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Preliminaries

Newton‘s laws of motion

 First law: In an inertial frame of 
reference, an object either remains at 
rest or continues to move at a 
constant velocity, unless acted upon 
by a force.

 Second law: In an inertial frame of 
reference, the vector sum of the 
forces 𝐹 on an object with constant 
mass 𝑚 is equal to 𝑚 multiplied by 
the acceleration 𝑎 of the object: 
𝐹 = 𝑚𝑎. 

 Third law: When one body exerts a 
force on a second body, the second 
body simultaneously exerts a force 
equal in magnitude and opposite in 
direction on the first body. 
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𝑎buggy =

𝐹/𝑚buggy

𝐹
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Harmonic Oscillator

Analytic Solution

 Hook‘s law: 𝐹𝐻 = −𝑘𝑥

 2nd Newton‘s law: 𝐹 = 𝐹𝐻 = 𝑚𝑎 = 𝑚 ሷ𝑥,  with ሷ𝑥 = 𝑑2𝑥

𝑑𝑡2

 eq. of motion: 𝑚 ሷ𝑥 = −𝑘𝑥, with 𝑥 0 = 𝑥0, ሶ𝑥 0 = ሶ𝑥0
 solution to initial value problem:

𝑥 𝑡 = 𝐴 ∙ cos 𝜔𝑡 + 𝜙 with 𝜔 =
𝑘

𝑚
,   𝐴,𝜙 𝑥0, ሶ𝑥0

ሶ𝑥 𝑡 = −𝜔𝐴 ∙ sin 𝜔𝑡 + 𝜙

ሷ𝑥 𝑡 = −𝜔2𝐴 ∙ cos 𝜔𝑡 + 𝜙

 state 

space

diagram:
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𝑥

ሶ𝑥

𝐴

𝜔𝐴

stiffness constant of springspring force

angular frequency phase



Computergraphik
und Visualisierung

Harmonic Oscillator

Numeric Solution

 combine location and velocity to

state vector 𝒚 =
𝑥

𝑣 ≡ ሶ𝑥
 rewrite equations of motion

𝑚 ሷ𝑥 = −𝑘𝑥 ⇒ ሶ𝒚𝑖 =
ሶ𝑥
ሶ𝑣
=

0 1
−𝜔2 0

𝑥
𝑣

 start with initial state 𝒚0 =
𝑥0
𝑣0

 discretize state space trajectory

with polygon through 𝒚𝑖=0…𝑛
 simplest approach is explicit Euler:

𝒚𝑖+1 = 𝒚𝒊 + ℎ ሶ𝒚𝑖
with step width ℎ.

 very small step widths necessary

for explicit Euler

 use higher order methods
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h=1 Runge Kutta 4

𝑥

ሶ𝑥

analytic solution

polygonal
approx.

accu-
mulated

error

𝑥

ሶ𝑥

h=0,3

𝒚0

𝒚1
𝒚2

explicit Euler
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PHYSICAL QUANTITIES

Introduction to Physically Based Simulation
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Physical Quantities

Physical Constants

 A physical constant is a physical quantity that is 

generally believed to be both universal in nature and 

constant in time.

 The concrete value of a physical constant depends on 

the chosen units.

 In SI units the most fundamental constants are
 speed of light in vacuum c 299 792 458 m·s−1

 Newtonian constant of gravitation  6.674 30(15)×10−11m3·kg−1·s−2

 Planck constant h 6.626 070 15 × 10−34 J·s

 The appearance of our universe strongly depends on the 

values of these constants

 Anthropic principle: the values of the constants must be 

like that as we do observe them as living beings.
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uncertainty in
last two digits
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Physical Quantities

Physical Units

 A physical quantity is always

accompanied by a physical unit

 Système International d’unités 

defines the 7 base units

 Kelvin (temperature), 

 second (time), 

 meter (distance), 

 kilogram (mass), 

 candela (luminous intensity), 

 mole (amount of substance) 

 Ampere (electric current)

 derived units can be written 

with a scale 𝑛 and 7 exponents 

in terms of a base unit:

CG3 WS2324 S. Gumhold – Physically Based Simulation 9

𝑙 = 1m, 𝑣 = 5ms , 𝑚 = 2kg, …

Dependence of 7 SI base unit
definitions on physical constants
with fixed numerical values and 
on other base units

𝑂ℎ𝑚:Ω = m2 ∙ kg1 ∙ 𝑠−3 ∙ A−210𝑛 ∙ m𝛼 ∙ kg𝛽 ∙ 𝑠𝛾 ∙ A𝛿 ∙ K ∙ mol ∙ cd

9192631770 cycles of a Caesium atomic clock

1/273.16 of  temperature of the triple point of water 

path length travelled by light in a vacuum in 1/299792458 second

mass of Big K, till Nov 2018, 

now from ℎ = 6.62607015 ⋅ 10−34
kg⋅𝑚

𝑠2

number 𝑁𝐴 = 6.02214076 × 1023

of atoms in 12g 12C

electric current carried by 1/𝑒 electrons per second 
with 𝑒 = 1.602176634 ⋅ 10−19C

http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Metre
http://en.wikipedia.org/wiki/Kilogram
http://en.wikipedia.org/wiki/Candela
http://en.wikipedia.org/wiki/Mole_(unit)
http://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/SI_base_unit
https://en.wikipedia.org/wiki/Physical_constant
https://en.wikipedia.org/wiki/Atomic_clock
https://www.bipm.org/en/bipm/mass/ipk/
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Physical Quantities

Physical Units

 Physical units help to validate physical formulas and to 

derive units of physical constants:

 one cannot add quantities of different units

 left and right side of an equality must have the same unit

 The arguments of functions like sin, cos, exp, … cannot have a 

unit (also steradian is not allowed here)

Example: damped harmonic oszillator

 𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝐵

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹(𝑡)

 What unit has damping constant?

CG3 WS2324 S. Gumhold – Physically Based Simulation 10

𝑥 = displacement from equilibrium [m]
𝑡 = time [s]
𝐹 = external force [kg ∙ m ∙ s−2]
𝑚 = mass of the block [kg]
𝐵 = damping constant
𝑘 = force constant of spring [kg ∙ s−2] 

http://en.wikipedia.org/wiki/Nondimensionalization

𝐵 = 𝐹(𝑡) /
𝑑𝑥

𝑑𝑡

= kg ∙ m ∙ s−2/m ∙ s−1 = kg ∙ s−1

http://en.wikipedia.org/wiki/Nondimensionalization
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Physical Quantities

Candela and Luminous Intensity

 origin: 1 candela measures how 

bright the human eye perceives a 

wax candle.

 quantity: luminous intensity

 Brightness perception of human 

eye increases with light power 

and depends on wavelength 

through the CIE standardized 

photopic luminosity function ത𝑦 𝜆

 To relate light intensity (emitting 

from a point) to power [Watt] one 

integrates intensity over  

direction

 Solid angle measures directions 

by their covered area on the unit 

sphere and is measured in 

steradian (sr)

CG3 WS2324 S. Gumhold – Physically Based Simulation 11

Ω = 𝐴/𝑟2

𝑟

𝐴 solid angle Ω
of area 𝐴
measured in 
steradian sr
on sphere
with radius r

photopic
luminosity
function

scotopic
luminosity
function

https://en.wikipedia.org/wiki/Commission_Internationale_de_l'%C3%89clairage
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Physical Quantities

Candela and Luminous Intensity

 Def.: 1 candela in given 

direction is luminous intensity 

of light source emitting 1/683 

Watt of monochromatic green 

(𝐾cd = 540 × 1012Hz) light per 

sr. 

 Its definition depends on Watt, 

Hertz and steradian and 

therefore on m, s, and kg:

 hertz: Hz = s−1

 watt: W = kg ∙ m2 ∙ s−3

 steradian: sr = m2 ∙ m−2

 For steradian all base units 

cancel out, but we still write it 

as sr to distinguish from a pure 

scalar.

CG3 WS2324 S. Gumhold – Physically Based Simulation 12
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Physical Quantities

Standard and Non-Standard Units

For physically based graphics (excluding molecular and electro

dynamics) the following standard and non-standard units are important

 Second s duration, time s

 Meter m length, position, size m

 Kilogram kg mass kg

 Kelvin K temperature K

 Candela cd luminous intensity cd

 Steradian sr solid angle m2⋅m-2

 Lumen lm luminous flux cd⋅sr

 Lux lx illuminance lm/m2 = cd⋅sr⋅m−2

 Hertz Hz frequency s−1

 Newton N force kg⋅m⋅s−2

 Pascal Pa pressure N/m2 = kg⋅m−1⋅s−2

 Joule J energy, work, heat N⋅m = kg⋅m2⋅s−2

 Watt W power, radiant flux J/s = kg⋅m2⋅s−3

CG3 WS2324 S. Gumhold – Physically Based Simulation 13
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Physical Quantities 

Nondimensionalization

 If the physical laws of a system

are known one can get rid of all 

units by a simple variable 

substitution.

 The remaining constants are

dimensionless and parameterize

different behaviors of the system.

Example: 

 dimensionless Navier Stokes 

Equations of incompressible

fluids are parametrized over

Reynolds number Re:

CG3 WS2324 S. Gumhold – Physically Based Simulation 14
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Patterns in fluid flow around a cylinder 
as a function of the Reynolds number.
Image Source: http://www.hitech-
projects.com/euprojects/artic/index/Low%20Reynolds%20n
umber%20flows.pdf

http://www.hitech-projects.com/euprojects/artic/index/Low Reynolds number flows.pdf
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Physical Quantities 

Nondimensionalization

Example: damped harmonic oszillator

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝐵

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐴𝐹 𝑡

 Substitutions: 𝜏 =
𝑡

𝑡𝑐
and 𝜒 =

𝑥

𝑥𝑐

𝑚
𝑥𝑐

𝑡𝑐
2

𝑑2𝜒

𝑑𝜏2
+ 𝐵

𝑥𝑐
𝑡𝑐

𝑑𝜒

𝑑𝜏
+ 𝑘𝑥𝑐𝜒 = 𝐴𝐹 𝜏𝑡𝑐

 Division of constant from highest derivative order term:

𝑑2𝜒

𝑑𝜏2
+ 𝑡𝑐

𝐵

𝑚

𝑑𝜒

𝑑𝜏
+ 𝑡𝑐

2
𝑘

𝑚
𝜒 =

𝑡𝑐
2

𝑚𝑥𝑐
𝐴𝑓 𝜏

 Define constant 𝑡𝑐 =
𝑚

𝑘
and 𝑥𝑐 =

𝐴

𝑘

𝑑2𝜒

𝑑𝜏2
+ 2𝜁

𝑑𝜒

𝑑𝜏
+ 𝜒 = 𝑓 𝜏 , with damping ratio 2𝜁 =

𝐵

𝑚𝑘

 unit free damping ratio defines system behavior

CG3 WS2324 S. Gumhold – Physically Based Simulation 15
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Physical Quantities

Summary

 Physical quantities carry units that help to validate 

formula and to interpret constants

 SI defines 7 base units and expresses all other units as 

powers of these

 One of these 7 is Candela, which is used for photogram-

metric measurements of visible light intensity relative to 

the spectral sensitivity of the human eye.

 A few physical constants define the physics in our 

universe that would look very different if their values 

would change slightly

 For a given physical system nondimensionalization

allows to describe the system with unit free variables 

and a few characteristic unit free parameters

CG3 WS2324 S. Gumhold – Physically Based Simulation 16
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Applied Analysis

One Independent Variable

 The specialization of a quantity with 

respect to some independent variable is 

mathematically describes as a derivative

 From a physical point of view one 

designs a filter that restricts the 

measurement process to a small interval 

of the independent variable 

 We need specialization with respect to 

time to learn about the time evolution

 power is work done per time 

 velocity is path length change per time

 acceleration is velocity change per time

 Other important independent variables 

are location, direction and wavelength

 radiant power per wavelength is spectral 

power

CG3 WS2324 S. Gumhold – Physically Based Simulation 18

prism

light
beam

spectral
filter

𝜆

Δ𝜆

detector

power: 𝑃 =
𝑑𝑊

𝑑𝑡

velocity: 𝑣 =
𝑑𝑠

𝑑𝑡

acceleration: 𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑠

𝑑𝑡2

spectral power: Φ𝜆 =
𝑑Φ

𝑑𝜆
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Applied Analysis

Density

 triple derivative of mass 𝑚

with respect to volume 𝑉

yields density 𝜌

 unit of density is kg/𝑚3

 triple integration of density

gives back mass

CG3 WS2324 S. Gumhold – Physically Based Simulation 19

𝜌 =
𝑑𝑚

𝑑𝑉
=
𝑑3𝑚 𝑥, 𝑦, 𝑧

𝑑𝑥𝑑𝑦𝑑𝑧

𝑚 =ම

𝑉

𝜌 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧
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Applied Analysis

Field vs Particles

Eulerian View

 Describe physics as fields 

(flow field, irradiance fields, …)

over space

 For simulation fields are often 

discretized over grids or 

meshes and finite difference or 

finite element methods are 

applied.

Lagragian View

 Describe physics in form of 

particles that move in space

 During particle simulations, 

particles are the discretization 

unit and typically do not 

represent single physical 

particles (photons, molecules, 

…) but bundles of them

CG3 WS2324 S. Gumhold – Physically Based Simulation 20

particles are conceptually simplefields are easy to implement
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Applied Analysis

Field to Particles and Back

 Conversion from field to particles is done by interpreting 

density as particle probability and sampling

 Conversion back to [discretized] fields through density 

estimation and reconstruction

CG3 WS2324 S. Gumhold – Physically Based Simulation 21

𝜌(𝑥, 𝑦, 𝑧) = 𝜕𝑥𝜕𝑦𝜕𝑧𝑚

𝑚

𝑃 = 𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑚𝑖 𝑖

𝑝𝑖

𝜌𝑖𝑗𝑘

discretize

specialize & 
discretize

set of particles

𝜌𝑖𝑗𝑘

density values per grid location

sampling𝜌(𝑥, 𝑦, 𝑧) 𝑃

density estimation𝜌(𝑥, 𝑦, 𝑧) 𝑃𝜌𝑖𝑗𝑘reconstruction
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Applied Analysis

Conservative Force, Potential Energy

CG3 WS2324 S. Gumhold – Physically Based Simulation 22

© Google Maps

gradient is direction of steepest ascent, force points in opposite direction

𝛻𝒙𝜙 𝒙

𝑭

𝒙0
𝒙1

𝒙 𝑡

𝜙𝑔 𝒙 = 𝑚 ⋅ 𝑔 ⋅ ℎ 𝒙Example: Potential energy for near-Earth gravity
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Applied Analysis

Conservative Force, Potential Energy

 negated gradient of potential 

energy 𝜙 with respect to 

location 𝒙 yields conservative

force 𝑭. Unit: 𝑁 = 𝐽/𝑚

 work 𝑊 done by force from 

integration along path 𝒙 𝑡

 gradient theorem states that 

work done by force is potential 

difference of path end points

 no work done nor necessary 

for cyclic paths where 𝒙0 = 𝒙1

 force is conservative, iff curl

of force vanishes everywhere

CG3 WS2324 S. Gumhold – Physically Based Simulation 23

𝑭 = −𝛻𝒙𝜙 𝒙

𝑊 = න
𝒙0

𝒙1

𝑭𝑑𝒙 = න
𝑡0

𝑡1

𝑭, ሶ𝒙 𝑑𝑡

𝑊 = −න
𝒙0

𝒙1

𝛻𝒙𝜙 𝒙 𝑑𝒙

𝛻𝒙 × 𝑭 =

𝜕𝐹𝑧
𝜕𝑦

−
𝜕𝐹𝑦
𝜕𝑧

𝜕𝐹𝑥
𝜕𝑧

− 𝜕𝐹𝑧
𝜕𝑥

𝜕𝐹𝑦
𝜕𝑥

− 𝜕𝐹𝑥
𝜕𝑦

= 𝟎

= ቚ−𝜙 𝒙
𝒙0

𝒙1
= 𝜙 𝒙0 − 𝜙 𝒙1
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𝜙 𝒙 = 𝑥2 + 2𝑥𝑦 − 𝑦2

𝐹𝑥 = −𝜕𝑥𝜙 = −2𝑥 − 2𝑦
𝐹𝑦 = −𝜕𝑦𝜙 = −2𝑥 + 2𝑦

𝛁 × 𝑭 ቚ
𝑧
= 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥

= −2 − (−2) = 0

−න𝐹𝑥 𝑑𝑥 = 𝑥2 + 𝑥𝑦 + 𝐶𝑥

−න𝐹𝑦 𝑑𝑦 = −𝑦2 + 𝑥𝑦 + 𝐶𝑦

𝑭 = −2
𝑥 + 𝑦
𝑥 − 𝑦

=

𝐶𝑥 = −𝑦2 + 𝐶
𝐶𝑦 = 𝑥2 + 𝐶

𝜙 𝒙 = 𝑥2 + 2𝑥𝑦 − 𝑦2 + 𝐶

𝜙 𝒙



Computergraphik
und VisualisierungExample 2 – Non Conservative Force 

CG3 WS2324 S. Gumhold – Physically Based Simulation 25

𝛁 × 𝑭 ቚ
𝑧
= 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥

= 2 − −2 = 4 ≠ 0

−න𝐹𝑥 𝑑𝑥 = 2𝑥𝑦 + 𝐶𝑥

−න𝐹𝑦 𝑑𝑦 = −2𝑥𝑦 + 𝐶𝑦

𝑭 = 2
−𝑦
𝑥

=

𝐶𝑥 =?
𝐶𝑦 =?
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Applied Analysis

Directions and Solid Angle

 Solid angle is used to measure

a set of directions 𝝎 repre-

sented as unit vectors

 Typically 𝝎 is parameterized

over the unit sphere in 

spherical coordinates 𝜑,𝜃

 This parametrization is relative 

to local surface normal 𝒏

 solid angle Ω is measured in 

area covered on unit sphere

 nonstandard unit: sr (steradian)

 integration of solid angle yields

double integral over 𝜑 and 𝜃

CG3 WS2324 S. Gumhold – Physically Based Simulation 26

𝜑



𝑥

𝑦

𝑑𝜑 ∙sin𝜃

𝑑Ω

𝝎

𝒏
𝑑𝜃

𝝎 =
cos𝜑sin𝜃
sin𝜑sin𝜃
cos𝜃

,
𝜑 ∈ −𝜋, 𝜋

𝜃 ∈ 0, 𝜋

𝑑Ω = 𝑑𝜑 ∙sin𝜃𝑑𝜃

Ω
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Applied Analysis

Directions and Solid Angle

 The solid angle corresponding to all directions is 4𝜋

 The solid angle of a hemisphere (directions to the

outside at surface point), is therefore 2𝜋

 One just needs to integrate 1 over spherical coordinates

to show that:

CG3 WS2324 S. Gumhold – Physically Based Simulation 27

Ωall = ඵ

Ωall

1 𝑑Ω = න

0

𝜋

න

−𝜋

𝜋

1𝑑𝜑 ∙ sin𝜃𝑑𝜃= 2𝜋 න

0

𝜋

sin𝜃𝑑𝜃

= 2𝜋 −cos𝜃 0
𝜋 = 2𝜋 1 − −1 = 4𝜋
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Applied Analysis

Summary

 a lot of physical quantities are derivatives of others

 the variables with respect to which the derivation is 

applied, add their units to the denominator

 with respect to location one can do 

 triple derivatives yielding again a scalar density or 

 gradients that result in vector valued quantities like forces

 integration of conservative forces along paths can be 

computed from differences in potential energy

 not all force fields can be integrated, only the ones 

where the curl vector vanishes

 when integrating directions in spherical coordinates an 

additional sin𝜃 is needed

CG3 WS2324 S. Gumhold – Physically Based Simulation 28
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Introduction to Physically Based Simulation
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Minimization Principle

Fermat’s Principle

Light travels along the shortest path with

respect to time

 from this the laws for reflection and refraction follow

CG3 WS2324 S. Gumhold – Physically Based Simulation 30

𝑐2
𝑐1
=
sin𝛽

sin𝛼

𝛼 = 𝛽

http://de.wikipedia.org/wiki/Fermatsches_Prinzip

http://de.wikipedia.org/wiki/Fermatsches_Prinzip
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Minimization Principle

Principle of Least / Stationary Action

 mechanical systems can be completely described through the 

scalar Lagrangian 𝐿 that depends on the time dependent 

state vector 𝒚 𝑡 of the system and potentially on time 𝑡:

𝐿 𝒚 𝑡 , 𝑡 = 𝑇 − 𝑉

 with the kinetic energy 𝑇 and the potential energy 𝑉.

 the state vector 𝒚 contains all object positions and velocities

 the action 𝑆 of the system is defined as the functional that 

maps the time evolution of the system state to a scalar:

𝑆 𝐿 𝑡1, 𝑡2 = න
𝑡1

𝑡2

𝐿 𝒚 𝑡 , 𝑡 𝑑𝑡

The path 𝒚 𝑡 taken by the system between times 𝑡1 and 𝑡2 is the 

one for which the action is stationary (no change) to first order.

CG3 WS2324 S. Gumhold – Physically Based Simulation 31
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Minimization Principle

Principle of Least / Stationary Action

 With variational calculus the Euler Lagrange Equations 

can be derived from the principle of stationary action:

∀𝑖:
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
=
𝜕𝐿

𝜕𝑞𝑖

 here 𝑖 enumerates the generalized positions 𝑞𝑖 and 

generalized velocities ሶ𝑞𝑖.

Example: harmonic oscillator

 𝐿 = 𝑇 − 𝑉 = 1

2
𝑚 ሶ𝑥2−

1

2
𝑘𝑥2



𝜕𝐿

𝜕 ሶ𝑥
= 𝑚 ሶ𝑥 ,  

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
= 𝑚 ሷ𝑥 ,  

𝜕𝐿

𝜕𝑥
= −𝑘𝑥 ⟹ 𝑚 ሷ𝑥 = −𝑘𝑥
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Minimization Principle

Summary

 the dynamics of physical systems can be formulated as 

minimization problem

 examples: 

 Fermat‘s Principle (shortest paths)

 Least Action Principle

 if minimization is over functions, one needs variational

calculus

 from Least Action Principle one can derive the Euler 

Lagrange Equations that generalize equations of motions
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SYMMETRIES AND CONSERVED 

QUANTITIES

Introduction to Physically Based Simulation
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Symmetries & Conserved Quantities

Noether Theorem

Any differentiable symmetry of the action of a physical 

system has a corresponding conservation law.

Examples

 time symmetry: As laws of physics / experiments do not 

depend on when they are done, energy is conserved

 location symmetry: As laws of physics / experiments do 

not depend on where they are done, linear momentum 

(mass times linear velocity) is conserved 

 orientation symmetry: As laws of physics / experiments 

do not depend on their spatial orientation, angular 

momentum (inertia tensor times angular velocity) is 

conserved 
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Symmetries & Conserved Quantities

Symplectic Numerical Integration

 Explicit numerical integration 

techniques like the explicit Euler add 

energy to the system (system 

becomes instable)

 Implicit integration techniques are 

stable but unnaturally damp the 

system and remove energy

 Symplectic integrators conserve ener-

gy as good as possible but are not 

stable for stiff systems.
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h=0,3

explicit

implicit

ሶ𝑥 = 𝑓 𝑣, 𝑡

ሶ𝑣 = 𝑔 𝑥, 𝑡

𝑥𝑖+1 = 𝑥𝑖 + ℎ ∙ 𝑓 𝑣𝑖 , 𝑡

𝑣𝑖+1 = 𝑣𝑖 + ℎ ∙ 𝑔 𝑥𝑖 , 𝑡

𝑥𝑖+1 = 𝑥𝑖 + ℎ ∙ 𝑓 𝑣𝑖+1, 𝑡

𝑣𝑖+1 = 𝑣𝑖 + ℎ ∙ 𝑔 𝑥𝑖+1, 𝑡 𝑥𝑖+1 = 𝑥𝑖 + ℎ ∙ 𝑓 𝑣𝑖+1, 𝑡

𝑣𝑖+1 = 𝑣𝑖 + ℎ ∙ 𝑔 𝑥𝑖 , 𝑡

system of
diff. equa.

explicit Euler implicit Euler
semi-implicit /
symplectic Euler

semi-implicit
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Symmetries & Conserved Quantities

Continuity equation

Example: mass preservation

Lagragian view

 each particle 𝑝𝑖 carries 
mass 𝑚𝑖; automatic preser-
vation if particles persist

Eulerian view

 mass is represented as 
density field 𝜌(𝒙) over grid

 cell volume: 𝑑𝑉 = 𝑑𝑥3

 imagine mass is split into 
equal sized particles of 
density 𝜋(𝒙) and mass 𝑚

 mass density:

 each particle travels
with velocity 𝒖(𝒙)

How does particle movement 
change 𝜌 over time step 𝑑𝑡?

 let us restrict motion to 𝑥 dir. 
and examine one cell

 traveled distance: 𝑢𝑥 ⋅ 𝑑𝑡

 particle in/outflow(left/right): 
𝑑𝑥2 ⋅ (𝜋 ⋅ 𝑢𝑥)(𝑥 ∓ 𝑑𝑥/2) ⋅ 𝑑𝑡

 change in mass density:
𝜕𝜌

𝜕𝑡
= −𝑚 ⋅

𝜕(𝜋 ⋅ 𝑢𝑥)

𝜕𝑥
= −

𝜕(𝜌 ⋅ 𝑢𝑥)

𝜕𝑥
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𝜌 = 𝑚 ⋅ 𝜋 ⋅ 𝑑V
𝑛𝑟.𝑝𝑎𝑟𝑡.
𝑖𝑛 𝑐𝑒𝑙𝑙

/𝑑𝑉

+
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Symmetries & Conserved Quantities

Continuity equation

 as we have the same in/outflows along the other 

coordinate directions, we get:

𝜕𝜌

𝜕𝑡
𝒙 +

𝜕 𝜌 𝒙 ⋅ 𝑢𝑥 𝒙

𝜕𝑥
+
𝜕 𝜌 𝒙 ⋅ 𝑢𝑦 𝒙

𝜕𝑦
+
𝜕 𝜌 𝒙 ⋅ 𝑢𝑧 𝒙

𝜕𝑧
= 0

 introducing the mass flux vector Ԧ𝒋 = 𝜌 ⋅ 𝒖 this simplifies:

𝜕𝜌

𝜕𝑡
𝒙 +

𝜕𝑗𝑥 𝒙

𝜕𝑥
+
𝜕𝑗𝑦 𝒙

𝜕𝑦
+
𝜕𝑗𝑧 𝒙

𝜕𝑧
= 0

 the formula simplifies further by introducing the 

divergence operator div 𝒗 = 𝜕𝑥𝑣𝑥 + 𝜕𝑦𝑣𝑦 + 𝜕𝑧𝑣𝑧:

𝜕𝑡𝜌 + div Ԧ𝒋 = 𝜕𝑡𝜌 + div 𝜌𝒖 = 0

 Finally we introduce a volumetric mass source 𝜎(𝒙)

yielding the mass continuity equation:

𝜕𝑡𝜌 + div 𝜌𝒖 = 𝜎
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Symmetries & Conserved Quantities

Continuity equation

 The continuity equation can be constructed for any other 

quantity 𝑞(𝒙) carried with fluid particles like electric 

charge by exchanging the symbol 𝜌 with 𝑞.

 An alternative derivation from density 𝜌(𝒙), velocity 

𝒖(𝒙), flux Ԧ𝒋(𝒙) and source 𝜎(𝒙) fields results from an 

integral formulation, that keeps book on all changes in 𝑞:

𝑑𝜌

𝑑𝑡
+

𝑆

Ԧ𝒋 ∙ 𝑑𝑺 =ම

𝑉

𝜎𝑑𝑉

 The differential form is given again as:
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣Ԧ𝒋 = 𝜎

 For conserved quantities 𝜎 ≡ 0.

CG3 WS2324 S. Gumhold – Physically Based Simulation 39

𝑑𝑺…infinitesimal 
surface area times
surface normal

𝑉
𝑑𝑺

Ԧ𝒋
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Symmetries & Conserved Quantities

Summary

 It is important to be aware of quantities that are 

conserved in physical systems like energy

 These are due to spatial and temporal symmetries in the 

laws of physics

 Symplectic numerical integration methods target for 

energy preservation

 Continuity equations describe temporal changes of 

physical quantities inside of fluids or fields. For 

conserved quantities they do not have a source term.
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