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OVERVIEW AND MOTIVATION
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 Domain 𝑫: 𝑹𝑛∈{1,2,3} or manifold (curve or surface)

 We start with a smooth function : 𝑓:𝑫 ↦ 𝑹

 A point 𝒑 ∈ 𝑫 is called critical with respect to 𝑓, if 

gradient 𝛻𝑓 𝒑 = 𝟎 vanishes. (All other points are called regular)

 A critical point is ordinary/degenerate, if Hessian 𝑯𝑓 𝒑

(𝑛 × 𝑛-dimensional matrix of 2nd derivatives of 𝑓) is non-
singular/singular.

 The function 𝑓 is called Morse, iff all its critical points 
are ordinary and have distinct function values.

 The index of a critical point is the number of negative 

eigenvalues of 𝑯𝑓 𝒑 and separates minima, maxima, 

and saddles
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 1D-Example where gradient is first and Hessian second 
derivative of function
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 left: 𝑓 𝑥 = 𝑥3 with degenerate critical point at 𝑥 = 0
(𝑓′′ 0 = 0) that is a saddle

 right: 𝑓 𝑥 = 𝑥4 with degenerate critical point at 𝑥 = 0
(𝑓′′ 0 = 0) that is a minimum
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 For values 𝑣 in the range of 𝑓, 
the preimage or level set

𝑓−1 𝑣 = 𝒑 ∈ 𝑫 𝑓 𝒑 = 𝑣

can consist of several 
components that are

 isolated points

 simple closed contours

 contours with touching points

 sublevel set:

ℒ𝑓
− 𝑣 = 𝒑 ∈ 𝑫 𝑓 𝒑 ≤ 𝑣

 superlevel set:

ℒ𝑓
+ 𝑣 = 𝒑 ∈ 𝑫 𝑓 𝒑 ≥ 𝑣
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 A sweep of the level sets through all 𝑣 = −∞ → ∞ is 
called a filtration.

 During a filtration the topological changes are tracked
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 Def.: Given domain 𝑫 and function 𝑓 𝑫 → 𝑹, Reeb graph is 
defined as quotion space of 𝑫 with respect to equivalence 
relation ~, with 𝒑~𝒒 iff 𝑓(𝒑) = 𝑓(𝒒) = 𝑣 and 𝒑, 𝒒 are in same 

connected component of 𝑓−1(𝑣).

 To construct the Reeb Graph one 
identifies contours of all points 
that map to same value and splits 
them into connected components.

 Contour components are tracked 
over 𝑣 and form edges of the Reeb
Graph

 Topology changes (birth, split, join, 
death) in the contours arise at 
critical points, which form nodes 
of Reeb Graph
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 If the domain is simply connected (every closed loop 
can be contracted to a point), the Reeb Graph is a tree, 
which is called contour tree

 tree edges correspond to areas in domain
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scalar density field over 2D domain contours colored and contour tree overlayed
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 contour Tree can be used to explore volume data set by 
selection of tree edges
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 examines the joining/merging of the superlevel sets 
during filtration and captures birth and join events of 
contours
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Filteration and generated segmentation
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 examines the splitting of the sublevel sets during 
filtration and captures split and death events of 
contours
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Filteration and generated segmentation
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 Contour tree coincides in 1D with join tree

 In n>1 dimensions the contour tree can be computed 
from split and join trees according to simple rules
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Heine, C., Leitte, H., Hlawitschka, M., Iuricich, F., De Floriani, L., Scheuermann, G., ... & Garth, C. 
(2016, June). A survey of topology‐based methods in visualization. In Computer Graphics Forum (Vol. 
35, No. 3, pp. 643-667).

 Topology-based visualization uses topological concepts 
to describe, reduce, or organize data in order to be 
used in visualization. 

 Typical topological concepts are, e.g., topological space, 
cell complex, homotopy equivalence, homology, 
connectedness, quotient space. 

 Typical visualization uses are, e.g. to highlight data 
subsets, to provide a structural overview, or to guide
interactive exploration.
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neuron extraction

grain analysis

local vorticity
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 domain: topological dimension (e.g. 2 for surfaces), discretization 
(piecewise const, linear, structured, unstructured, combinatorial)

 field type: scalar, vector, tensor, multi-variate (several values over 
the same domain)

 aspects: certainty, time dependence, topological model, algorithms

 visualization use: highlight, guidance, abstraction, feature 
identification & tracking, compression
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MORSE-SMALE COMPLEX
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 An integral line is a path 𝒑(𝑡) in the domain of

a Morse function 𝑓 such that 
𝜕𝒑

𝜕𝑡
𝑡 = 𝛻𝑓(𝒑 𝑡 ).

 lim
𝑡→−∞

𝒑 𝑡 and lim
𝑡→∞

𝒑 𝑡 are called origin and destination.

 origin and destination are critical points

 critical points are formally defined as one-point integral lines 
such that the domain is partitioned into integral lines

 descending (stable) / ascending (unstable) manifolds of a 
critical point 𝒑 of index 𝑝 is 𝑝 / 𝑛 − 𝑝 -dimensional union of 

integral lines with 𝒑 as destination / origin

 Union of descending / ascending manifolds forms the Morse 
Complex of 𝑓 / −𝑓.

 𝑓 is a Morse-Smale function, if Morse complexes of 𝑓 and −𝑓
only intersect transversally.

S. Gumhold, Scientific Visualization, Topology 19



Computer Graphics
and VisualizationMorse-Smale Complex – Definition

 The Morse-Smale complex is the intersection of the 
Morse complexes of 𝑓 and – 𝑓.

 It captures features that are related to the gradient.
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Example of 
ascending 
(unstable)
manifold 

Example of 
descending 

(stable)
manifold 

Sample 
integral lines 
have same 
origin and 
destination
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 Two submanifolds of a given finite-dimensional smooth 
manifold are said to intersect transversally if at every 
point of intersection, their separate tangent spaces at 
that point together generate the tangent space of the 
ambient manifold at that point.
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transversal intersection
(union of 1d submanifold tanget spaces is only 2d)

non-transversal intersection
(union of 1d submanifold tanget spaces is only 1d)

https://en.wikipedia.org/wiki/Submanifold
https://en.wikipedia.org/wiki/Smooth_manifold
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Tangent_space
https://en.wikipedia.org/wiki/Ambient_space
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𝒄

𝒂

Non-Transversality

 The torus standing on one side with 
the height as function is the 
standard example of a function that 
is not a Morse-Smale function

 It has a minimum, two saddles and 
a maximum. The two saddle are 
connected together by the two 
inner half circles. 

 The descending manifold of the 
upper saddle intersects with the 
ascending manifold of the lower 
saddle along these half circles 
yielding a non-transversal 
intersection
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𝒃

𝒅

stable manifolds:
𝒂 … isolated point 𝒂
𝒃 … 1d circle through 𝒃 and 𝒂 excluding 𝒂
𝒄 … 1d circle through 𝒄 and 𝒃 excluding 𝒃
𝒅 … 2d surface of torus excluding the 2 circles

unstable manifolds:
𝒅 … isolated point 𝒅
𝒄 … 1d circle through 𝒄 and 𝒅 excluding 𝒅
𝒃 … 1d circle through 𝒃 and 𝒄 excluding 𝒄
𝒂 … 2d surface of torus excluding the 2 circles

intersection:
0d points:  𝒂 , 𝒃, 𝒄 and 𝒅
1d open halves of three circles

(non traversal in central circle)
2d surface of torus excluding the 3 circles
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 Quadrangle Lemma: For 2D manifolds, the Morse–
Smale complex is composed of quadrangles with 
vertices of index 0, 1, 2, 1, in this order around the 
region. The boundary is possibly glued to itself along 
vertices and arcs.
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 In SciVis and Computer Graphics the most common domain 
discretization used for topological analysis are simplicial 
complexes.

 A 𝑑-simplex is the convex hull of 𝑑 + 1 affinely independent points 
in 𝑹𝑛 and is d-dimensional

 Any subset 𝜏 of points of a d-simplex 𝜎 is called a face what is 
denoted by 𝜏 ≤ 𝜎.

 A simplicial complex is a finite collection of simplices that contains 
all faces of any simplex and where the intersection of two 
simplices is empty or a face of both.

 The number of 𝑑-simplices in a simplicial
complex is abbreviated by #𝑑.
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 The star St 𝜎 of a simplex 𝜎 in a simplicial complex 𝕂 is 
the set of simplices that contain 𝜎: St 𝜎 = {𝜏 ∈ 𝕂|𝜎 ≤ 𝜏}

 The link Lk 𝜎 of 𝜎 ∈ 𝕂 is the set of faces of St 𝜎
simplices that are disjoint from 𝜎: 

Lk 𝜎 = {𝜏 ≤ 𝜌 ∈ St 𝜎 |𝜏 ∩ 𝜎 = ∅}

Stars and Links

S. Gumhold, Scientific Visualization, Topology 26
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 A triangulation of a manifold is called piecewise 
manifold and represents a topological space
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 Topological analysis of linear functions over PL 
manifolds is again based on filtrations that form nested
subsets of the domain simplices corresponding to
sublevel sets

 Analysis is based on the tracking of changes in 
topological features of the domain subsets

 To define topological features we introduce homotopy
theory that allows to compare domain subsets and
defines topological features that are invariant to
continuous morphing of the domain.

 The resulting feature counts are called Betti numbers, 
which are tracked over filtrations and are additionally
related to critical point counts as well as simplex
counts.

S. Gumhold, Scientific Visualization, Topology 28
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 A topological space 𝕏 is connected if any two points can 
be connected by a path inside of the 𝕏.

 The maximally connected subsets of a topological 
space 𝕏 are called its connected components.

 A homotopy between two continuous functions 
𝑓, 𝑔: 𝕏 → 𝕐 is a continuous function 𝐻:𝕏 × 0,1 → 𝕐 such 

that ∀𝒙 ∈ 𝕏: 𝑓 𝒙 = 𝐻 𝒙, 0 ∧ 𝑔 𝒙 = 𝐻 𝒙, 1 .

 If there exists a homotopy then 𝑓 and 𝑔 are said to be 
homotopic.

 Basically, a homotopy is a continuous morph between 
two functions that does not change their topology.

 Homotopy and homotopic can also be applied to paths 
and surfaces in a topological space
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 A topological space is simply connected if it is 
connected and if for any two points, any two paths 
between them are homotopic, i.e. there exists a 
continuous mapping morphing one into the other.

S. Gumhold, Scientific Visualization, Topology 30
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 The boundary 𝜕𝕏 of a topological space 𝕏
is the complement of its interior which is 
composed of all elements with open 
neighborhood

 A 𝑑-chain is a subset of the 𝑑-simplices, 
represented as #𝑑 dimensional vector of 
binary numbers modulo 2.

 A 𝑑-cycle is a boundary less 𝑑-chain

 A 𝑑-boundary is the boundary of a (𝑑 +
1)-chain and always a 𝑑-cycle.

 vector addition on 𝑑-cycles | 𝑑-bounda-
ries forms the groups 𝑍𝑑 𝕏 | 𝐵𝑑 𝕏

 the 𝑑th homology group 𝐻𝑑 𝕏 is the 
factor group 𝐻𝑑 𝕏 = 𝑍𝑑 𝕏 /𝐵𝑑 𝕏

 Intuitively, 𝑑-cycles are equivalent, or 
homologous, if they can be continuously 
transformed into each other

S. Gumhold, Scientific Visualization, Topology 31

1-chain

1-boundary

boundary

2-chain

1-cycle
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 The 𝑑th Betti number 𝛽𝑑 is the rank of its 𝑑th homology group. 
Each group member is a topological feature that can be 
represented by a generator cycle (point pair, loop, surface, volume)

for piecewise linear 3-manifolds 

 𝛽0 … number of connected components

 𝛽1 … number of handles

 𝛽2 … number of voids

 𝛽3 … number of non-orientable components (always 0 in 3D)
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 The Euler characteristic 𝜒 𝕋 of a triangulation 𝕋 of a 
topological space 𝕏 of dimension 𝑑 is the alternating 
sum of its Betti numbers 𝛽𝑖 and equal to the alternating 
sum of its 𝑖-simplex count #𝑖:

෍

𝑖=0

𝑑

−1 𝑖𝛽𝑖 𝕋 = 𝜒 𝕋 =෍

𝑖=0

𝑑

−1 𝑖#𝑖 𝕋
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 Let መ𝑓 be a function that maps the 0-simplices of a 
triangulation 𝕋 to ℝ. Let 𝑓 be the piecewise linear 
barycentric interpolated መ𝑓, i.e. for any point 𝒑 inside 

any 𝑑-simplex 𝜎 𝕋 we have: 𝑓 𝒑 = σ𝑖=0
𝑑 𝛼𝑖 መ𝑓 𝜏0

𝑖 , where 

𝜏0
𝑖 is the 𝑖th 0-face of 𝜎. 

 𝑓 is called a piecewise linear (PL) scalar field.
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 In case a PL scalar field has several identical values at 0-
simplices, it is not a Morse function

 The concept of simulation of simplicity exploits the 
linear order of the unique storage locations for the 0-
simplex values to disambiguate the identical values

 Let 𝑜(𝑝) be the memory offset of a 0-simplex 𝑝. Then 
the comparison between two 0-simplices 𝑝 and 𝑞 is 
implemented according to:

𝑝 < 𝑞 ⇔ 𝑓 𝑝 < 𝑓 𝑞 ∨ 𝑓 𝑝 = 𝑓 𝑞 ∧ 𝑜 𝑝 < 𝑜 𝑞

S. Gumhold, Scientific Visualization, Topology 35
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 The gradient of a piecewise linear scalar field is 
constant on each 𝑑-simplex:

 Therefore any iso-contour restricted to
a 𝑑-simplex is planar

 Furthermore, an integral line restricted 
to a d-simplex is straight

S. Gumhold, Scientific Visualization, Topology 36

𝑥
𝑦
1

=
𝑥1 𝑥2 𝑥2
𝑦1 𝑦2 𝑦3
1 1 1

𝛼0
𝛼1
𝛼2

𝑓 = 𝑓0 𝑓1 𝑓2

𝛼0
𝛼1
𝛼2

= 𝑓0 𝑓1 𝑓2

𝑥1 𝑥2 𝑥2
𝑦1 𝑦2 𝑦3
1 1 1

−1 𝑥
𝑦
1

𝛻𝑓 = 𝑓0 𝑓1 𝑓2

𝑥1 𝑥2 𝑥2
𝑦1 𝑦2 𝑦3
1 1 1

−1 1 0
0 1
0 0

= 𝑐𝑜𝑛𝑠𝑡

planar iso-contour

straight integral line



Computer Graphics
and VisualizationCritical Points

 lower / upper link Lk−(𝜎) / Lk+(𝜎) of 𝑑-simplex relative 
to PL function 𝑓 is subset of Lk(𝜎) such that all 0-faces 
have strictly smaller / larger 𝑓-value than those of 𝜎.

 A vertex 𝑣 is regular with respect to 𝑓 if Lk−(𝑣) & Lk+(𝑣)
are non-empty and simply connected, else 𝑣 is critical.

 Critical points only occur at vertices and their number is 
therefore finite

 If Lk−(𝑣) / Lk+(𝑣) is empty, 𝑣 is a minimum / maximum. 
Otherwise it is called a saddle

S. Gumhold, Scientific Visualization, Topology 37
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 The multiplicity 𝜇 of a saddle is

𝜇 = max 𝛽0 Lk− 𝜎 , 𝛽0 Lk+ 𝜎 − 1

 Degenerate points are all saddles 
with 𝜇 > 1 and a PL Morse scalar 
field has no degenerate point.

 Any PL scalar field can be transformed to a PL Morse 
scalar field by saddle unfolding:
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 For PL 2-Mannifolds the index of a critical point is

 minimum … index = 2

 1-saddle … index = 1

 maximum … index = 0

 For PL 3-Mannifolds:

 minimum … index = 3

 2-saddle … index = 2

 1-saddle … index = 1

 maximum … index = 0

 Let 𝐶𝑓
𝑖 be the number

of critical points of 𝑓
with index 𝑖, then:

𝜒 𝕋 = σ𝑖=0
𝑑 −1 𝑖𝐶𝑓

𝑖 𝕋

S. Gumhold, Scientific Visualization, Topology 39

Euler-Morse Relation
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PERSISTENCE
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 Given a PL scalar field 𝑓 over a simplicial complex 𝕂
with 𝑓 𝜏 < 𝑓(𝜎) if 𝜏 is a face of 𝜎. 

 Let 𝑖 ∈ ℕ be the index of the 𝑖th 𝑓-value in the sorted 
list over all 𝑛 simplices and ℒ𝑓

− 𝑖 the sublevels.

 ℒ𝑓
− 0 ⊂ ℒ𝑓

− 1 ⊂ ⋯ ⊂ ℒ𝑓
− 𝑛 − 1 is called filtration.

 A homomorphism is a map between groups that 
commutes with the group operation.

 The filtration of 𝑓 induces a sequence of 
homomorphisms between the homology groups 𝐻𝑑(. )
of the 𝑑-simplices in ℒ𝑓

− 𝑖 :

𝐻𝑑 ℒ𝑓
− 0 → 𝐻𝑑 ℒ𝑓

− 1 → ⋯ → 𝐻𝑑 ℒ𝑓
− 𝑛 − 1 = 𝐻 𝕂

S. Gumhold, Scientific Visualization, Topology 41
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 Given two indices 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 − 1 the 𝑑th persistence homology 

group 𝐻𝑑
𝑖,𝑗

is a factor group that tracks topological features that 

existed in ℒ𝑓
− 𝑖 and still persist in ℒ𝑓

− 𝑗 .

 The corresponding Betti numbers 𝛽𝑑
𝑖,𝑗
= rank𝐻𝑑

𝑖,𝑗
are called 

persistent Betti numbers

S. Gumhold, Scientific Visualization, Topology 42

𝛽0
𝑖 = 3 𝛽0

𝑗
= 4 𝛽0

𝑖,𝑗
= 2
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 During filtration the sublevel Betti numbers change at critical 
points corresponding to feature death and birth events. 

 If two features merge the younger dies and is merged into 
the older, what is called the Elder’s rule.

 The life span of features induces
a pairing of the critical points. 

 The persistence of a feature
is the 𝑓-value difference of 
its critical point pair

 Persistence diagrams 
show the life span of 
topological features as 
vertical bars, typically of
connected components 
induced by 𝛽0 changes.
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 A persistence curve plots the number of critical point 
pairs over the logarithm of a threshold on the life span.

 Often the persistence curve shows a flat plateau 
separating unimportant features with low persistence 
from important features with high persistence.

S. Gumhold, Scientific Visualization, Topology 44
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 Let 𝑓 be a PL Morse scalar field in PL manifold 𝕄.

 Let 𝑓−1 𝑓 𝒙
𝒙

denote the connected component of 

the contour that contains 𝒙.

 Two points 𝒙, 𝒚 ∈ 𝕄 are equivalent with respect to 𝑓, 

denoted as 𝒙 ∼𝑓 𝒚 if they belong to the same connected 

contour component, i.e. 𝒙 ∼𝑓 𝒚 ⇔ 𝒚 ∈ 𝑓−1 𝑓 𝒙
𝒙
.

 The Reeb Graph ℛ(𝑓) of 𝑓 is the one-dimensional 
simplicial complex defined by the quotient space of 𝕄
with respect to the equivalence relation ∼𝑓.

 Intuitively, each edge (1-simplex) of ℛ(𝑓) corresponds 
to an evolving contour of constant 𝛽0 and each point 
corresponds to a contour – embeddable e.g. at centroid

S. Gumhold, Scientific Visualization, Topology 47
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 𝑓 can be decomposed into: 𝕄→
𝜙
ℛ(𝑓)→

𝜓
ℝ, 

where 𝜓 maps each contour to its 𝑓-value.

 𝜙 maps

 regular points of 𝑓 to the interior of a 1-simplex 
of ℛ(𝑓)

 extrema of 𝑓 to 0-simplices of valence 1

 on 2D-manifolds, 𝜙 maps saddles to 0-
simplices of valence 2, 3 or 4.

 on 𝑑 ≥ 3D-manifolds, 𝜙 maps index 1 and 
index 𝑑 − 1 saddles to 0-simplices of 
valence 2 or 3.

 on 𝑑 > 3D-manifolds, 𝜙 maps all other 
saddles to 0-simplices of valence 2.
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 The number of loops 𝑙 ℛ(𝑓) in a Reeb
Graph ℛ(𝑓) on manifold 𝕄 is bound by 
𝛽1(𝕄):    𝑙 ℛ(𝑓) ≤ 𝛽1(𝕄).

 It is not equal as Reeb Graph 
construction can remove 1-cycles. But it 
cannot add new 1-cycles.

 It follows that the Reeb Graph on simply 
connected manifolds (𝛽1 = 0) is loop free, 
i.e. it is a tree called contour tree.

 On orientable 2D-manifolds without 
boundary the number of Reeb Graph 
loops is equal to the genus.
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 persistence can be applied to Reeb Graph directly and 
used for simplification / abstraction

 𝜙−1 can be stored per Reeb Graph simplex during 
construction and allows segmentation of the manifold
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 Hamish Carr, Jack Snoeyink, and Ulrike Axen. "Computing contour trees in all dimensions." 
Computational Geometry 24.2 (2003): 75-94.

 Works in arbitrary dimensions

 Domain discretization: simplicial cell complex with 
barycentric interpolation (2D triangulation, 3D 
tetrahedralization, …)

 𝑂 𝑛 ⋅ log 𝑛 + 𝑚 ⋅ 𝛼 𝑚 runtime for cell complex with 𝑛

cells and 𝑚 vertices (𝛼(. ) is inverse Ackermann function)

 No explicit construction of contours such that 𝜙−1

needs to be constructed additionally in case the goal is 
segmentation.
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 3D example of contour tree

 Fig. 1. (a)-(f) filtration with decreasing value 𝑣

 Fig. 2. contour tree with lines illustrating snapshots in 
Fig. 1
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 Augmented trees contain all nodes of cell complex

 split tree is computed with join tree algorithm on 
reversed filtration

 Approach

 compute augmented join and split trees

 merge trees to form contour tree

S. Gumhold, Scientific Visualization, Topology 54

augmented contour join tree split tree



Computer Graphics
and VisualizationUnion Find

The union-find data 
structure manages subsets 
of elements in an array

It supports three operations:
initialization to one subset per 
element

union of two subsets

find subset of element

All operations can be 
performed in amortized 
near constant time

Careful: subset indices can 
miss indices in between

Simple implementation
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 Observation:

 updegree (number of upward pointing edges) of contour and join trees 
conincide

 downdegree of contour and split trees conincide

 Approach

 identify upper/lower contour tree leaf and incident edge from 
up/downdegree of join/split tree to remove these from problem
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 Node 
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 Node 
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 Node 

S. Gumhold, Scientific Visualization, Topology 60



Computer Graphics
and VisualizationTree Merging Algorithm

 Node 
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 Node 
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 Node 
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 Node 
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 Node 
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 In 1D a pair of adjacent extrema can be eliminated by 
changing the function in a way to move values of 
extrema closer together till they vanish

 persistence based pairing of extrema yields nested 
intervals on the domain

 A critical point pair is adjacent after all point pairs 
contained in their domain interval have been 
contracted

S. Gumhold, Scientific Visualization, Topology 67



Computer Graphics
and VisualizationHierarchy Construction

 On a MS Complex over a PL 2D manifold persistence 
pairs minima with merging saddles and maxima with 
splitting saddles. 

 A hierarchy of complexes can be built by removing 
critical point pairs according to the following 
contraction operation:
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 But no approach for computation of simplified function
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Tierny, Julien, and Valerio Pascucci. "Generalized topological simplification of scalar fields 
on surfaces." IEEE transactions on visualization and computer graphics 18.12 (2012): 2005-
2013.

 Very simple algorithm that takes function 𝑓 and to be 
preserved extrema and outputs approximation 𝑔 with 
to be preserved extrema minimizing 𝐿∞ norm to 𝑓.

 Algorithm directly works on function values and does 
not need to construct Reeb Graph or MS complex

Algorithm overview

 repeat until convergence

 enforce minima with algorithm 1 on next slide

 enforce maxima with algorithm 1 in reversed order

 Runtime is 𝑂(𝑛 ⋅ log 𝑛) due to construction of filtration.
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SciVis Contest 2016

P. Gralka, S. Grottel, J. Staib, K. Schatz, G. Karch, M. Hirschler, M. Krone, G. Reina, S. Gumhold, and T. Ertl, “2016 IEEE 
Scientific Visualization Contest Winner: Visual and Structural Analysis of Point-based Simulation Ensembles,” IEEE 
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 Favelier, Guillaume, Charles Gueunet, and Julien Tierny. "Visualizing ensembles of 
viscous fingers." 2016. (video)

largest connected component
of super levelset of salt density

extraction of maxima of
geodesic distance, maxima 
extraction and persistence 

based filtering

simplified distance function

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwihqoTkmqXjAhUDsKQKHb_uCWMQFjAAegQIBBAC&url=https://pdfs.semanticscholar.org/44f8/a73dda385e9881fa7b3f7eb8aaac7e0c1146.pdf&usg=AOvVaw01HlLvU99vVay2KUVp4xuD
https://www.youtube.com/watch?v=u6UCYKQGRJE
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Segmentation from 3D MS Complex Finger Tracking over time based on 
size of intersection volume
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 Edelsbrunner et. al propose in 2003 an algorithm to 
construct the Morse-Smale Complex on a PL 2D-
manifold which is composed of critical vertices, edges, 
and quadrangular faces.

 The runtime is 𝑂 𝑛 ⋅ log 𝑛 to construction a filtration.

 The central difficulty is that integral lines can split and 
merge in the PL setting.
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 A Quasi Morse-Smale is a complex with vertices at 
critical points, quadrangular faces and all paths strictly 
ascending or descending

 The Morse-Smale complex is the unique Quasi Morse-
Smale complex where all paths ascend/descend with 
maximal slope.

Algorithm Overview

 Construct a Quasi Morse-Smale Complex in 3 Stages

 Perform local transformations with re-rooting of paths 
until Morse-Smale Complex has been found
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Stage 1 (complex with junctions)

 find and classify all critical points

 trace k+1 ascending and k+1 descending paths from 
extreme valued edges in each wedge of each k-fold 
saddle only along mesh edges, until

a) extremum (regular case)

b) hitting a previously traced path (create [multi-]junction)

c) another saddle (transversal connection)

Construction of Quasi MS Complex
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Stage 2 (path extension)

1. junction removal (regular points)

 iterate once ascending and once descending through all 
junctions

 extent paths through junctions by duplication of edges

 find non crossing concatenation of paths
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Stage 2 (path extension):

1. junction removal (regular points)

2. Ensure transversality at saddles

 consider each saddle sector between two extremal edges

 root paths of interior edges of sector through duplicated sector 
edge of same direction

 find non crossing concatenation of paths
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Stage 3 (unfolding of multi-saddles)

 Each k-fold saddle is unfolded into k simple saddles by 
k-1 times splitting off a single saddle through 
duplication of an ascending and a descending path

 The resulting complex is a quasi Morse-Smale Complex
S. Gumhold, Scientific Visualization, Topology 86



Computer Graphics
and VisualizationLocal Transformations

 Local transformations are 
performed through handle 
slide operation illustrated on 
right

 A handle slide is performed if 
the re-rooting of paths Ba and 
cD yields steeper ascends.

 The minima can be 
triangulated with the maxima 
as triangle centers and the 
saddles on edges

 A triangle flip here 
corresponds to two handle 
slide operations.
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handle slide operation replaces 
dcBA,abcd,baDC with BAda,BaDc,cDCb

two handle slide operations can be interpreted 
as edge flip on triangulation of minima
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 There are two situations around 
vertex a for the handle slide 
operation:

 One annulus touches itself at a

 Two annuli touch at a

 Path re-rooting is only possible 
if no other path is crossed

 Potential path crossings are 
resolved by first performing 
handle slide operations on the 
to be crossed path.

S. Gumhold, Scientific Visualization, Topology 88



Computer Graphics
and VisualizationMorse-Smale Complex Algorithm

 Edelsbrunner et. al also propose in 2003 an algorithm 
to construct the Morse-Smale Complex on a PL 3D-
manifold which is composed of critical vertices, edges, 
quadrangular faces and crystals which are cubic in the 
regular cases.

 The runtime is 𝑂 𝑛 ⋅ log 𝑛 and due to the construction 
of a filtration.

 Algorithm overview:

 Construct complex of descending manifolds

 Construct pieces of ascending manifolds inside of descending 
manifolds

 Currently no stable implementation of this algorithm 
exists. Alternatives are the use of discrete Morse 
Theory or approximation via watershed transformation
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Laney, Daniel, et al. "Understanding the structure of the turbulent mixing layer in hydrodynamic 
instabilities." IEEE Transactions on Visualization and Computer Graphics 12.5 (2006): 1053-1060.
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