversal e eOn  andd
intersection ' ion traversalin central circle)

2d surface of torus excluding the 3 circles
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e Quadrangle Lemma: For 2D manifolds, the Morse-
Smale complex is composed of quadrangles with
vertices of index 0, 1, 2, 1, in this order around the

region. The boundary is possibly glued to itself along
vertices and arcs.

© minimum @ saddle ® maximum

Fig. 1. A Morse—Smale complex with solid stable 1-manifolds and dashed unstable 1-manifolds. In drawing
the dotted iso-lines we assume that all saddles have height between all minima and all maxima.

S. Gumbhold, Scientific Visualization, Topology 23
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PIECEWISE LINEAR
MANIFOLDS
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e In SciVis and Computer Graphics the most common domain
discretization used for topological analysis are simplicial
complexes.

e A d-simplex is the convex hull of d + 1 affinely independent points
in R™ and is d-dimensional

e Any subset t of points of a d-simplex ¢ is called a face what is
denoted by 7 < o.

e A simplicial complex is a finite collection of simplices that contains
all faces of any simplex and where the intersection of two
simplices is empty or a face of both.

e® The number of d-simplices in a simplicial
complex is abbreviated by #,.

@ ¢ 9

Fig. 2.3 Illustrations of 0 (green), 1 (blue), 2 (white) and 3-simplices (transparent), from left to
right, along with their faces

S. Gumbhold, Scientific Visualization, Topology 25
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@ The star St(o) of a simplex ¢ in a simplicial complex K is
the set of simplices that contain o: St(o) = {r € K|o < 1}

@ The link Lk(o) of o € K is the set of faces of St(o)
simplices that are disjoint from o:
Lk(o) = {t < p € St(o)|t N o = @}

Fig. 2.4 lllustrations of stars (green, top) and links (blue, bottom) for 0, 1 and 2-simplices (white,
from left to right) of a 3-dimensional simplicial complex

S. Gumbhold, Scientific Visualization, Topology 26



Vam,
«.VA\; Computer Graphics
AW’ and Visualization

A

Piecewise Linear Manifolds

e A triangulation of a manifold is called piecewise
manifold and represents a topological space

Fig. 2.6 Example of PL 3-manifold (left, right: clipped view)

S. Gumbhold, Scientific Visualization, Topology 27
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@ Topological analysis of linear functions over PL
manifolds is again based on filtrations that form nested
subsets of the domain simplices corresponding to
sublevel sets

e Analysis is based on the tracking of changes in
topological features of the domain subsets

e To define topological features we introduce homotopy
theory that allows to compare domain subsets and
defines topological features that are invariant to
continuous morphing of the domain.

® The resulting feature counts are called Betti numbers,
which are tracked over filtrations and are additionally
related to critical point counts as well as simplex
counts.

S. Gumbhold, Scientific Visualization, Topology 28
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e A topological space X is connected if any two points can
be connected by a path inside of the X.

e The maximally connected subsets of a topological
space X are called its connected components.

e A homotopy between two continuous functions
f,9:X - Yis a continuous function H: X x [0,1] —» Y such

that vx € X: f(x) = H(x,0) A g(x) = H(x,1).
e If there exists a homotopy then f and g are said to be
homotopic.

e Basically, a homotopy is a continuous morph between
two functions that does not change their topology.

e Homotopy and homotopic can also be applied to paths
and surfaces in a topological space

S. Gumbhold, Scientific Visualization, Topology 29
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e A topological space is simply connected if it is
connected and if for any two points, any two paths
between them are homotopig, i.e. there exists a
continuous mapping morphing one into the other.

v v v ~ T w v
B B - B
‘ .
~ ~ ~ W W T
~ ~ b 4 W b
o
A A A |
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Fig. 2.7 Examples of disconnected, connected and simply connected domains (from left to right)

S. Gumbhold, Scientific Visualization, Topology 30
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The boundary X of a topological space X
is the complement of its interior which is
composed of all elements with open
neighborhood

A d-chain is a subset of the d-simplices,
represented as #,; dimensional vector of
binary numbers modulo 2.

A d-cycle is a boundary less d-chain

A d-boundary is the boundary of a (d +
1)-chain and always a d-cycle.

vector addition on d-cycles | d-bounda-
ries forms the groups Z;(X) | By4(X)

the dth homology group Hy(X) is the
factor group H;(X) = Z;(X)/B4(X)

Intuitively, d-cycles are equivalent, or
homologous, if they can be continuously
transformed into each other

N

N

N

boundary

1-cycle

1-boundary

1-chain

S. Gumbhold, Scientific Visualization, Topology
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e The dth Betti number g, is the rank of its dth homology group.
Each group member is a topological feature that can be
represented by a generator cycle (point pair, loop, surface, volume)

for piecewise linear 3-manifolds

® f3, ... number of connected components

® f3; ... number of handles

e 3, ... number of voids

® f3; ... number of non-orientable components (always 0 in 3D)

Fig. 2.8 Examples of PL 3-manifolds with varying Betti numbers. From left to right: a 3-ball,
a solid torus, a 3-ball with a void. From left to right, (8o, 81, B2) is equal to (1,0,0), (1,1,0),
and (1,0, 1)). Generators are displayed in green, while examples of non-generator p-cycles are
displayed in blue

S. Gumbhold, Scientific Visualization, Topology 32
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Euler Characteristics

e The Euler characteristic y(T) of a triangulation T of a
topological space X of dimension d is the alternating
sum of its Betti numbers g; and equal to the alternating
sum of its i-simplex count #;:

d d
> (DB = x(1) = ) (—1)i#(T)
=0 i=0

S. Gumbhold, Scientific Visualization, Topology 33
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e Let f be a function that maps the 0-simplices of a
triangulation T to R. Let f be the piecewise linear
barycentric interpolated f, i.e. for any point p inside

any d-simplex o T we have: f (B) =Y%,a; f(z}), where
) is the ith O-face of o.
e f is called a piecewise linear (PL) scalar field.

Fig. 2.9 Example of PL scalar field f defined on a PL 3-manifold .# . From left to right: restriction

f of f on the 0-simplices of .#, f (the color coding denotes the linear interpolation within each
simplex), clipped view of f

S. Gumbhold, Scientific Visualization, Topology 34
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e In case a PL scalar field has several identical values at O-
simplices, it is not a Morse function

e The concept of simulation of simplicity exploits the
linear order of the unique storage locations for the O-
simplex values to disambiguate the identical values

e Let o(p) be the memory offset of a O-simplex p. Then
the comparison between two 0-simplices p and q is
implemented according to:

p<qef<f@QV(® =@ nrolp) <o)

S. Gumbhold, Scientific Visualization, Topology 35
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e The gradient of a piecewise linear scalar field is
constant on each d-simplex:

X X1 X2 Xy (047
<3’> = <3’1 Y2 3’3> <“1)
1 1 1 1 az
1

240 X1 Xp Xo\ 1 /X
f=0 h f2)<“1>=(fo fi f2)<3’1 Y2 )’3> (3’)

az 1 1 1 1
X1 Xy X\"1/1 0
vi=0o i f2) <3’1 V2 )’3) (0 1) = const
11 1 0 0 planar iso-contour

e Therefore any iso-contour restricted to
a d-simplex is planar

e Furthermore, an integral line restricted
to a d-simplex is straight

straight integral line

S. Gumbhold, Scientific Visualization, Topology 36
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Critical Points

e lower / upper link Lk~ (¢) / Lk* (o) of d-simplex relative
to PL function f is subset of Lk(o) such that all O-faces
have strictly smaller / larger f-value than those of o.

e A vertex v is regular with respect to f if Lk~ (v) & Lk (v)
are non-empty and simply connected, else v is critical.

e Critical points only occur at vertices and their number is
therefore finite

e If Lk~ (v) / LK™ (v) is empty, v is @ minimum / maximum.
Otherwise it is called a saddle

minimum maximum

regular

S. Gumbhold, Scientific Visualization, Topology 37
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Degenerate Critical Points

e The multiplicity u of a saddle is
u = max{By(Lk™(0)), Bo(Lk*(0))} — 1 |

e Degenerate points are all saddles
with u > 1 and a PL Morse scalar
field has no degenerate point. saddle monkey saddle

e Any PL scalar field can be transformed to a PL Morse
scalar field by saddle unfolding:

Fig.3. A monkey saddle may be unfolded into two simple saddles in three different ways. If a wedge consists
of a single edge, this edge unfolds into two copies.

S. Gumbhold, Scientific Visualization, Topology 38
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e For PL 2-Mannifolds the index of a critical point is

® minimum ... index =2
® 1-saddle...index =1
® maximum ... index =0

e For PL 3-Mannifolds:
® minimum ... index =3
e 2-saddle ... index =2
e 1-saddle ... index =1
® maximum ... index =0

®let C} be the number

of critical points of f
with index i, then:

x(T) = X0 (=)' CH(T)

Euler-Morse Relation

Figure 1: The local pictures with shaded oceans and white conti-
nents of a regular point, a minimum, a 1-saddle, a 2-saddle, and a
maximum. Take notice of the symbols used to mark the different
types of vertices at the centers of the spheres.

S. Gumbhold, Scientific Visualization, Topology 39
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PERSISTENCE
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Filtration

e Given a PL scalar field f over a simplicial complex K
with f(t) < f(o) if T is a face of o.

e Leti € N be the index of the ith f-value in the sorted
list over all n simplices and L; (i) the sublevels.

®L(0)cLy(1) c-cLy(n—1)is called filtration.

® A homomorphism is a map between groups that
commutes with the group operation.

e The filtration of f induces a sequence of
homomorphisms between the homology groups H,(.)
of the d-simplices in Lz (i):

H, (L;(O)) S H, (L;(1)) S H, (L]?(n _ 1)) — H(K)

S. Gumbhold, Scientific Visualization, Topology 41
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Persistent Homology Group

e Giventwo indices 0 <i <j <n—1thedth persistence homology

group Hcil'j is a factor group that tracks topological features that
existed in Lz (i) and still persistin Lz (j).

e The corresponding Betti numbers g5/ = rankH?’ are called
persistent Betti numbers

Fig. 2.14 Sub-complexes induced by the filtration of a PL scalar field defined on a PL 3-manifold
(dark blue: .Z~ (i), light blue: .~ (j)). From left to right: Bo(L~(i)) = 3, Bo(ZL () = 4,
Po(ZL7(1.)) =2

S. Gumbhold, Scientific Visualization, Topology 42
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e During filtration the sublevel Betti numbers change at critical
points corresponding to feature death and birth events.

e If two features merge the younger dies and is merged into
the older, what is called the Elder's rule.

e The life span of features induces
a pairing of the critical points.

e The persistence of a feature
is the f-value difference of
its critical point pair

® Persistence diagrams
show the life span of
topological features as
vertical bars, typically of
connected com ponents
. Fig. 2.15 Critical points of a PL scalar field f defined on a PL 3-manifold (left) and its persistence
N d u Ce d by ﬁo C h a nges . diagram %(f) (right). In the diagram, each pair of critical points is represented by a vertical bar

(white) and its persistence is given by the height of the bar

S. Gumbhold, Scientific Visualization, Topology 43
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@ A persistence curve plots the number of critical point
pairs over the logarithm of a threshold on the life span.

e Often the persistence curve shows a flat plateau
separating unimportant features with low persistence
from important features with high persistence.

A SR P e
COLU MO O N
¢ !d@“é&“oooo.

@° oo

C IAVATL I A L L P

Fig. 2.13 Minima (blue) and maxima (green) of the orthogonal curl component of a flow
simulation of the von Karman street (flow turbulence behind an obstacle, here at the left of the
domain). Right: persistence curve of the field. Selecting extrema involved in pairs more persistent
than an increasing threshold (vertical lines, right) yields a hierarchy of critical point sets (left).
Here, the light green vertical line (right) corresponds to the middle level (left) while the dark green
line (right) corresponds to the bottom level (left). In practice, a flat plateau in the persistence curve
(right) often indicates a separation between noise and features

S. Gumbhold, Scientific Visualization, Topology 44
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REEB GRAPH
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Fig. 2.16 PL Morse scalar field defined on a PL 2-manifold (left and center) and its Reeb graph
(right)

S. Gumbhold, Scientific Visualization, Topology 46
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e Let f be a PL Morse scalar field in PL manifold M.
oletf! (f(g)) denote the connected component of
X

the contour that contains X.

e Two points x,y € M are equivalent with respect to f,

denoted as x ~, y if they belong to the same connected
contour component, i.e.x ~fy S y € f1 (f(g)) :

- = x
® The Reeb Graph R(f) of f is the one-dimensional

simplicial complex defined by the quotient space of M
with respect to the equivalence relation ~.

e Intuitively, each edge (1-simplex) of R(f) corresponds
to an evolving contour of constant g, and each point
corresponds to a contour - embeddable e.g. at centroid

S. Gumbhold, Scientific Visualization, Topology 47
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® f can be decomposed into: M- R(f) = R, p—

where ¥y maps each contour to its f-value.

® ¢ maps /)\

e regular points of f to the interior of a 1-simplex & [ s

of R(f)

e extrema of f to O-simplices of valence 1

e on 2D-manifolds, ¢ maps saddles to O-
simplices of valence 2, 3 or 4.

e on d = 3D-manifolds, ¢ maps index 1 and
index d — 1 saddles to 0-simplices of
valence 2 or 3.

e on d > 3D-manifolds, ¢ maps all other
saddles to O-simplices of valence 2.

S. Gumbhold, Scientific Visualization, Topology 48
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® The number of loops I[(R(f)) in a Reeb
Graph R(f) on manifold M is bound by

Br(M): L(R(f)) < Br(MD).
e It is not equal as Reeb Graph

construction can remove 1-cycles. But it
cannot add new 1-cycles.

e It follows that the Reeb Graph on simply
connected manifolds (8; = 0) is loop free,
l.e. it is a tree called contour tree.

e On orientable 2D-manifolds without
boundary the number of Reeb Graph
loops is equal to the genus.

S. Gumbhold, Scientific Visualization, Topology
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@ persistence can be applied to Reeb Graph directly and
used for simplification / abstraction

e ¢! can be stored per Reeb Graph simplex during
construction and allows segmentation of the manifold

Fig. 2.17 Hierarchy of Reeb graphs obtained by repeated persistence-driven removal of their
1-simplices (top) and hierarchy of data segmentations (bottom) obtained by considering the
pre-image by ¢ of each 1-simplex of the Reeb graphs (matching colors)
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CONTOUR TREE
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e Hamish Carr, Jack Snoeyink, and Ulrike Axen. "Computing contour trees in all dimensions."
Computational Geometry 24.2 (2003): 75-94.

e Works in arbitrary dimensions

@ Domain discretization: simplicial cell complex with
barycentric interpolation (2D triangulation, 3D
tetrahedralization, ...)

@ O(n-logn+ m-a(m)) runtime for cell complex with n
cells and m vertices (a(.) isinverse Ackermann function)

e No explicit construction of contours such that ¢~1
needs to be constructed additionally in case the goal is
segmentation.
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Fig. 1. Level sets of f as f(x) decreases.

Fig. 2. Contour tree for Fig. 1.

e 3D example of contour tree
e Fig. 1. (a)-(f) filtration with decreasing value v

e Fig. 2. contour tree with lines illustrating snapshots in
Fig. 1
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l 10 5 9
8.3
7.2 6.5
4 2 2.1
7 6 8

augmented contour join tree split tree

e Augmented trees contain all nodes of cell complex

e split tree is computed with join tree algorithm on
reversed filtration

® Approach
e compute augmented join and split trees
e merge trees to form contour tree

S. Gumbhold, Scientific Visualization, Topology 54
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% The union-find data
structure manages subsets
of elements in an array

® |t supports three operations:

¢ initialization to one subset per
element

@ union of two subsets
@ find subset of element

2 All operations can be
performed in amortized
near constant time

# Careful: subset indices can
miss indices in between

# Simple implementation

@ @ 4
@ @ ©

@ initialization

(2)

@

unlon(1 ,2), union (5,6)

flnd(1) -1, find(2) =1, find(b) > 6

Stefan Gumbhold, CG1 (WS18/19) - Polygon Meshes
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Algorithm to compute Je = Jy:
Input: the mesh M, with vertices xj...x;, 1in sorted order

Qutput: the join tree J¢, with vertices yi...y
1. for i:=n downto 1 do:<——— process from highest to lowest value

(i.e., hy<hy...hy)

(a) Component[i] =1
(b) LowestVertex[i] =y;
(c) for each vertex x; adjacent to x;
i. if (j<i) or (Component|[i] = Component[ij]) skip Xj
ii. UFMerge (Component [1], Component|[]j])
iii. AddEdgeToJoinTree(y;, LowestVertex[Component[j]])
iv. LowestVertex[Component[]]] =y,
10 5 9 Algorithm 4.1 to construct a join tree.
8.3
7.2 6.5
1
4.6
4 2 2.1 1
4.9
6. (3)
D
% ; K2e

56
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10

8.3

7.2

4.6

4.9

6.5

2.1

6

e Observation:

conincide

augmented contour join tree split tree

e updegree (number of upward pointing edges) of contour and join trees

e downdegree of contour and split trees conincide

e Approach

e identify upper/lower contour tree leaf and incident edge from

up/downdegree of join/split tree to remove these from problem

S. Gumbhold, Scientific Visualization, Topology 57
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex x;, if up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

2. Initialize C to an empty graph on |J¢| vertices

3. While leaf gueue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and

join tree (Jc) split tree(Sc) contour tree (C)
Queue: 2918710
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex x;, if up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

2. Initialize C to an empty graph on |J¢| vertices

3. While leaf gueue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and

join tree (Jc) split tree(Sc) contour tree (C)
Queue: 918710
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex x;, if up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

2. Initialize C to an empty graph on |J¢| vertices

3. While leaf queue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and .

join tree (Jc) split tree(Sc) contour tree (C)
Queue: 187106.5

L4
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex x;, if up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

2. Initialize C to an empty graph on |J¢| vertices

3. While leaf queue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and .

join tree (Jc) split tree(Sc) contour tree (C)
Queue: 87106521
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1.

For each vertex Xxj, 1f up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

Initialize C to an empty graph on ||J¢| vertices

While leaf gqueue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and

join tree (Jc)

Queue:

split tree(Sc)
P 496.1

contour tree (C)

S. Gumbhold, Scientific Visualization, Topology
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex x;, if up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

2. Initialize C to an empty graph on |J¢| vertices

3. While leaf gueue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and o

join tree (Jc) split tree(Sc) contour tree (C)
Queue: 6.14
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex x;, if up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

2. Initialize C to an empty graph on |J¢| vertices

3. While leaf gueue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and

join tree (J<) split tree(Sc)
Queue: 45

contour tree (C)
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Algorithm to compute the contour tree:

Input: the join tree Jr and split tree S¢ corresponding to C,
stored as adjacency lists

Output: the contour tree C

1. For each vertex x;, if up-degree in Jc+ down-degree in Sc
is 1, enqueue x;

2. Initialize C to an empty graph on |J¢| vertices

3. While leaf gueue size >1

(a) Dequeue the first vertex, Xx;, on the leaf gueue.

(b) If x; is an upper leaf, find incident arc y;y; in Jc.
Else find incident arc zjz; in Sc.

(c) Add xjx; to C.

(d) Je<—JcBy, Sc<8SSz.

(e) If xj is now a leaf, engueue Xj.

Fig. 9. Algorithm 4.2 to merge the join and

-~ . e .
OV O]
~ e @ ~ @
join tree (Jc) split tree(Sc) contour tree (C)
Queue: 54.6
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Motivation

e In 1D a pair of adjacent extrema can be eliminated by
changing the function in a way to move values of
extrema closer together till they vanish

@ persistence based pairing of extrema yields nested
intervals on the domain

@ A critical point pair is adjacent after all point pairs
contained in their domain mterval have been
co ntra cted

|

|

|
|
T -
S — S

Fig. 15. The cancellation of a minimum—maximum pair.
Fig. 16. The intervals defined by critical point pairs are either disjoint or nested.
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® On a MS Complex over a PL 2D manifold persistence
pairs minima with merging saddles and maxima with
splitting saddles.

@ A hierarchy of complexes can be built by removing
critical point pairs according to the following
contraction operation:

d d
|] . ]l '. .
c a b H c ."I
O, - @ ---D
e

Fig.17. The cancellation of @ and b deletes the arcs ad and ae and contracts the arcs ca and ab. The contraction
effectively extends the remaining arcs of b to c.
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Simplification Results
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Fig. 19. Iran’s Alburz mountain range borders the Caspian sea (top flat area), and its Zagros mountain range
shapes the Persian Gulf (left bottom). We show a rendering of the terrain and its quasi MS-complex.

e But no approach for computation of simplified function

S. Gumbhold, Scientific Visualization, Topology 69



o o o gueo o (/'?‘A\ omputer Graphics
Topological Simplification Wawy crmpycererapt

S—>X4

Tierny, Julien, and Valerio Pascucci. "Generalized topological simplification of scalar fields
on surfaces." /EEE transactions on visualization and computer graphics 18.12 (2012): 2005-
2013.

e Very simple algorithm that takes function f and to be
preserved extrema and outputs approximation g with
to be preserved extrema minimizing L., norm to f.

e Algorithm directly works on function values and does
not need to construct Reeb Graph or MS complex

Algorithm overview

e repeat until convergence
e enforce minima with algorithm 1 on next slide
e enforce maxima with algorithm 1 in reversed order

@ Runtime is O(n - logn) due to construction of filtration.
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input : Scalar field f : S — R (with n scalar () and offset (©) values); AV and visualization
input : Set of minima constraints to enforce CS: |

output: Scalar field g : § — R with enforced minima in CS.

1 begin
2 I T : set of vertices (self-balancing binary search iree).
3 T + 0
4 Ili: time (integer) when a vertex was last processed.
5 i +— (0
6
7 /I Initialize T with the minima constraints.
8 foreach m € CS do 7« {7 +m};
9
10 repeat
11 v argmingeg f(x);
12 T+ {T —{v}}h:
13 mark v as visited:
14 /I Add unvisited neighbors.
15 T +— {T U {vn € Lk(v) | vy is not visited } };
16 Ali] + v;
17 i+ i+ 1;
18 until 7 = 0;
19
20 /I Scalar and offset value update, for all the vertices.
21 Il Make the ordering on g (scalar and offset values) consistent with the order of vis it,
22 for j « Oto n do —
23 if; #0 && f(A[j]) < g(A[j — 1]) then
24 | g(A[]) < g(Alj —1]);
25 else
26 | 9(A[]) + FIALD):
27 | O(A[f]) « 3
28 end
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’Q

4 = -

Input After sub-level After sur-level After sub-level
set iteration 1 set iteration 1 set iteration 2
ABCDEFG AECBDFG AEBDCFG AEDBCFG

Fig. 6. Sub-level set constrained reconstruction can introduce residual
maxima (red spheres): in (a), all the neighbors of D are visited before it,
hence yielding a maximum (b). Symmetrically, in (b), all the neighbors of
B are visited before it, yielding a minimum (c). Alternating sub- and sur-
level set reconstruction reduces the (offset) function difference between
the residual extrema and their corresponding saddle (cf. vertex ordering,
bottom), and converges to the removal of all the residuals.
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[|f — glleo = 53.45%
t: 1.80s.
(iterations : 3)

S
Avg(If = g) = 4.87%

[If — glloo = 36.21%
T LiT6.S,
(iterations : 3)

P A4 %
Avg(|f —gl) =15
Ilf = glloo = 36.2
to 128
(iterations : 2)

Fig. 10. Simplifying the Grand Canyon ((a), 500k vertices, 65,526 critical points, bottom) with a location driven feature selection. The terrain
is decomposed into three geographically meaningful regions: the canyon, its north rim and its south rim (in black, green, blue, (a) bottom).
(b) Maintaining only one minimum and removing all the critical points from the canyon (16,756 critical points remain) emphasizes the topological
features of the rims and simulates a massive flooding of the canyon. (c) Removing all the critical points from the rims (2,296 remaining) emphasizes
the topological features inside the canyon in a way that is suited for an interactive fly-through within the canyon. An e-simplification with compatible
L, norm (d) completely discards the features irrespectively of their location (zoom insets) while yielding a worse average data fitting (Avg(|f —gl))-
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FINGER COUNTING
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SciVis Contest 2016

P. Gralka, S. Grottel, ). Staib, K. Schatz, G. Karch, M. Hirschler, M. Krone, G. Reina, S. Gumhold, and T. Ertl, “2016 IEEE
Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles,” IEEE

Computer Graphics and Applications, vol. 38, no. 3, pp. 106-117, May 2018.
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e Favelier, Guillaume, Charles Gueunet, and Julien Tierny. "Visualizing ensembles of
viscous fingers." 2016. (video)

largest connected component extraction of maxima of simplified distance function
of super levelset of salt density geodesic distance, maxima
extraction and persistence

based filtering

(a) (b) (c)
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\

ST
‘4« e\ Computer Graphics

N4
Segmentation from 3D MS Complex Finger Tracking over time based on —
size of intersection volume

(d) (e)

Figure 3: Overview of our topological data analysis pipeline. (a) The dissolving salt is first isolated from the ambient water by considering the
largest connected component (noted ., in gray) of the sur-level set of salt concentration (Sec. 3.1). (b) Finger tips are identified as local maxima
(small light green spheres) of the geodesic distance f; : . — R (color gradient and level lines) from the top of the cylinder. Restricting the
identification to the most persistent maxima (larger dark green spheres) enables the identification of the most prominent fingers. (c) Geodesic
distance field from the most persistent maxima f; : ./ — . (d) The Morse complex of f; decomposes . into fingers (Sec. 3.2). (e) Each finger at
time step 1 is connected to the finger at time step 7 + 1 which maximizes the volume of their intersection (Sec. 3.3). An example finger is shown in
yellow while the corresponding maximizer at time step 7 + 1 is shown in transparent black. Data-sets are shown upside down to reduce occlusion.
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MORSE-SMALE COMPLEX

S. Gumbhold, Scientific Visualization, Topology 80



Vam,
4(("‘\; Computer Graphics
\QY! and Visualization

Morse-Smale Complex Algorithm

e Edelsbrunner et. al propose in 2003 an algorithm to
construct the Morse-Smale Complex on a PL 2D-
manifold which is composed of critical vertices, edges,
and quadrangular faces.

e The runtime is O(n - logn) to construction a filtration.

e The central difficulty is that integral lines can split and
merge in the PL setting.

NN Il
VAN AN N\
N NN

Y Ty

Fig. 4. Merging and forking PL curves and their corresponding smooth flow pictures.
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® A Quasi Morse-Smale is a complex with vertices at

critical points, quadrangular faces and all paths strictly
ascending or descending

® The Morse-Smale complex is the unique Quasi Morse-

Smale complex where all paths ascend/descend with
maximal slope.

Algorithm Overview

e Construct a Quasi Morse-Smale Complex in 3 Stages

e Perform local transformations with re-rooting of paths
until Morse-Smale Complex has been found
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Stage 1 (complex with junctions)
e find and classify all critical points

e trace k+1 ascending and k+1 descending paths from
extreme valued edges in each wedge of each k-fold
saddle only along mesh edges, until

a) extremum (regular case)

b) hitting a previously traced path (create [multi-Jjunction)
¢ another saddle (transversal connection)

ascending —1 —4

~—~—
~—
~—
-

7
’
52
o

descending
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Construction of Quasi MS Complex

Stage 2 (path extension)

1. junction removal (regular points)

e iterate once ascending and once descending through all
junctions

e extent paths through junctions by duplication of edges
e find non crossing concatenation of paths

continent —.____

descending-—

ascending -

Fig. 6. Paths ending at junctions are extended by duplication and concatenation.
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Construction of Quasi MS Complex

Stage 2 (path extension):
1. junction removal (regular points)

2. Ensure transversality at saddles
e consider each saddle sector between two extremal edges

e root paths of interior edges of sector through duplicated sector
edge of same direction

e find non crossing concatenation of paths
descending

ascending

Fig. 7. Paths that end at a saddle by case (c) are extended by duplication and concatenation.
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Construction of Quasi MS Complex

Stage 3 (unfolding of multi-saddles)

e Each k-fold saddle is unfolded into k simple saddles by
k-1 times splitting off a single saddle through
duplication of an ascending and a descending path

Fig. 8. Unfolding a three-fold saddle into three simple saddles.

® The resulting complex is a quasi Morse-Smale Complex
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Local Transformations A/ “anclvisuslization
e Local transformations are B ( i c
performed through handle ; -
slide operation illustrated on
right
e A handle slide is performed if | p . s
the re'rOOting of paths Ba and handle slide operation replaces
cD y|e|ds Steeper ascends. dcBA,abcd,baDC with BAda,BaDc,cDCh

® The minima can be
triangulated with the maxima
as triangle centers and the
saddles on edges

e A triangle flip here
cqrrespond; to two handle two handle slide operations can be interpreted
slide OperatIOnS, as edge flip on triangulation of minima
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® There are two situations around
vertex a for the handle slide
operation:
® One annulus touches itself at a
e Two annuli touch at a

e Path re-rooting is only possible
if no other path is crossed

e Potential path crossings are
resolved by first performing
handle slide operations on the
to be crossed path.
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Morse-Smale Complex Algorithm

e Edelsbrunner et. al also propose in 2003 an algorithm
to construct the Morse-Smale Complex on a PL 3D-
manifold which is composed of critical vertices, edges,
quadrangular faces and crystals which are cubic in the
regular cases.

® The runtime is O(n - logn) and due to the construction
of a filtration.

e Algorithm overview:
e Construct complex of descending manifolds
e Construct pieces of ascending manifolds inside of descending
manifolds
e Currently no stable implementation of this algorithm
exists. Alternatives are the use of discrete Morse
Theory or approximation via watershed transformation
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Applications

BUBBLE COUNTING
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Analyzing Rayleigh-Taylor Instability
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Counting Bubbles - Z-Maxima

Laney, Daniel, et al. "Understanding the structure of the turbulent mixing layer in hydrodynamic
instabilities." /EEF Transactions on Visualization and Computer Graphics 12.5 (2006): 1053-1060.

t=0 t =300

Fig. 1. An overview of a simulation (periodic in x and y) of Rayleigh-Taylor instability at four time steps on a 1152% grid. The light fluid has a
density of 1.0, the heavy fluid has a density of 3.0. Two envelope surfaces (at densities 1.02 and 2.98) capture the mixing region. The boundaries
of the box show the density field in pseudocolor. The heavy fluid is red and the light fluid is blue. Other colors represent intermediate compositions
of mixed fluid. We analyze the upper envelope (red) to study bubble structures and the midplanes to study mixing trends.

I WA
..... bt S-Co ex s
(b) | Comway

b L\I(,k n
()
Fig. ‘2. Fl’qlc'ocessing'é)iTeline for'topologic?llj)déta analysis:d (a) Ii);;ra;t MS Complex Stable manifold s|mp||f|ed iso-surface
one isosurface or midplane per time-step; ompute and simplify the . e 3 e L
MS complex at time #;; (c) Store relevant statistical data, e.g. number of SlmpllfIEd with SImpllerd
of critical points; (d) Perform geometric tracking and build merge-split MS Complex MS Complex
graph.
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Counting Bubbles - Other Functions

Borg - Density - Relative Persistence Borg - Z Velocity - Relative Persistence
Morse-Smale Complex Morse-Smale Hierarchy
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10000 /\ \ / Q:
. [t \\.
. N g W VoL 2 g
= - e i - \ L e0.7349
E I e
T 100 \\ % 100 N
\\

Fig. 5. Critical point counts for the 1152% Borg simulation, showing density minima (left) and Z velocity maxima (right) at the midplane versus
time. Density minima indicate the locations where light fluid is intersecting the midplane. At left, the four phases of the mixing are suggested
by four lines at distinct times in the middle of each phase and arrows indicating the corresponding XZ slices of the density field, where white
denotes the heavy fluid. The linear regions of the high persistence curves suggest power-law behavior. Recall that reductions in the number of
high persistence critical points is correlated with the structures in the flow becoming larger. Thus, larger structures are indicative of growth of the
mixing region. The asymptotic behavior is fitted for late time.
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1}

slope -0.75

Fig. 7. The plot depicts bubble counts of the envelope surface for three persistence values. Three regions of power-law behavior are shown by the
curve fits in gray to the 2.39% persistence curve. To the right of the plot, the MS-segmentation at three persistence values for time 700. To the
left and below the plot, the bubble segmentation along the 2.39% persistence curve at various times. Each maximum along with the Morse cells
of its child-maxima are colored the same.
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