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e Firstlaw: In aninertial frame of
reference, an object either remains at
rest or continues to move at a
constant velocity, unless acted upon
by a force.

@ Second law: In an inertial frame of
reference, the vector sum of the
forces F on an object with constant
mass m is equal to m multiplied by
the acceleration a of the object:

F = ma.

® Third law: When one body exerts a
force on a second body, the second
body simultaneously exerts a force
equal in magnitude and opposite in
direction on the first body.
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spring force <« Stiffness constant of spring

@ Hook's law: TFy = —kx
@ 2" Newton's law: F = Fy = ma = m¥, with ¥ = %
® eqg. of motion: mi = —kx, with x(0) = x,, x(0) = x,
@ solution to Initial value problem:
angular frequency phase "
x(t) =A-cos(wt+ ¢) with w = —, |4, p](xq, Xo)

x(t) = —wA - sin(wt + ¢)
¥(t) = —w?A - cos(wt + @)
@ state A X

space ﬂ\ ¢
diagram: L) Railiilile B DU
S
-
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® combine location and velocity to

N X
state vector y = (v i x) .

: : : mulated
® rewrite equations of motion error

mi = ke =3 = (5) = (L2 o))

xo) polygonal

@ start with initial state y, = (vo approx.

@ discretize state space trajectory
with polygon through ¥;-¢ »

® simplest approach is explicit Euler:
Vis1 = Yi + hy;
with step width h.

@ very small step widths necessary
for explicit Euler

® use higher order methods

h=1  RungeKuttad’
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® A physical constant is a physical quantity that Is
generally believed to be both universal in nature and
constant in time.

® The concrete value of a physical constant depends on
the chosen units.

® |n Sl units the most fundamental constants are ety in

e speed of light in vacuum c 299792 458M|ast two digits
@ Newtonian constant of gravitation y 6.674 30(15)x10""m3.kg™"-s72
® Planck constant h 6.626 070 15 x 10734 J-s

® The appearance of our universe strongly depends on the
values of these constants

@ Anthropic principle: the values of the constants must be
like that as we do observe them as living beings.
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® A physical quantity is always

. . . [ =1m,v = 55, m = 2kg, ...
accompanied by a physical unit my=osm 5

® Systéme International d'unités Ave
defines the 7 base units |
e Kelvin (temperature)’1/273.16of temperature of the triple point of water c . P h
4 4 &7/
® second (time), 9192631770 cycles of a Caesium atomic clock 0 @
® meter (distance) path length travelled by light in a vacuum in 1/299792458 second
- mass of Big K, till Nov 2018,
® kilogram (maSS)'nowfromh=6.62607015-10—34 =n e ’70 @‘:“ Na
® candela (luminous intensity),
® mole | £ b number N, = 6.02214076 x 1023 ° @
ole (amount of substance) of atoms in 12g 1C 71 \
: lectri i |
® Ampere (electric current) SericQren e 1/ e persecond ke .
® derived units can be written Dependence of 7 Sl base unit
with a scale n and 7 exponents de.flnl"uons on thS|caI constants
: fab + with fixed numerical values and
In terms ot a base unit: on other base units
10" - m* - kgf - s¥ - A% - K& - molS - cd” Ohm:Q =m?-kgl-s73.A2
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@ Physical units help to validate physical formulas and to
derive units of physical constants:

® one cannot add quantities of different units

® |eft and right side of an equality must have the same unit

® The arguments of functions like sin, cos, exp, ... cannot have a

unit (also steradian is not allowed here)

Example: damped harmonic oszillator

d?x dx
e mﬁ +BE + kx —F(t)

® \What unit has damping constant?

/en.wikipedia.org/wiki/Nondimensionalization

dX x =dis ilibri
_ = displacement from equilibrium [m]
[B] — [F(t)]/ [dt t =time [s]
F = external force [kg - m - s 2]
= kg.m.s_z/m.s_l — kg.s_l m = mass of the block [kg]

B = damping constant

k = force constant of spring [kg : s 2]
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® origin: 1 candela measures how 1T ,
: : 5oL SCOtOpIC
bright the human eye perceives a

-luminosity
wax candle. o7t function

® quantity: luminous intensity

sk

® Brightness perception of human
eye increases with light power
and depends on wavelength
through the CIE standardized

photopic
~ luminosity
. function

o

IRl

]

1 1 1 1 1
400 450 500 580 &00 B50 700

photopic luminosity function y(4)
® TJo relate light intensity (emitting

from a point) to power [Watt] one o solid angle 0
m_tegr_ates Intensity over r of area A |
direction 5 measured in

steradian sr
on sphere
with radius r

® S5o0lid angle measures directions
by their covered area on the unit
sphere and is measured Iin
steradian (sr)
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@ Def.: 1 candela in given
direction is luminous intensity
of light source emitting 1/683
Watt of monochromatic green
(K.q = 540 x 10*2Hz) light per
SI.

® |[ts definition depends on Watt,
Hertz and steradian and

therefore on m, s, and kg:
1

® hertz: Hz = s~
e watt: W =kg-m?.s73

® steradian: sr=m? -m™2

® For steradian all base units
cancel out, but we still write it
as sr to distinguish from a pure
scalar.
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For physically based graphics (excluding molecular and electro
dynamics) the following standard and non-standard units are important

® Second S duration, time S

® Meter m  length, position, size m

® Kilogram kg mass kg

e Kelvin K temperature K

® Candela cd luminous intensity cd

® Steradian sr  solid angle mZ2-m-2

® Lumen Im  luminous flux cd-sr

® [ux IXx illuminance Im/m? = cd-srr-m—2
e Hertz Hz frequency s

e Newton N  force kg-m-s2
e Pascal Pa pressure N/m? = kg-m .52
e Joule J energy, work, heat N-m kg-m?2.s72
e \\att W  power, radiant flux J/s = kg-m2.s73
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@ |f the physical laws of a system P oo N
. :

are known one can get rid of all foi) e
units by a simple variable \._j/ e
substitution.

® The remaining constants are
dimensionless and parameterize
different behaviors of the system.

Example:

® dimensionless Navier Stokes
Equations of incompressible

LS fully rurbalent wake

fluids are parametrized over ® he> s~

Patterns in fluid flow around a cylinder

as a function of the Reynolds number.

ou, ou, op 1 azui ou, Image Source: http://www.hitech-
— t Z U —=—F%"+—- > T f and Z— =0 projects.com/euprojects/artic/index/Low%20Reynolds%20n
ot T ox  ox ReT X icf1.2.3) 70X umber%20flows.pdf

Reynolds number Re:
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Example: damped harmonic oszillator

x 3% ke = aF ()
m o2 dt X =
e Substitutions: T == and y = =
X dz)( X d)(
2 +B—— +kx.y = AF(zt
2 az | todr X (ztc)
@ Division of constant from highest derivative order term:
d’y  Bdy k t2
dt?2 ‘“mdr ¢ mX mx, f(@)

" A
@ Define constant t, = \/% and x, =

x dx | . _ . B
— +2{— +x = f(1), with damping ratio 2{ = —

® unit free damping ratio defines system behavior
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® Physical quantities carry units that help to validate
formula and to interpret constants

® S| defines 7 base units and expresses all other units as
powers of these

® One of these 7 is Candela, which is used for photogram-
metric measurements of visible light intensity relative to
the spectral sensitivity of the human eye.

@ A few physical constants define the physics in our
universe that would look very different if their values
would change slightly

@ For a given physical system nondimensionalization
allows to describe the system with unit free variables
and a few characteristic unit free parameters

CG3WS2324 S. Gumhold - Physically Based Simulation 16 _J



VT,
“(( ve,‘ Computergraphik
AY" und Visualisierung

Introduction to Physically Based Simulation

APPLIED ANALYSIS

CG3WS2324 S. Gumhold - Physically Based Simulation 17



Applied Analysis “(/VAA

Computergraphik
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® The specialization of a quantity with
respect to some independent variable is ioht
mathematically describes as a derivative bgeam
@ From a physical point of view one
designs a filter that restricts the detector
measurement process to a small interval spectral
of the independent variable prism filter
® \Ne need specialization with respect to
time to learn about the time evolution aw
@ power is work done per time power: P ==~
® velocity is path length change per time velocity: v = %
@ acceleration is velocity change per time v d’s
acceleration: a = oy

@ Other important independent variables
are location, direction and wavelength

@ radiant power per wavelength is spectral spectral power: ®; = aoe

power dA

CG3WS2324 S. Gumhold - Physically Based Simulation 18



Computergraphik
r
~$Y! und Visualisierung

Applied Analysis “((;‘V‘X\
Density )

@ triple derivative of mass m dm d3m(x,y,z)

. P =
with respect to volume V av dxdydz
yields density p

@ unit of density is kg/m?3

@ triple integration of density m = ﬂj p(x,y,z)dxdydz
vV

gives back mass
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Eulerian View Lagragian View
® Describe physics as fields ® Describe physics in form of
(flow field, irradiance fields, ...) particles that move in space
over space @ During particle simulations,
® For simulation fields are often particles are the discretization
discretized over grids or unit and typically do not
meshes and finite difference or represent single physical
finite element methods are particles (photons, molecules,
applied. ...) but bundles of them

fields are easy to implement particles are conceptually simple
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@ discretize

Pijk
density values per grid location

P — {pl — (xi; Yi;Zi;mi)}i

specialize & w

set of particles

@ Conversion from field to particles is done by interpreting
density as particle probability and sampling

p(x,y,2)

sampling > P

@ Conversion back to [discretized] fields through density
estimation and reconstruction

p(x,y,2z) < reconstruction

Pijk < density estimation P
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Applied Analysis /{‘ﬁ\
Conservative Force, Potential Energy \

. © Google&Méps

. LS00 . D e -
gradient is direction of steepest ascent, force points in opposite direction

Example: Potential energy for near-Earth gravity qbg (E) =m-g- h(g)
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® negated gradient of potential

energy ¢ with respect to F = _‘71915(5)
location x yields conservative
force F. Unit: N =J/m X tr
® work W done by force from W= L Fdx = ft (F, x)dt
0

integration along path x(t) =

® gradient theorem states that ~ ,, _ _ f& v (x)dx
work done by force is potential e T
difference of path end points

X
= ~¢(®)| = ¢(x0) - p(x:)
® no work done nor necessary =0
for cyclic paths where x, = x; 9L, _ 66Fy
Xo = X z— 2
@ force is conservative, Iff curl V,xF=|2_2%|_3
. bt Z X
of force vanishes everywhere 9F, _ oF,
dx dy
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0.6

0.2

F, = —0,¢p =—-2x—-2y, oof N A N

F=—dyp=-2x+2y . |

N oaf| | | f;/x_
— _ | | [ 4

VxF z Oxly = Oy F ook L L LA ]4

=—-2—-(-2)=0 -
(=2) #(x) F=—2(x+y)
X—y
— rdex=x2+xy+Cx ]
| >Cx —zy + C
| ) Cy=x*+C 1
— | K, dy =—-y“+xy+(,

d(x) =x2+2xy—y?2+C
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Example 2 - Non Conservative Force

///"’"_ BN \\

/‘/*"—
f//’*“\?
///‘,._k\

/-t/'_"‘

in -10 Xmax= |10

IR

) E. dx = 2xy + C,

C, =7
: |l — Cy —7

— | E,dy = —2xy + C,
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® Solid angle is used to measure
a set of directions w repre-
sented as unit vectors

® Typically w i1s parameterized
over the unit sphere In
spherical coordinates ¢,6

® [his parametrization is relative
to local surface normal n

@ solid angle Q is measured In

area covered on unit sphere cospsing\
® nonstandard unit: sr (steradian) @ = singsind |, ’
cost 0 €10,7]

@ integration of solid angle yields
double integral over ¢ and 6 dQ = do -sinfdo
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® The solid angle corresponding to all directions Is 4

® The solid angle of a hemisphere (directions to the
outside at surface point), is therefore 2m

® One just needs to integrate 1 over spherical coordinates
to show that:

T T 1T
Qall — ﬂldﬂ =f fld(p . sinfdo = ansinede
qall 0 \—m 0

= 2m|—cosO|}y = Zn(l — (—1)) = 41
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@ a |lot of physical quantities are derivatives of others

@ the variables with respect to which the derivation Is
applied, add their units to the denominator

@ with respect to location one can do
@ triple derivatives yielding again a scalar density or
® gradients that result in vector valued quantities like forces

@ integration of conservative forces along paths can be
computed from differences in potential energy

@ not all force fields can be integrated, only the ones
where the curl vector vanishes

® when integrating directions in spherical coordinates an
additional sinf Is needed
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MINIMIZATION PRINCIPLE
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Light travels along the shortest path with
respect to time

® from this the laws for reflection and refraction follow
http://de.wikipedia.org/wiki/Fermatsches Prinzip P
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® mechanical systems can be completely described through the
scalar Lagrangian L that depends on the time dependent
state vector y(t) of the system and potentially on time t:

Liy),t)=T—-V

® with the kinetic energy T and the potential energy V.
the state vector y contains all object positions and velocities

® the action S of the system is defined as the functional that

maps the time evolution of the system state to a scalar:
Ly

SILI(ts, t5) = f L), O)dt

t1

The path y(t)taken by the system between times t, and t, is the
one for which the action is stationary (no change) to first order.
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e® \With variational calculus the Euler Lagrange Eguations

Lod (oL _ oL
l.dt aql _aqi

generalized velocities g;.
Example: harmonic oscillator

® L=T-V = %mxz—%kxz
o L mx i(a—L
ox ' dt \9x

.. 0L .
)=mx, a=—kx=mx=—kx
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@ the dynamics of physical systems can be formulated as
minimization problem

® examples:
® Fermat's Principle (shortest paths)
® [east Action Principle

® if minimization is over functions, one needs variational
calculus

® from Least Action Principle one can derive the Euler
Lagrange Equations that generalize equations of motions
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Any differentiable symmetry of the action of a physical
system has a corresponding conservation law.

Examples

® time symmetry: As laws of physics / experiments do not
depend on when they are done, energy Is conserved

@ |ocation symmetry: As laws of physics / experiments do
not depend on where they are done, linear momentum
(mass times linear velocity) i1s conserved

@ orientation symmetry: As laws of physics / experiments
do not depend on their spatial orientation, angular
momentum (inertia tensor times angular velocity) 1s
conserved
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® Explicit numerical integration L explict
techniques like the explicit Euleradd | i
energy to the system (system
becomes instable)

® |mplicit integration technigques are
stable but unnaturally damp the
system and remove energy

® Symplectic integrators conserve ener- L
gy as good as possible but are not
stable for stiff systems.

1mpI|C|t

—0.5

05 —-0.5

X=f,t) | xig1=x;+h-f(vy,t) | X4 =x;+h- f(Wi1,8) | Vigr =vi+h-g(x;,t)
vV=g0x,t) | Vigr =Vi+th-gle,t) |vigg =v+h-gxiq,t) | x40 =2+ he f(Vi4q,0)
semi-implicit /
symplectic Euler

system of

diff. equa. explicit Euler implicit Euler
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Example: Mass preservation ol o e

Lagragian view o|ofofe]e
® each particle p; carries il Wl
mass m;; automatic preser- | *|*|°|°|°]
vation if particles persist clelel°]e
Eulerian view How does particle movement
® mass is represented as change p over time step dt?
density field p(x) over grid ® let us restrict motion to x dir.
e cellvolume: dV = dx3 and examine one cell
e imagine mass is split into e traveled distance: u, - dt
equal sized particles of e particle in/outflow(left/ ):
density m(x) and mass m dx? - (m-u,)(x +dx/2)-dt
® massdensity: p=m-1-dV /dVe changein mass density:
nrpart. dp O -uy)  0(p-uy)

® each particle travels ", _
with velocity u(x) dt 0x 0x
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® as we have the same infoutflows along the other
coordinate directions, we get:

o (o (x) ux(x>) 1 (p(®) () 9(p(x) ()
( ) dy * 0z
O mtroducmg the mass flux vector j = p - u this simplifies:
afx(x) ij(x) an(x)
( ) +
dy 0z
® the formula S|mpl|f|es further by introducing the
divergence operator divv = 0,v, + dyvy, + 0,0,
d.p + div(j) = d,p + div(pu) = 0

@ Finally we introduce a volumetric mass source a(x)

vielding the mass continuity equation:
d.p + div(pu) = o

=0

=0
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@ The continuity equation can be constructed for any other
quantity g(x) carried with fluid particles like electric
charge by exchanging the symbol p with g.

@ An alternative derivation from density p(x), velocity
u(x), flux j(x) and source a(x) fields results from an
iIntegral formulation, that keeps book on all changes in g:

as 2
— d S— dSs...infinitesimal
’ \ _,0 + #] - dS = fjf odlV surface area times
\ 7 dt
S |74

) surface normal

® The differential form is given again as:

d
a—':+divf=a

@ For conserved quantities o = 0.
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@ |t is iImportant to be aware of quantities that are
conserved In physical systems like energy

® These are due to spatial and temporal symmetries in the
laws of physics

® Symplectic numerical integration methods target for
energy preservation

@ Continuity equations describe temporal changes of
physical quantities inside of fluids or fields. For
conserved quantities they do not have a source term.
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