Computergraphik und Visualisierung

CG3

Introduction to Physically Based Simulation

Content

Introduction to Physically Based Simulation

- Harmonic Oscillator
- Physical Quantities
- Applied Analysis
- Minimization Principle
- Symmetries and Conserved Quantities

Introduction to Physically Based Simulation

HARMONIC OSCILLATOR

Preliminaries

Newton's laws of motion

- First law: In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
- Second law: In an inertial frame of reference, the vector sum of the forces F on an object with constant mass m is equal to m multiplied by
 the acceleration a of the object: $F=m a$.
- Third law: When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

Harmonic Oscillator Analytic Solution

- Hook's law: spring force ${ }^{-} F_{H}=-k x^{5}$
- $2^{\text {nd }}$ Newton's law: $F=F_{H}=m a=m \ddot{x}$, with $\ddot{x}=\frac{d^{2} x}{d t^{2}}$
- eq. of motion: $\quad m \ddot{x}=-k x$, with $x(0)=x_{0}, \dot{x}(0)=\dot{x}_{0}$
- solution to initial value problem:

$$
\begin{aligned}
& \quad \text { angular frequency } \\
& x(t)=A \cdot \cos (\omega t+\phi)^{\text {phase }} \text { with } \omega=\sqrt{\frac{k}{m}},[A, \phi]\left(x_{0}, \dot{x}_{0}\right) \\
& \dot{x}(t)=-\omega A \cdot \sin (\omega t+\phi) \\
& \ddot{x}(t)=-\omega^{2} A \cdot \cos (\omega t+\phi)
\end{aligned}
$$

- state space diagram:

Harmonic Oscillator Numeric Solution

- combine location and velocity to state vector $\overrightarrow{\boldsymbol{y}}=\binom{x}{v \equiv \dot{x}}$
- rewrite equations of motion $m \ddot{x}=-k x \Rightarrow \dot{\vec{y}}_{i}=\binom{\dot{x}}{\dot{v}}=\left(\begin{array}{cc}0 & 1 \\ -\omega^{2} & 0\end{array}\right)\binom{x}{v}$
- start with initial state $\overrightarrow{\boldsymbol{y}}_{0}=\binom{x_{0}}{v_{0}}$
- discretize state space trajectory with polygon through $\overrightarrow{\boldsymbol{y}}_{i=0 \ldots n}$
- simplest approach is explicit Euler:

$$
\overrightarrow{\boldsymbol{y}}_{i+1}=\overrightarrow{\boldsymbol{y}}_{\boldsymbol{i}}+h \dot{\overrightarrow{\boldsymbol{y}}}_{i}
$$

with step width h.

- very small step widths necessary for explicit Euler
- use higher order methods

Introduction to Physically Based Simulation

PHYSICAL QUANTITIES

Physical Quantities
 Physical Constants

- A physical constant is a physical quantity that is generally believed to be both universal in nature and constant in time.
- The concrete value of a physical constant depends on the chosen units.
- In SI units the most fundamental constants are uncertainty in
- speed of light in vacuum c $299792458 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ last two digits
- Newtonian constant of gravitation $\gamma 6.67430(15) \times 10^{-11} \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{-2}$
- Planck constant h $6.62607015 \times 10^{-34} \mathrm{~J}$.s
- The appearance of our universe strongly depends on the values of these constants
- Anthropic principle: the values of the constants must be like that as we do observe them as living beings.

Physical Quantities Physical Units

- A physical quantity is always accompanied by a physical unit

$$
l=1 \mathrm{~m}, v=5 \frac{\mathrm{~m}}{\mathrm{~s}}, m=2 \mathrm{~kg}, \ldots
$$

- Système International d'unités defines the 7 base units
- Kelvin (temperature), ${ }^{1 / 233.16 \text { of tempeature of the tiple ponintof water }}$
- second (time), 9192631770 oytes of Ca Casium molonic dod
- meter (distance), , path engghtraeeled by light in wavaum in in 12999724585 second

- candela (luminous intensity),

- derived units can be written with a scale n and 7 exponents in terms of a base unit:

Dependence of 7 SI base unit definitions on physical constants with fixed numerical values and on other base units

$$
10^{n} \cdot \mathrm{~m}^{\alpha} \cdot \mathrm{kg}^{\beta} \cdot \mathrm{s}^{\gamma} \cdot \mathrm{A}^{\delta} \cdot \mathrm{K}^{\varepsilon} \cdot \mathrm{mol}^{\zeta} \cdot \mathrm{cd}^{\eta}
$$

$$
\text { Ohm: } \Omega=\mathrm{m}^{2} \cdot \mathrm{~kg}^{1} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-2}
$$

Physical Quantities
 Physical Units

- Physical units help to validate physical formulas and to derive units of physical constants:
- one cannot add quantities of different units
- left and right side of an equality must have the same unit
- The arguments of functions like sin, cos, exp, ... cannot have a unit (also steradian is not allowed here)
Example: damped harmonic oszillator
- $m \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}+k x=F(t)$
- What unit has damping constant?

$$
\begin{aligned}
{[B] } & =[F(t)] /\left[\frac{d x}{d t}\right] \\
& =\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2} / \mathrm{m} \cdot \mathrm{~s}^{-1}=\mathrm{kg} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Physical Quantities
 Candela and Luminous Intensity

- origin: 1 candela measures how bright the human eye perceives a wax candle.
- quantity: luminous intensity
- Brightness perception of human eye increases with light power and depends on wavelength through the CIE standardized photopic luminosity function $\bar{y}(\lambda)$

- To relate light intensity (emitting from a point) to power [Watt] one integrates intensity over direction
- Solid angle measures directions by their covered area on the unit sphere and is measured in steradian (sr)

Physical Quantities
 Candela and Luminous Intensity

- Def.: 1 candela in given direction is luminous intensity of light source emitting 1/683 Watt of monochromatic green ($K_{\text {cd }}=540 \times 10^{12} \mathrm{~Hz}$) light per sr.
- Its definition depends on Watt, Hertz and steradian and therefore on m, s, and kg :
- hertz: $\mathrm{Hz}=\mathrm{s}^{-1}$
- watt: $\quad \mathrm{W}=\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3}$
- steradian: $\quad \mathrm{sr}=\mathrm{m}^{2} \cdot \mathrm{~m}^{-2}$
- For steradian all base units cancel out, but we still write it
 as sr to distinguish from a pure scalar.

Physical Quantities Standard and Non-Standard Units

For physically based graphics (excluding molecular and electro dynamics) the following standard and non-standard units are important

- Second
- Meter
- Kilogram
- Kelvin
- Candela
- Steradian
- Lumen
- Lux
- Hertz
- Newton
- Pascal
- Joule
- Watt
s
m length, position, size
kg mass
K temperature
cd luminous intensity
sr solid angle
Im luminous flux
lx illuminance
Hz frequency
N force
Pa pressure
J energy, work, heat
W power, radiant flux
S m
kg
K cd
$m^{2} \cdot m^{-2}$
$\mathrm{cd} \cdot \mathrm{sr}$
$\mathrm{lm} / \mathrm{m}^{2}=\mathrm{cd} \cdot \mathrm{sr} \cdot \mathrm{m}^{-2}$
s^{-1}
$\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$
$\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-2}$
$\mathrm{N} \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$
$\mathrm{J} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-3}$

Physical Quantities Nondimensionalization

- If the physical laws of a system are known one can get rid of all units by a simple variable substitution.
- The remaining constants are dimensionless and parameterize different behaviors of the system.

Example:

- dimensionless Navier Stokes Equations of incompressible fluids are parametrized over Reynolds number Re:

$$
\frac{\partial u_{i}}{\partial t}+\sum_{j} u_{j} \frac{\partial u_{i}}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\frac{l}{\operatorname{Re}} \sum_{j} \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}+\left.f\right|_{i \epsilon\{\{, 2,3\}} \quad \text { and } \sum_{j} \frac{\partial u_{j}}{\partial x_{j}}=0
$$

Patterns in fluid flow around a cylinder as a function of the Reynolds number. Image Source: http://www.hitech-
projects.com/euprojects/artic/index/Low\ Reynolds\ n umber\%20flows.pdf

Physical Quantities Nondimensionalization

Example: damped harmonic oszillator

$$
m \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}+k x=A F(t)
$$

- Substitutions: $\tau=\frac{t}{t_{c}}$ and $\chi=\frac{x}{x_{c}}$

$$
m \frac{x_{c}}{t_{c}^{2}} \frac{d^{2} \chi}{d \tau^{2}}+B \frac{x_{c}}{t_{c}} \frac{d \chi}{d \tau}+k x_{c} \chi=A F\left(\tau t_{c}\right)
$$

- Division of constant from highest derivative order term:

$$
\frac{d^{2} \chi}{d \tau^{2}}+t_{c} \frac{B}{m} \frac{d \chi}{d \tau}+t_{c}^{2} \frac{k}{m} \chi=\frac{t_{c}^{2}}{m x_{c}} A f(\tau)
$$

- Define constant $t_{c}=\sqrt{\frac{m}{k}}$ and $x_{c}=\frac{A}{k}$ $\frac{d^{2} \chi}{d \tau^{2}}+2 \zeta \frac{d \chi}{d \tau}+\chi=f(\tau)$, with damping ratio $2 \zeta=\frac{B}{\sqrt{m k}}$
- unit free damping ratio defines system behavior

Physical Quantities
 Summary

- Physical quantities carry units that help to validate formula and to interpret constants
- SI defines 7 base units and expresses all other units as powers of these
- One of these 7 is Candela, which is used for photogrammetric measurements of visible light intensity relative to the spectral sensitivity of the human eye.
- A few physical constants define the physics in our universe that would look very different if their values would change slightly
- For a given physical system nondimensionalization allows to describe the system with unit free variables and a few characteristic unit free parameters

Introduction to Physically Based Simulation APPLIED ANALYSIS

Applied Analysis
 One Independent Variable

- The specialization of a quantity with respect to some independent variable is mathematically describes as a derivative
- From a physical point of view one designs a filter that restricts the measurement process to a small interval of the independent variable

- We need specialization with respect to time to learn about the time evolution
- power is work done per time
- velocity is path length change per time
- acceleration is velocity change per time
- Other important independent variables are location, direction and wavelength
- radiant power per wavelength is spectral power

$$
\begin{aligned}
\text { power: } P & =\frac{d W}{d t} \\
\text { velocity: } v & =\frac{d s}{d t} \\
\text { acceleration: } a & =\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
\end{aligned}
$$

spectral power: $\Phi_{\lambda}=\frac{d \Phi}{d \lambda}$

Applied Analysis Density

- triple derivative of mass m with respect to volume V yields density ρ
- unit of density is $\mathrm{kg} / \mathrm{m}^{3}$
- triple integration of density gives back mass

$$
\rho=\frac{d m}{d V}=\frac{d^{3} m(x, y, z)}{d x d y d z}
$$

$$
m=\iiint_{V} \rho(x, y, z) d x d y d z
$$

Applied Analysis Field vs Particles

Eulerian View

- Describe physics as fields (flow field, irradiance fields, ...) over space
- For simulation fields are often discretized over grids or meshes and finite difference or finite element methods are applied.

fields are easy to implement

Lagragian View

- Describe physics in form of particles that move in space
- During particle simulations, particles are the discretization unit and typically do not represent single physical particles (photons, molecules, ...) but bundles of them

particles are conceptually simple

Applied Analysis
 Field to Particles and Back

$$
\rho(x, y, z)=\partial_{x} \partial_{y} \partial_{z} m
$$

density values per grid location

- Conversion from field to particles is done by interpreting density as particle probability and sampling

$$
\rho(x, y, z) \quad \text { sampling } \quad P
$$

- Conversion back to [discretized] fields through density estimation and reconstruction
$\rho(x, y, z)$
reconstruction

Applied Analysis Conservative Force, Potential Energy

Computergraphik und Visualisierung

gradient is direction of steepest ascent, force points in opposite direction
Example: Potential energy for near-Earth gravity $\phi_{g}(\underline{x})=m \cdot g \cdot h(\underline{x})$

Applied Analysis
 Conservative Force, Potential Energy

- negated gradient of potential energy ϕ with respect to location \underline{x} yields conservative force $\overrightarrow{\boldsymbol{F}}$. Unit: $N=J / m$
- work W done by force from integration along path $\underline{\boldsymbol{x}}(t)$

$$
W=\int_{\underline{x}_{0}}^{\underline{\boldsymbol{x}}_{1}} \overrightarrow{\boldsymbol{F}} d \underline{\boldsymbol{x}}=\int_{t_{0}}^{t_{1}}\langle\overrightarrow{\boldsymbol{F}}, \overrightarrow{\boldsymbol{x}}\rangle d t
$$

- gradient theorem states that work done by force is potential

$$
W=-\int_{\underline{x}_{0}}^{\underline{x}_{1}} \vec{\nabla}_{\underline{x}} \phi(\underline{x}) d \underline{x}
$$ difference of path end points

- no work done nor necessary

$$
=-\left.\phi(\underline{x})\right|_{\underline{x}_{0}} ^{\underline{x_{1}}}=\phi\left(\underline{x}_{0}\right)-\phi\left(\underline{x}_{1}\right)
$$ for cyclic paths where $\underline{\boldsymbol{x}}_{0}=\underline{\boldsymbol{x}}_{1}$

- force is conservative, iff curl of force vanishes everywhere

$$
\overrightarrow{\boldsymbol{F}}=-\vec{\nabla}_{\underline{x}} \phi(\underline{x})
$$

$$
\vec{V}_{\underline{x}} \times \overrightarrow{\boldsymbol{F}}=\left(\begin{array}{l}
\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z} \\
\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x} \\
\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}
\end{array}\right)=\overrightarrow{\mathbf{0}}
$$

Example 1 - Conservative Force

$$
\begin{gathered}
\phi(\underline{\boldsymbol{x}})=x^{2}+2 x y-y^{2} \\
F_{x}=-\partial_{x} \phi=-2 x-2 y_{y} \\
F_{y}=-\partial_{y} \phi=-2 x+2 y \\
\overrightarrow{\boldsymbol{\nabla}} \times\left.\overrightarrow{\boldsymbol{F}}\right|_{z}=\partial_{x} F_{y}-\partial_{y} F_{x} \\
\quad=-2-(-2)=0
\end{gathered}
$$

$$
\phi(\underline{x})
$$

$$
\overrightarrow{\boldsymbol{F}}=-2\binom{x+y}{x-y}
$$

$$
\begin{aligned}
& -\int F_{x} d x=x^{2}+x y+C_{x} \\
& -\int F_{y} d y=-y^{2}+x y+C_{y}
\end{aligned}
$$

$$
C_{x}=-y^{2}+C
$$

$$
C_{y}=x^{2}+C
$$

$$
\phi(\underline{\boldsymbol{x}})=x^{2}+2 x y-y^{2}+C
$$

Example 2 - Non Conservative Force

Computergraphik und Visualisierung

$$
\begin{gathered}
\overrightarrow{\boldsymbol{F}}=2\binom{-y}{x} \\
\overrightarrow{\boldsymbol{\nabla}} \times\left.\overrightarrow{\boldsymbol{F}}\right|_{z}=\partial_{x} F_{y}-\partial_{y} F_{x} \\
=2-(-2)=4 \neq 0 \\
-\int F_{x} d x=2 x y+C_{x} \\
-\int F_{y} d y=-2 x y+C_{y}
\end{gathered}
$$

$C_{x}=$?
$C_{y}=$?

Applied Analysis
 Directions and Solid Angle

- Solid angle is used to measure a set of directions ω represented as unit vectors
- Typically ω is parameterized over the unit sphere in spherical coordinates φ, θ
- This parametrization is relative to local surface normal n
- solid angle Ω is measured in area covered on unit sphere
- nonstandard unit: sr (steradian)
- integration of solid angle yields double integral over φ and θ

$d \Omega=d \varphi \cdot \sin \theta d \theta$

Applied Analysis
 Directions and Solid Angle

- The solid angle corresponding to all directions is 4π
- The solid angle of a hemisphere (directions to the outside at surface point), is therefore 2π
- One just needs to integrate 1 over spherical coordinates to show that:

$$
\begin{aligned}
\Omega^{\mathrm{all}}= & \iint_{\Omega^{\mathrm{all}}} 1 d \Omega=\int_{0}^{\pi}\left(\int_{-\pi}^{\pi} 1 d \varphi\right) \cdot \sin \theta d \theta=2 \pi \int_{0}^{\pi} \sin \theta d \theta \\
& =2 \pi[-\cos \theta]_{0}^{\pi}=2 \pi(1-(-1))=4 \pi
\end{aligned}
$$

Applied Analysis
 Summary

- a lot of physical quantities are derivatives of others
- the variables with respect to which the derivation is applied, add their units to the denominator
- with respect to location one can do
- triple derivatives yielding again a scalar density or
- gradients that result in vector valued quantities like forces
- integration of conservative forces along paths can be computed from differences in potential energy
- not all force fields can be integrated, only the ones where the curl vector vanishes
- when integrating directions in spherical coordinates an additional $\sin \theta$ is needed

Introduction to Physically Based Simulation MINIMIZATION PRINCIPLE

Minimization Principle Fermat's Principle

Light travels along the shortest path with respect to time

- from this the laws for reflection and refraction follow
http://de.wikipedia.org/wiki/Fermatsches Prinzip

$$
\frac{c_{2}}{c_{1}}=\frac{\sin \beta}{\sin \alpha}
$$

Minimization Principle
 Principle of Least / Stationary Action

- mechanical systems can be completely described through the scalar Lagrangian L that depends on the time dependent state vector $\overrightarrow{\boldsymbol{y}}(t)$ of the system and potentially on time t :

$$
L(\overrightarrow{\boldsymbol{y}}(t), t)=T-V
$$

- with the kinetic energy T and the potential energy V.
- the state vector \vec{y} contains all object positions and velocities
- the action S of the system is defined as the functional that maps the time evolution of the system state to a scalar:

$$
S[L]\left(t_{1}, t_{2}\right)=\int_{t_{1}}^{t_{2}} L(\overrightarrow{\boldsymbol{y}}(t), t) d t
$$

The path $\overrightarrow{\boldsymbol{y}}(t)$ taken by the system between times t_{1} and t_{2} is the one for which the action is stationary (no change) to first order.

Minimization Principle
 Principle of Least / Stationary Action

- With variational calculus the Euler Lagrange Equations can be derived from the principle of stationary action:

$$
\forall i: \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{\partial L}{\partial q_{i}}
$$

- here i enumerates the generalized positions q_{i} and generalized velocities \dot{q}_{i}.
Example: harmonic oscillator
- $L=T-V=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2}$
$\frac{\partial L}{\partial \dot{x}}=m \dot{x}, \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=m \ddot{x}, \frac{\partial L}{\partial x}=-k x \Rightarrow m \ddot{x}=-k x$

Minimization Principle
 Summary

- the dynamics of physical systems can be formulated as minimization problem
- examples:
- Fermat's Principle (shortest paths)
- Least Action Principle
- if minimization is over functions, one needs variational calculus
- from Least Action Principle one can derive the Euler Lagrange Equations that generalize equations of motions

Introduction to Physically Based Simulation

SYMMETRIES AND CONSERVED QUANTITIES

Symmetries \& Conserved Quantities Noether Theorem

Any differentiable symmetry of the action of a physical system has a corresponding conservation law.

Examples

- time symmetry: As laws of physics / experiments do not depend on when they are done, energy is conserved
- location symmetry: As laws of physics / experiments do not depend on where they are done, linear momentum (mass times linear velocity) is conserved
- orientation symmetry: As laws of physics / experiments do not depend on their spatial orientation, angular momentum (inertia tensor times angular velocity) is conserved

Symmetries \& Conserved Quantities Symplectic Numerical Integration

- Explicit numerical integration techniques like the explicit Euler add energy to the system (system becomes instable)
- Implicit integration techniques are stable but unnaturally damp the system and remove energy
- Symplectic integrators conserve ener-
 gy as good as possible but are not stable for stiff systems.

$\dot{x}=f(v, t)$	$x_{i+1}=x_{i}+h \cdot f\left(v_{i}, t\right)$	$x_{i+1}=x_{i}+h \cdot f\left(v_{i+1}, t\right)$	$v_{i+1}=v_{i}+h \cdot g\left(x_{i}, t\right)$
$\dot{v}=g(x, t)$	$v_{i+1}=v_{i}+h \cdot g\left(x_{i}, t\right)$	$v_{i+1}=v_{i}+h \cdot g\left(x_{i+1}, t\right)$	$x_{i+1}=x_{i}+h \cdot f\left(v_{i+1}, t\right)$
system of diff. equa.	explicit Euler	implicit Euler	semi-implicit $/$ symplectic Euler

Symmetries \& Conserved Quantities Continuity equation

Example: mass preservation

Lagragian view

- each particle p_{i} carries mass m_{i}; automatic preservation if particles persist

Eulerian view

- mass is represented as density field $\rho(\underline{x})$ over grid
- cell volume: $d V=d x^{3}$
- imagine mass is split into equal sized particles of density $\pi(\underline{x})$ and mass m

How does particle movement change ρ over time step $d t$?

- let us restrict motion to x dir. and examine one cell
- traveled distance: $u_{x} \cdot d t$
- particle in/outflow(left/right):

$$
d x^{2} \cdot\left(\pi \cdot u_{x}\right)(x \mp d x / 2) \cdot d t
$$

- mass density: $\rho=m \cdot \underbrace{\pi \cdot d V} / d V$ - change in mass density:
- each particle travels with velocity $\vec{u}(\underline{x})$
nr.part.
in cell

Symmetries \& Conserved Quantities Continuity equation

- as we have the same in/outflows along the other coordinate directions, we get:

$$
\frac{\partial \rho}{\partial t}(\underline{\boldsymbol{x}})+\frac{\partial\left(\rho(\underline{\boldsymbol{x}}) \cdot u_{x}(\underline{\boldsymbol{x}})\right)}{\partial x}+\frac{\partial\left(\rho(\underline{\boldsymbol{x}}) \cdot u_{y}(\underline{\boldsymbol{x}})\right)}{\partial y}+\frac{\partial\left(\rho(\underline{\boldsymbol{x}}) \cdot u_{z}(\underline{\boldsymbol{x}})\right)}{\partial z}=0
$$

- introducing the mass flux vector $\overrightarrow{\boldsymbol{\jmath}}=\rho \cdot \overrightarrow{\boldsymbol{u}}$ this simplifies:

$$
\frac{\partial \rho}{\partial t}(\underline{\boldsymbol{x}})+\frac{\partial j_{x}(\underline{\boldsymbol{x}})}{\partial x}+\frac{\partial j_{y}(\underline{\boldsymbol{x}})}{\partial y}+\frac{\partial j_{z}(\underline{\boldsymbol{x}})}{\partial z}=0
$$

- the formula simplifies further by introducing the divergence operator $\operatorname{div} \overrightarrow{\boldsymbol{v}}=\partial_{x} v_{x}+\partial_{y} v_{y}+\partial_{z} v_{z}$:

$$
\partial_{t} \rho+\operatorname{div}(\overrightarrow{\boldsymbol{\jmath}})=\partial_{t} \rho+\operatorname{div}(\rho \overrightarrow{\overrightarrow{\boldsymbol{u}}})=0
$$

- Finally we introduce a volumetric mass source $\sigma(\underline{x})$ yielding the mass continuity equation:

$$
\partial_{t} \rho+\operatorname{div}(\rho \overrightarrow{\boldsymbol{u}})=\sigma
$$

Symmetries \& Conserved Quantities Continuity equation

- The continuity equation can be constructed for any other quantity $q(\underline{x})$ carried with fluid particles like electric charge by exchanging the symbol ρ with q.
- An alternative derivation from density $\rho(\underline{x})$, velocity $\overrightarrow{\boldsymbol{u}}(\underline{\boldsymbol{x}})$, flux $\overrightarrow{\boldsymbol{\jmath}}(\underline{\boldsymbol{x}})$ and source $\sigma(\underline{\boldsymbol{x}})$ fields results from an integral formulation, that keeps book on all changes in q :

$$
\frac{d \rho}{d t}+\oiint_{S} \overrightarrow{\boldsymbol{j}} \cdot d \overrightarrow{\boldsymbol{s}}=\iiint_{V} \sigma d V
$$

- The differential form is given again as:

$$
\frac{\partial \rho}{\partial t}+\operatorname{div\vec {\jmath }=\sigma }
$$

- For conserved quantities $\sigma \equiv 0$.

Symmetries \& Conserved Quantities Summary

- It is important to be aware of quantities that are conserved in physical systems like energy
- These are due to spatial and temporal symmetries in the laws of physics
- Symplectic numerical integration methods target for energy preservation
- Continuity equations describe temporal changes of physical quantities inside of fluids or fields. For conserved quantities they do not have a source term.

