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Preliminaries

Newton‘s laws of motion

 First law: In an inertial frame of 
reference, an object either remains at 
rest or continues to move at a 
constant velocity, unless acted upon 
by a force.

 Second law: In an inertial frame of 
reference, the vector sum of the 
forces 𝐹 on an object with constant 
mass 𝑚 is equal to 𝑚 multiplied by 
the acceleration 𝑎 of the object: 
𝐹 = 𝑚𝑎. 

 Third law: When one body exerts a 
force on a second body, the second 
body simultaneously exerts a force 
equal in magnitude and opposite in 
direction on the first body. 
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𝑎buggy =

𝐹/𝑚buggy

𝐹
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Harmonic Oscillator

Analytic Solution

 Hook‘s law: 𝐹𝐻 = −𝑘𝑥

 2nd Newton‘s law: 𝐹 = 𝐹𝐻 = 𝑚𝑎 = 𝑚 ሷ𝑥,  with ሷ𝑥 = 𝑑2𝑥

𝑑𝑡2

 eq. of motion: 𝑚 ሷ𝑥 = −𝑘𝑥, with 𝑥 0 = 𝑥0, ሶ𝑥 0 = ሶ𝑥0
 solution to initial value problem:

𝑥 𝑡 = 𝐴 ∙ cos 𝜔𝑡 + 𝜙 with 𝜔 =
𝑘

𝑚
,   𝐴,𝜙 𝑥0, ሶ𝑥0

ሶ𝑥 𝑡 = −𝜔𝐴 ∙ sin 𝜔𝑡 + 𝜙

ሷ𝑥 𝑡 = −𝜔2𝐴 ∙ cos 𝜔𝑡 + 𝜙

 state 

space

diagram:
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𝑥

ሶ𝑥

𝐴

𝜔𝐴

stiffness constant of springspring force

angular frequency phase
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Harmonic Oscillator

Numeric Solution

 combine location and velocity to

state vector 𝒚 =
𝑥

𝑣 ≡ ሶ𝑥
 rewrite equations of motion

𝑚 ሷ𝑥 = −𝑘𝑥 ⇒ ሶ𝒚𝑖 =
ሶ𝑥
ሶ𝑣
=

0 1
−𝜔2 0

𝑥
𝑣

 start with initial state 𝒚0 =
𝑥0
𝑣0

 discretize state space trajectory

with polygon through 𝒚𝑖=0…𝑛
 simplest approach is explicit Euler:

𝒚𝑖+1 = 𝒚𝒊 + ℎ ሶ𝒚𝑖
with step width ℎ.

 very small step widths necessary

for explicit Euler

 use higher order methods

CG3 WS2324 S. Gumhold – Physically Based Simulation 6

h=1 Runge Kutta 4

𝑥

ሶ𝑥

analytic solution

polygonal
approx.

accu-
mulated

error

𝑥

ሶ𝑥

h=0,3

𝒚0

𝒚1
𝒚2

explicit Euler
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PHYSICAL QUANTITIES

Introduction to Physically Based Simulation
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Physical Quantities

Physical Constants

 A physical constant is a physical quantity that is 

generally believed to be both universal in nature and 

constant in time.

 The concrete value of a physical constant depends on 

the chosen units.

 In SI units the most fundamental constants are
 speed of light in vacuum c 299 792 458 m·s−1

 Newtonian constant of gravitation  6.674 30(15)×10−11m3·kg−1·s−2

 Planck constant h 6.626 070 15 × 10−34 J·s

 The appearance of our universe strongly depends on the 

values of these constants

 Anthropic principle: the values of the constants must be 

like that as we do observe them as living beings.

CG3 WS2324 S. Gumhold – Physically Based Simulation 8

uncertainty in
last two digits
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Physical Quantities

Physical Units

 A physical quantity is always

accompanied by a physical unit

 Système International d’unités 

defines the 7 base units

 Kelvin (temperature), 

 second (time), 

 meter (distance), 

 kilogram (mass), 

 candela (luminous intensity), 

 mole (amount of substance) 

 Ampere (electric current)

 derived units can be written 

with a scale 𝑛 and 7 exponents 

in terms of a base unit:

CG3 WS2324 S. Gumhold – Physically Based Simulation 9

𝑙 = 1m, 𝑣 = 5ms , 𝑚 = 2kg, …

Dependence of 7 SI base unit
definitions on physical constants
with fixed numerical values and 
on other base units

𝑂ℎ𝑚:Ω = m2 ∙ kg1 ∙ 𝑠−3 ∙ A−210𝑛 ∙ m𝛼 ∙ kg𝛽 ∙ 𝑠𝛾 ∙ A𝛿 ∙ K𝜀 ∙ mol𝜁 ∙ cd𝜂

9192631770 cycles of a Caesium atomic clock

1/273.16 of  temperature of the triple point of water 

path length travelled by light in a vacuum in 1/299792458 second

mass of Big K, till Nov 2018, 

now from ℎ = 6.62607015 ⋅ 10−34
kg⋅𝑚

𝑠2

number 𝑁𝐴 = 6.02214076 × 1023

of atoms in 12g 12C

electric current carried by 1/𝑒 electrons per second 
with 𝑒 = 1.602176634 ⋅ 10−19C

http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Metre
http://en.wikipedia.org/wiki/Kilogram
http://en.wikipedia.org/wiki/Candela
http://en.wikipedia.org/wiki/Mole_(unit)
http://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/SI_base_unit
https://en.wikipedia.org/wiki/Physical_constant
https://en.wikipedia.org/wiki/Atomic_clock
https://www.bipm.org/en/bipm/mass/ipk/
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Physical Quantities

Physical Units

 Physical units help to validate physical formulas and to 

derive units of physical constants:

 one cannot add quantities of different units

 left and right side of an equality must have the same unit

 The arguments of functions like sin, cos, exp, … cannot have a 

unit (also steradian is not allowed here)

Example: damped harmonic oszillator

 𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝐵

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹(𝑡)

 What unit has damping constant?

CG3 WS2324 S. Gumhold – Physically Based Simulation 10

𝑥 = displacement from equilibrium [m]
𝑡 = time [s]
𝐹 = external force [kg ∙ m ∙ s−2]
𝑚 = mass of the block [kg]
𝐵 = damping constant
𝑘 = force constant of spring [kg ∙ s−2] 

http://en.wikipedia.org/wiki/Nondimensionalization

𝐵 = 𝐹(𝑡) /
𝑑𝑥

𝑑𝑡

= kg ∙ m ∙ s−2/m ∙ s−1 = kg ∙ s−1

http://en.wikipedia.org/wiki/Nondimensionalization
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Physical Quantities

Candela and Luminous Intensity

 origin: 1 candela measures how 

bright the human eye perceives a 

wax candle.

 quantity: luminous intensity

 Brightness perception of human 

eye increases with light power 

and depends on wavelength 

through the CIE standardized 

photopic luminosity function ത𝑦 𝜆

 To relate light intensity (emitting 

from a point) to power [Watt] one 

integrates intensity over  

direction

 Solid angle measures directions 

by their covered area on the unit 

sphere and is measured in 

steradian (sr)

CG3 WS2324 S. Gumhold – Physically Based Simulation 11

Ω = 𝐴/𝑟2

𝑟

𝐴 solid angle Ω
of area 𝐴
measured in 
steradian sr
on sphere
with radius r

photopic
luminosity
function

scotopic
luminosity
function

https://en.wikipedia.org/wiki/Commission_Internationale_de_l'%C3%89clairage
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Physical Quantities

Candela and Luminous Intensity

 Def.: 1 candela in given 

direction is luminous intensity 

of light source emitting 1/683 

Watt of monochromatic green 

(𝐾cd = 540 × 1012Hz) light per 

sr. 

 Its definition depends on Watt, 

Hertz and steradian and 

therefore on m, s, and kg:

 hertz: Hz = s−1

 watt: W = kg ∙ m2 ∙ s−3

 steradian: sr = m2 ∙ m−2

 For steradian all base units 

cancel out, but we still write it 

as sr to distinguish from a pure 

scalar.

CG3 WS2324 S. Gumhold – Physically Based Simulation 12
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Physical Quantities

Standard and Non-Standard Units

For physically based graphics (excluding molecular and electro

dynamics) the following standard and non-standard units are important

 Second s duration, time s

 Meter m length, position, size m

 Kilogram kg mass kg

 Kelvin K temperature K

 Candela cd luminous intensity cd

 Steradian sr solid angle m2⋅m-2

 Lumen lm luminous flux cd⋅sr

 Lux lx illuminance lm/m2 = cd⋅sr⋅m−2

 Hertz Hz frequency s−1

 Newton N force kg⋅m⋅s−2

 Pascal Pa pressure N/m2 = kg⋅m−1⋅s−2

 Joule J energy, work, heat N⋅m = kg⋅m2⋅s−2

 Watt W power, radiant flux J/s = kg⋅m2⋅s−3

CG3 WS2324 S. Gumhold – Physically Based Simulation 13
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Physical Quantities 

Nondimensionalization

 If the physical laws of a system

are known one can get rid of all 

units by a simple variable 

substitution.

 The remaining constants are

dimensionless and parameterize

different behaviors of the system.

Example: 

 dimensionless Navier Stokes 

Equations of incompressible

fluids are parametrized over

Reynolds number Re:

CG3 WS2324 S. Gumhold – Physically Based Simulation 14
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Patterns in fluid flow around a cylinder 
as a function of the Reynolds number.
Image Source: http://www.hitech-
projects.com/euprojects/artic/index/Low%20Reynolds%20n
umber%20flows.pdf

http://www.hitech-projects.com/euprojects/artic/index/Low Reynolds number flows.pdf
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Physical Quantities 

Nondimensionalization

Example: damped harmonic oszillator

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝐵

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐴𝐹 𝑡

 Substitutions: 𝜏 =
𝑡

𝑡𝑐
and 𝜒 =

𝑥

𝑥𝑐

𝑚
𝑥𝑐

𝑡𝑐
2

𝑑2𝜒

𝑑𝜏2
+ 𝐵

𝑥𝑐
𝑡𝑐

𝑑𝜒

𝑑𝜏
+ 𝑘𝑥𝑐𝜒 = 𝐴𝐹 𝜏𝑡𝑐

 Division of constant from highest derivative order term:

𝑑2𝜒

𝑑𝜏2
+ 𝑡𝑐

𝐵

𝑚

𝑑𝜒

𝑑𝜏
+ 𝑡𝑐

2
𝑘

𝑚
𝜒 =

𝑡𝑐
2

𝑚𝑥𝑐
𝐴𝑓 𝜏

 Define constant 𝑡𝑐 =
𝑚

𝑘
and 𝑥𝑐 =

𝐴

𝑘

𝑑2𝜒

𝑑𝜏2
+ 2𝜁

𝑑𝜒

𝑑𝜏
+ 𝜒 = 𝑓 𝜏 , with damping ratio 2𝜁 =

𝐵

𝑚𝑘

 unit free damping ratio defines system behavior

CG3 WS2324 S. Gumhold – Physically Based Simulation 15
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Physical Quantities

Summary

 Physical quantities carry units that help to validate 

formula and to interpret constants

 SI defines 7 base units and expresses all other units as 

powers of these

 One of these 7 is Candela, which is used for photogram-

metric measurements of visible light intensity relative to 

the spectral sensitivity of the human eye.

 A few physical constants define the physics in our 

universe that would look very different if their values 

would change slightly

 For a given physical system nondimensionalization

allows to describe the system with unit free variables 

and a few characteristic unit free parameters

CG3 WS2324 S. Gumhold – Physically Based Simulation 16
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APPLIED ANALYSIS

Introduction to Physically Based Simulation
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Applied Analysis

One Independent Variable

 The specialization of a quantity with 

respect to some independent variable is 

mathematically describes as a derivative

 From a physical point of view one 

designs a filter that restricts the 

measurement process to a small interval 

of the independent variable 

 We need specialization with respect to 

time to learn about the time evolution

 power is work done per time 

 velocity is path length change per time

 acceleration is velocity change per time

 Other important independent variables 

are location, direction and wavelength

 radiant power per wavelength is spectral 

power

CG3 WS2324 S. Gumhold – Physically Based Simulation 18

prism

light
beam

spectral
filter

𝜆

Δ𝜆

detector

power: 𝑃 =
𝑑𝑊

𝑑𝑡

velocity: 𝑣 =
𝑑𝑠

𝑑𝑡

acceleration: 𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑠

𝑑𝑡2

spectral power: Φ𝜆 =
𝑑Φ

𝑑𝜆
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Applied Analysis

Density

 triple derivative of mass 𝑚

with respect to volume 𝑉

yields density 𝜌

 unit of density is kg/𝑚3

 triple integration of density

gives back mass

CG3 WS2324 S. Gumhold – Physically Based Simulation 19

𝜌 =
𝑑𝑚

𝑑𝑉
=
𝑑3𝑚 𝑥, 𝑦, 𝑧

𝑑𝑥𝑑𝑦𝑑𝑧

𝑚 =ම

𝑉

𝜌 𝑥, 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧
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Applied Analysis

Field vs Particles

Eulerian View

 Describe physics as fields 

(flow field, irradiance fields, …)

over space

 For simulation fields are often 

discretized over grids or 

meshes and finite difference or 

finite element methods are 

applied.

Lagragian View

 Describe physics in form of 

particles that move in space

 During particle simulations, 

particles are the discretization 

unit and typically do not 

represent single physical 

particles (photons, molecules, 

…) but bundles of them

CG3 WS2324 S. Gumhold – Physically Based Simulation 20

particles are conceptually simplefields are easy to implement
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Applied Analysis

Field to Particles and Back

 Conversion from field to particles is done by interpreting 

density as particle probability and sampling

 Conversion back to [discretized] fields through density 

estimation and reconstruction

CG3 WS2324 S. Gumhold – Physically Based Simulation 21

𝜌(𝑥, 𝑦, 𝑧) = 𝜕𝑥𝜕𝑦𝜕𝑧𝑚

𝑚

𝑃 = 𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑚𝑖 𝑖

𝑝𝑖

𝜌𝑖𝑗𝑘

discretize

specialize & 
discretize

set of particles

𝜌𝑖𝑗𝑘

density values per grid location

sampling𝜌(𝑥, 𝑦, 𝑧) 𝑃

density estimation𝜌(𝑥, 𝑦, 𝑧) 𝑃𝜌𝑖𝑗𝑘reconstruction
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Applied Analysis

Conservative Force, Potential Energy

CG3 WS2324 S. Gumhold – Physically Based Simulation 22

© Google Maps

gradient is direction of steepest ascent, force points in opposite direction

𝛻𝒙𝜙 𝒙

𝑭

𝒙0
𝒙1

𝒙 𝑡

𝜙𝑔 𝒙 = 𝑚 ⋅ 𝑔 ⋅ ℎ 𝒙Example: Potential energy for near-Earth gravity
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Applied Analysis

Conservative Force, Potential Energy

 negated gradient of potential 

energy 𝜙 with respect to 

location 𝒙 yields conservative

force 𝑭. Unit: 𝑁 = 𝐽/𝑚

 work 𝑊 done by force from 

integration along path 𝒙 𝑡

 gradient theorem states that 

work done by force is potential 

difference of path end points

 no work done nor necessary 

for cyclic paths where 𝒙0 = 𝒙1

 force is conservative, iff curl

of force vanishes everywhere

CG3 WS2324 S. Gumhold – Physically Based Simulation 23

𝑭 = −𝛻𝒙𝜙 𝒙

𝑊 = න
𝒙0

𝒙1

𝑭𝑑𝒙 = න
𝑡0

𝑡1

𝑭, ሶ𝒙 𝑑𝑡

𝑊 = −න
𝒙0

𝒙1

𝛻𝒙𝜙 𝒙 𝑑𝒙

𝛻𝒙 × 𝑭 =

𝜕𝐹𝑧
𝜕𝑦

−
𝜕𝐹𝑦
𝜕𝑧

𝜕𝐹𝑥
𝜕𝑧

− 𝜕𝐹𝑧
𝜕𝑥

𝜕𝐹𝑦
𝜕𝑥

− 𝜕𝐹𝑥
𝜕𝑦

= 𝟎

= ቚ−𝜙 𝒙
𝒙0

𝒙1
= 𝜙 𝒙0 − 𝜙 𝒙1
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𝜙 𝒙 = 𝑥2 + 2𝑥𝑦 − 𝑦2

𝐹𝑥 = −𝜕𝑥𝜙 = −2𝑥 − 2𝑦
𝐹𝑦 = −𝜕𝑦𝜙 = −2𝑥 + 2𝑦

𝛁 × 𝑭 ቚ
𝑧
= 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥

= −2 − (−2) = 0

−න𝐹𝑥 𝑑𝑥 = 𝑥2 + 𝑥𝑦 + 𝐶𝑥

−න𝐹𝑦 𝑑𝑦 = −𝑦2 + 𝑥𝑦 + 𝐶𝑦

𝑭 = −2
𝑥 + 𝑦
𝑥 − 𝑦

=

𝐶𝑥 = −𝑦2 + 𝐶
𝐶𝑦 = 𝑥2 + 𝐶

𝜙 𝒙 = 𝑥2 + 2𝑥𝑦 − 𝑦2 + 𝐶

𝜙 𝒙
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𝛁 × 𝑭 ቚ
𝑧
= 𝜕𝑥𝐹𝑦 − 𝜕𝑦𝐹𝑥

= 2 − −2 = 4 ≠ 0

−න𝐹𝑥 𝑑𝑥 = 2𝑥𝑦 + 𝐶𝑥

−න𝐹𝑦 𝑑𝑦 = −2𝑥𝑦 + 𝐶𝑦

𝑭 = 2
−𝑦
𝑥

=

𝐶𝑥 =?
𝐶𝑦 =?
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Applied Analysis

Directions and Solid Angle

 Solid angle is used to measure

a set of directions 𝝎 repre-

sented as unit vectors

 Typically 𝝎 is parameterized

over the unit sphere in 

spherical coordinates 𝜑,𝜃

 This parametrization is relative 

to local surface normal 𝒏

 solid angle Ω is measured in 

area covered on unit sphere

 nonstandard unit: sr (steradian)

 integration of solid angle yields

double integral over 𝜑 and 𝜃

CG3 WS2324 S. Gumhold – Physically Based Simulation 26

𝜑



𝑥

𝑦

𝑑𝜑 ∙sin𝜃

𝑑Ω

𝝎

𝒏
𝑑𝜃

𝝎 =
cos𝜑sin𝜃
sin𝜑sin𝜃
cos𝜃

,
𝜑 ∈ −𝜋, 𝜋

𝜃 ∈ 0, 𝜋

𝑑Ω = 𝑑𝜑 ∙sin𝜃𝑑𝜃

Ω
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Applied Analysis

Directions and Solid Angle

 The solid angle corresponding to all directions is 4𝜋

 The solid angle of a hemisphere (directions to the

outside at surface point), is therefore 2𝜋

 One just needs to integrate 1 over spherical coordinates

to show that:

CG3 WS2324 S. Gumhold – Physically Based Simulation 27

Ωall = ඵ

Ωall

1 𝑑Ω = න

0

𝜋

න

−𝜋

𝜋

1𝑑𝜑 ∙ sin𝜃𝑑𝜃= 2𝜋 න

0

𝜋

sin𝜃𝑑𝜃

= 2𝜋 −cos𝜃 0
𝜋 = 2𝜋 1 − −1 = 4𝜋
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Applied Analysis

Summary

 a lot of physical quantities are derivatives of others

 the variables with respect to which the derivation is 

applied, add their units to the denominator

 with respect to location one can do 

 triple derivatives yielding again a scalar density or 

 gradients that result in vector valued quantities like forces

 integration of conservative forces along paths can be 

computed from differences in potential energy

 not all force fields can be integrated, only the ones 

where the curl vector vanishes

 when integrating directions in spherical coordinates an 

additional sin𝜃 is needed
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MINIMIZATION PRINCIPLE

Introduction to Physically Based Simulation

CG3 WS2324 S. Gumhold – Physically Based Simulation 29



Computergraphik
und Visualisierung

Minimization Principle

Fermat’s Principle

Light travels along the shortest path with

respect to time

 from this the laws for reflection and refraction follow
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𝑐2
𝑐1
=
sin𝛽

sin𝛼

𝛼 = 𝛽

http://de.wikipedia.org/wiki/Fermatsches_Prinzip

http://de.wikipedia.org/wiki/Fermatsches_Prinzip
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Minimization Principle

Principle of Least / Stationary Action

 mechanical systems can be completely described through the 

scalar Lagrangian 𝐿 that depends on the time dependent 

state vector 𝒚 𝑡 of the system and potentially on time 𝑡:

𝐿 𝒚 𝑡 , 𝑡 = 𝑇 − 𝑉

 with the kinetic energy 𝑇 and the potential energy 𝑉.

 the state vector 𝒚 contains all object positions and velocities

 the action 𝑆 of the system is defined as the functional that 

maps the time evolution of the system state to a scalar:

𝑆 𝐿 𝑡1, 𝑡2 = න
𝑡1

𝑡2

𝐿 𝒚 𝑡 , 𝑡 𝑑𝑡

The path 𝒚 𝑡 taken by the system between times 𝑡1 and 𝑡2 is the 

one for which the action is stationary (no change) to first order.
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Minimization Principle

Principle of Least / Stationary Action

 With variational calculus the Euler Lagrange Equations 

can be derived from the principle of stationary action:

∀𝑖:
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
=
𝜕𝐿

𝜕𝑞𝑖

 here 𝑖 enumerates the generalized positions 𝑞𝑖 and 

generalized velocities ሶ𝑞𝑖.

Example: harmonic oscillator

 𝐿 = 𝑇 − 𝑉 = 1

2
𝑚 ሶ𝑥2−

1

2
𝑘𝑥2



𝜕𝐿

𝜕 ሶ𝑥
= 𝑚 ሶ𝑥 ,  

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
= 𝑚 ሷ𝑥 ,  

𝜕𝐿

𝜕𝑥
= −𝑘𝑥 ⟹ 𝑚 ሷ𝑥 = −𝑘𝑥
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Minimization Principle

Summary

 the dynamics of physical systems can be formulated as 

minimization problem

 examples: 

 Fermat‘s Principle (shortest paths)

 Least Action Principle

 if minimization is over functions, one needs variational

calculus

 from Least Action Principle one can derive the Euler 

Lagrange Equations that generalize equations of motions

CG3 WS2324 S. Gumhold – Physically Based Simulation 33



Computergraphik
und Visualisierung

SYMMETRIES AND CONSERVED 

QUANTITIES

Introduction to Physically Based Simulation
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Symmetries & Conserved Quantities

Noether Theorem

Any differentiable symmetry of the action of a physical 

system has a corresponding conservation law.

Examples

 time symmetry: As laws of physics / experiments do not 

depend on when they are done, energy is conserved

 location symmetry: As laws of physics / experiments do 

not depend on where they are done, linear momentum 

(mass times linear velocity) is conserved 

 orientation symmetry: As laws of physics / experiments 

do not depend on their spatial orientation, angular 

momentum (inertia tensor times angular velocity) is 

conserved 
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Symmetries & Conserved Quantities

Symplectic Numerical Integration

 Explicit numerical integration 

techniques like the explicit Euler add 

energy to the system (system 

becomes instable)

 Implicit integration techniques are 

stable but unnaturally damp the 

system and remove energy

 Symplectic integrators conserve ener-

gy as good as possible but are not 

stable for stiff systems.
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h=0,3

explicit

implicit

ሶ𝑥 = 𝑓 𝑣, 𝑡

ሶ𝑣 = 𝑔 𝑥, 𝑡

𝑥𝑖+1 = 𝑥𝑖 + ℎ ∙ 𝑓 𝑣𝑖 , 𝑡

𝑣𝑖+1 = 𝑣𝑖 + ℎ ∙ 𝑔 𝑥𝑖 , 𝑡

𝑥𝑖+1 = 𝑥𝑖 + ℎ ∙ 𝑓 𝑣𝑖+1, 𝑡

𝑣𝑖+1 = 𝑣𝑖 + ℎ ∙ 𝑔 𝑥𝑖+1, 𝑡 𝑥𝑖+1 = 𝑥𝑖 + ℎ ∙ 𝑓 𝑣𝑖+1, 𝑡

𝑣𝑖+1 = 𝑣𝑖 + ℎ ∙ 𝑔 𝑥𝑖 , 𝑡

system of
diff. equa.

explicit Euler implicit Euler
semi-implicit /
symplectic Euler

semi-implicit
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Symmetries & Conserved Quantities

Continuity equation

Example: mass preservation

Lagragian view

 each particle 𝑝𝑖 carries 
mass 𝑚𝑖; automatic preser-
vation if particles persist

Eulerian view

 mass is represented as 
density field 𝜌(𝒙) over grid

 cell volume: 𝑑𝑉 = 𝑑𝑥3

 imagine mass is split into 
equal sized particles of 
density 𝜋(𝒙) and mass 𝑚

 mass density:

 each particle travels
with velocity 𝒖(𝒙)

How does particle movement 
change 𝜌 over time step 𝑑𝑡?

 let us restrict motion to 𝑥 dir. 
and examine one cell

 traveled distance: 𝑢𝑥 ⋅ 𝑑𝑡

 particle in/outflow(left/right): 
𝑑𝑥2 ⋅ (𝜋 ⋅ 𝑢𝑥)(𝑥 ∓ 𝑑𝑥/2) ⋅ 𝑑𝑡

 change in mass density:
𝜕𝜌

𝜕𝑡
= −𝑚 ⋅

𝜕(𝜋 ⋅ 𝑢𝑥)

𝜕𝑥
= −

𝜕(𝜌 ⋅ 𝑢𝑥)

𝜕𝑥
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𝜌 = 𝑚 ⋅ 𝜋 ⋅ 𝑑V
𝑛𝑟.𝑝𝑎𝑟𝑡.
𝑖𝑛 𝑐𝑒𝑙𝑙

/𝑑𝑉

+
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Symmetries & Conserved Quantities

Continuity equation

 as we have the same in/outflows along the other 

coordinate directions, we get:

𝜕𝜌

𝜕𝑡
𝒙 +

𝜕 𝜌 𝒙 ⋅ 𝑢𝑥 𝒙

𝜕𝑥
+
𝜕 𝜌 𝒙 ⋅ 𝑢𝑦 𝒙

𝜕𝑦
+
𝜕 𝜌 𝒙 ⋅ 𝑢𝑧 𝒙

𝜕𝑧
= 0

 introducing the mass flux vector Ԧ𝒋 = 𝜌 ⋅ 𝒖 this simplifies:

𝜕𝜌

𝜕𝑡
𝒙 +

𝜕𝑗𝑥 𝒙

𝜕𝑥
+
𝜕𝑗𝑦 𝒙

𝜕𝑦
+
𝜕𝑗𝑧 𝒙

𝜕𝑧
= 0

 the formula simplifies further by introducing the 

divergence operator div 𝒗 = 𝜕𝑥𝑣𝑥 + 𝜕𝑦𝑣𝑦 + 𝜕𝑧𝑣𝑧:

𝜕𝑡𝜌 + div Ԧ𝒋 = 𝜕𝑡𝜌 + div 𝜌𝒖 = 0

 Finally we introduce a volumetric mass source 𝜎(𝒙)

yielding the mass continuity equation:

𝜕𝑡𝜌 + div 𝜌𝒖 = 𝜎

CG3 WS2324 S. Gumhold – Physically Based Simulation 38



Computergraphik
und Visualisierung

Symmetries & Conserved Quantities

Continuity equation

 The continuity equation can be constructed for any other 

quantity 𝑞(𝒙) carried with fluid particles like electric 

charge by exchanging the symbol 𝜌 with 𝑞.

 An alternative derivation from density 𝜌(𝒙), velocity 

𝒖(𝒙), flux Ԧ𝒋(𝒙) and source 𝜎(𝒙) fields results from an 

integral formulation, that keeps book on all changes in 𝑞:

𝑑𝜌

𝑑𝑡
+඾

𝑆

Ԧ𝒋 ∙ 𝑑𝑺 =ම

𝑉

𝜎𝑑𝑉

 The differential form is given again as:
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣Ԧ𝒋 = 𝜎

 For conserved quantities 𝜎 ≡ 0.
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𝑑𝑺…infinitesimal 
surface area times
surface normal

𝑉
𝑑𝑺

Ԧ𝒋
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Symmetries & Conserved Quantities

Summary

 It is important to be aware of quantities that are 

conserved in physical systems like energy

 These are due to spatial and temporal symmetries in the 

laws of physics

 Symplectic numerical integration methods target for 

energy preservation

 Continuity equations describe temporal changes of 

physical quantities inside of fluids or fields. For 

conserved quantities they do not have a source term.
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