

Advanced Materials

Prof. Dr. Stefan Gumhold Chair of Computer Graphics and Visualization, TU Dresden

Motivation

CG3WS23/24

S. Gumhold – Advanced Materials

Materials and BRDF

- engineers classify materials in main classes:
 - Metals
 - **Ceramics** (e.g. glass, porcelain)
 - **Polymers** (nylon, plastic, rubber, etc.)
 - **Composites** (wood, semiconductors...)
 - **Biomaterials** (used for body part replacement)
- optic relevant distinction
 - conductor (metals)
 - insulator (dielectric)

- $\rho_{\lambda}(\boldsymbol{x},\boldsymbol{\omega}^{\text{in}},\boldsymbol{\omega}^{\text{out}}) = \frac{dL_{\lambda}^{\text{reflect}}(\boldsymbol{x},\boldsymbol{\omega}^{\text{out}})}{dH_{\lambda}(\boldsymbol{x},\boldsymbol{\omega}^{\text{in}})}$ Surfaces absorb and reflect light
- The reflection type can vary a lot from purely diffuse to mirror reflection and is characterizes real materials

light from front light from behind

BRDF – Visualization

Computergraphik und Visualisierung

CG3 WS23/24

S. Gumhold – Advanced Materials

CG3 WS23/24

BRDF – Decomposition

- real materials can be approximated by splitting the BRDFs into the sum $\ddot{\rho} = \ddot{\rho}_{diff} + \ddot{\rho}_{spec} + \ddot{\rho}_{mirror}$
 - ideal diffuse reflection,
 - specular / glossy reflection
 - ideal mirror reflection, and
- the dependency on wavelength can be modeled through a spectral coefficient \vec{r}_* times a scalar BRDF f_* : $\vec{\rho} = f_d \cdot \vec{r}_d + f_s \cdot \vec{r}_s + f_m \cdot \vec{r}_m$
- for most insulators the spectral coefficients *r*_s and *r*_m are set to *i*, i.e. the specular reflection is mirror like and not color selective

content

- Empirical vs Physical Plausible
- Microfacet Models
 - Roughness and Anisotropy
 - <u>Cook Torrance BRDF</u>
 - Microfacet Distributions
 - Geometry Terms
 - <u>Fresnel Equations</u>
 - Oren-Nayar BRDF
 - Anisotropic BRDF
- The BRDF Zoo
- BRDF Measurement
- <u>BTFs</u>
- <u>BSSRDF</u>

Literatur

 Andrew S. Glassner, Principles of Digital Image Synthesis, chapters 11 and 15 (<u>download</u>)

directional light sourcesthe reflection integral is

approximated by a sum over point / directional light sources

Empirical Shading Models

empirical shading models have

been developed for point and

$$\ddot{\boldsymbol{L}}_{\text{reflect}} = \sum_{i}^{n} \ddot{\boldsymbol{L}}_{\text{reflect},i} (\widehat{\boldsymbol{\omega}}_{\text{in}}, \widehat{\boldsymbol{\omega}}_{\text{out}}, \ddot{\boldsymbol{L}}_{\text{in},i})$$

Prominent examples are

- Lambertian model (diffuse only)
- Phong model (diffuse + specular)
- Blinn-Phong: similar to Phong with variant in specular term

Empirical Shading Models

- scalar BRDFs are defined implicitly: $\begin{aligned} \nu &= \begin{cases} 1 \dots \langle \widehat{\omega}_{in}, \widehat{n} \rangle \geq 0 \\ 0 \dots \text{ otherwise} \end{cases} \\
 \frac{1}{U_{constrainty}} &= \overline{r}_{diff} \otimes \overline{L}_{in} \cdot \langle \widehat{\omega}_{in}, \widehat{n} \rangle_{+} \Rightarrow f_{d} = 1 \\
 \frac{1}{U_{constrainty}} &= \nu \cdot \langle \widehat{\omega}_{out}, \widehat{\omega}_{refl} \rangle_{+}^{m} \cdot \overline{r}_{spec} \otimes \overline{L}_{in} \Rightarrow f_{s,Phong} = \nu \cdot \frac{\langle \widehat{\omega}_{out}, \widehat{\omega}_{refl} \rangle_{+}^{m}}{\langle \widehat{\omega}_{in}, \widehat{n} \rangle_{+}} \\
 \frac{1}{U_{constrainty}} &= \nu \cdot \langle \widehat{\omega}_{half}, \widehat{n} \rangle_{+}^{m} \cdot \overline{r}_{spec} \otimes \overline{L}_{in} \Rightarrow f_{s,Blinn-Phong} = \nu \cdot \frac{\langle \widehat{\omega}_{half}, \widehat{n} \rangle_{+}^{m}}{\langle \widehat{\omega}_{in}, \widehat{n} \rangle_{+}}
 \end{aligned}$
- When looking towards light source above a reflecting sources, Phong model is unrealistically:

Empirical Ambient Shading

- For ambient shading one assumes a homogeneous irrandiance H_{λ}
- reflected radiance $L_{\lambda,amb}$ needs to be integrated over ω^{in} :

$$L_{\lambda,\text{amb}}(\boldsymbol{\omega}^{\text{out}}) = \iint_{\Omega^{\text{in}}} \rho_{\lambda}(\boldsymbol{\omega}^{\text{in}}, \boldsymbol{\omega}^{\text{out}}) \frac{H_{\lambda}}{\pi} \cos\theta^{\text{in}} d\Omega^{\text{in}} = \frac{H_{\lambda}}{\pi} \cdot B_{\lambda}(\boldsymbol{\omega}^{\text{out}})$$

• with the <u>bi-hemispherical reflectance</u> B_{λ}

$$B_{\lambda}(\boldsymbol{\omega}^{\text{out}}) = \iint_{\Omega^{\text{in}}} \rho_{\lambda}(\boldsymbol{\omega}^{\text{in}}, \boldsymbol{\omega}^{\text{out}}) \cos\theta^{\text{in}} d\Omega^{\text{in}}$$

- $B_{\lambda}(\omega^{\text{out}})$ is also called white-sky albedo and dual to directional hemispherical reflectance $R_{\lambda}(\omega^{\text{in}})$, which is also called black-sky albedo
- Empirical ambient shading assumes B_{λ} to be independent of ω^{out} :

$$\ddot{\boldsymbol{L}}_{amb} = f_a \cdot \ddot{\boldsymbol{r}}_{amb} \otimes \frac{\ddot{\boldsymbol{H}}_{in}}{\pi}$$
 with $f_a \equiv 1$.

Physical Plausibility

Any physical plausible BRDF-modell must fulfill the following two properties

Helmholtz-Reciprocity (**HR**): $\rho_{\lambda}(x, \omega^{\text{in}}, \omega^{\text{out}}) = \rho_{\lambda}(x, \omega^{\text{out}}, \omega^{\text{in}})$ Energy Preservation (**EP**): $\forall \boldsymbol{\omega}^{\text{in}}: R_{\lambda}(\boldsymbol{\omega}^{\text{in}}) \leq 1$

- HR is typically enforced for each individual scalar model: $f_*(\omega^{\text{in}}, \omega^{\text{out}}) = f_*(\omega^{\text{out}}, \omega^{\text{in}})$
- EP can be enforced by limiting the coefficient sums of the \ddot{r}_* to [0,1] and by scaling the f_* appropriately, e.g. $f_d = 1/\pi$.

Physical Plausibility for Specular Models

Helmholtz Reciprocity

- analyzing the constitutes:
 - ν is asymmetric only when the hemispherical domain is left
 - $\hat{\omega}_{half}$ is symmetric with respect to switching $\widehat{\boldsymbol{\omega}}_{in}$ and $\widehat{\boldsymbol{\omega}}_{out}$.
 - $\langle \hat{\omega}_{out}, \hat{\omega}_{refl} \rangle$ is also symmetric
- Thus we just need to skip the denominator terms, yielding: $f_{\rm s,Ph,mod} = \nu \cdot \eta_{Ph} \cdot \langle \widehat{\boldsymbol{\omega}}_{\rm out}, \widehat{\boldsymbol{\omega}}_{\rm refl} \rangle_{+}^{m}$ $f_{\rm s,Bl-Ph,mod} = \nu \cdot \eta_{BP} \cdot \langle \widehat{\boldsymbol{\omega}}_{\rm half}, \widehat{\boldsymbol{n}} \rangle_{+}^{m}$

Energy Preservation

(http://www.thetenthplanet.de/archives/255)

The normalization constants η_* can be computed from $1/R_{\lambda}(\hat{n})$:

MICROFACET BRDF MODELS

Microstructure & Roughness

Computergraphik und Visualisierung

Scanning electron microscope 2: <u>Image</u> of a <u>silver</u> (11,3,1) single crystal surface after bombardment with argon ions. (from: Bergmann/Schäfer, Textbook of Experimental Physics vol. 3)

Femtosecond laser microstructured steel surface (scanning electron microscope image)

Microstructure & Roughness

red beech wood, SEM micrograph, cross section (F wood fibre, Ray wood beam, ScPP conductor-shaped vessel opening, V vessel, JVP vessel wall pit) ©http://www.dendro-institut.de/ TU Dresden

Rough hair from the top of the leaf. The long hairs are about 0.5 mm long.

Strongly reduced rough hair on the underside of the leaf of a species from the ever-wet cloud forest. The entire hair is 0.02 to 0.03 mm long.

Microstructure & Anisotropy

Milled surface

Wear surface of chalk-filled polypropylene

Microstructure Anisotropy

Microstructure of pearlite

Perlite (volcanic glass) with white, powdery appearance

Nanowires

A <u>scanning electron microscopy</u> image of carbon nanotubes bundles

Microfacet Models

- Idea: The surface consists of equally distributed microfacets modeled as planar reflectors.
- The BRDF results from
 - Distribution of the orientation of the microfacets
 - Properties of Planar Reflection
 - Self-occlusion and self-shadowing

Microfacet Models

• Cook and Torrance consider V-shaped grooves with a mirror reflecting cover and derive the following brdf $F_r(\widehat{\omega}_{out})G(\widehat{\omega}_{in},\widehat{\omega}_{out})D(\widehat{\omega}_{h})$

 $f_{s,Cook}$ Torrance

 $\pi \cdot \cos \theta_{\text{out}} \cos \theta_{\text{in}}$

- with the components
 - $F_r(\widehat{\boldsymbol{\omega}}_{out})$... reflection on micro facets
 - $G(\widehat{\boldsymbol{\omega}}_{in}, \widehat{\boldsymbol{\omega}}_{out})...$ geometry term covering self occlusion and self shadowing of V-shaped grooves.
 - $D(\widehat{\boldsymbol{\omega}}_{\rm h})$... distribution of microfacet normals that correspond to half vectors in Blinn-Phong model Normalization: $1 = \int \langle \widehat{\boldsymbol{n}}, \widehat{\boldsymbol{\omega}}_{\rm h} \rangle D(\widehat{\boldsymbol{\omega}}_{\rm h}) d\Omega_h$,
- Cook, Robert L., and Kenneth E. Torrance.
 "A reflectance model for computer graphics." ACM Transactions on Graphics (TOG) 1.1 (1982): 7-24. (pdf)

Comparison Phong vs. Torrance

Phong

(b)

(a)

(c)

CG3 WS23/24

Microfacet Models

• For isotropic distributions $D(\hat{\omega}_h)$ parameterization over angle α .

Distributions for Roughness

Blinn

- exponential with normalization constant c (from Torrance Sparrow)
- cosine to the power of shininess s
- Cook Torrance (Beckmann Theory)
 - *m* ∈ [0,1] ... roughness
 measure
 - example of a Gaussian random surface:
- affine combinations of several distribu tions allow to approximate materials with multiple layers:

 $D(\alpha) = \sum_{i} \lambda_{i} \cdot D_{i}(\alpha)$, with $\sum_{i} \lambda_{i} = 1$

Mikrofacetten Modelle

Geometry Term

self shadowing

self occlusion

images © Andreas Ecke

Geometry Term

- Geometry term G models selfshadowing and masking, where minimum is taken:
- Filter approach: $G = \min \{g_{\max}, g_{\max}, g_{\max}, g_{\text{shadow}}\}$
 - fully illuminated and visible

 $g_{\rm max} = l$

occlusion of reflected light

$$g_{mask} = 1 - \frac{m}{l} = \frac{2(\hat{\boldsymbol{n}}^T \hat{\boldsymbol{h}})(\hat{\boldsymbol{n}}^T \hat{\boldsymbol{e}})}{\hat{\boldsymbol{e}}^T \hat{\boldsymbol{h}}}$$

(details in https://www.microsoft.com/en-us/research/wp-) content/uploads/1977/01/p192-blinn.pdf shadowing of incoming light

$$g_{\text{shadow}} = \frac{2(\hat{n}^T \hat{h})(\hat{n}^T \hat{l})}{\hat{e}^T \hat{h}}$$

m

h

ñ

Fresnel Equations

References

- Wikipedia mixing of Reflection & Refraction via Fresnel Equations on spheres
- Optics | Script
- R. Cook, K. E. Torrance, A Reflectance Model for Computer Graphics, 1981
- C. Schlick, An inexpensive BRDF model for physically-based rendering, 1994
- I. Lazányi, L. S. Szirmay-Kalos, Fresnel Term Approximation for Metals, 2005

Computergraphik **Derivation of Frensnel Equations** und Visualisierung electromagnetic wave parallel *E*-component orthogonal *E*-component F $y_{\wedge} \hat{n}$ $kE = \omega B$ $\theta_i \theta_i$ $\theta_i \theta_j$ $kv = \omega$ \vec{k} n_i nv = c n_t n_t nE = cB $E_i^{\perp} + E_r^{\perp} = E_t^{\perp} \qquad (E_i^{\parallel} - E_r^{\parallel})\cos\theta_i = E_t^{\parallel}\cos\theta_t$ E-field continuity: B-field x-continuity: $(B_i^{\parallel} - B_r^{\parallel})\cos\theta_i = B_t^{\parallel}\cos\theta_t$ $B_i^{\perp} + B_r^{\perp} = B_t^{\perp}$ substitute B with E: $n_i (E_i^{\perp} - E_r^{\perp}) \cos \theta_i = n_t E_t^{\perp} \cos \theta_t$ substitute E_t^{\perp} : $n_i(E_i^{\perp} - E_r^{\perp})\cos\theta_i = n_t(E_i^{\perp} + E_r^{\perp})\cos\theta_t$ $E_i^{\perp}(n_i \cos \theta_i - n_t \cos \theta_t) = E_r^{\perp}(n_i \cos \theta_i + n_t \cos \theta_t)$ rearrange: $r_{\perp} = \frac{E_r^{\perp}}{E_i^{\perp}} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$ $r_{\parallel} = \frac{E_r^{\parallel}}{E_r^{\parallel}} = \frac{n_i \cos \theta_t - n_t \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$ reflection factor: transmittance factor: $t_{\perp} = \frac{E_t^{\perp}}{E_t^{\perp}} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$ $t_{\parallel} = \frac{E_t^{\parallel}}{E_i^{\parallel}} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$

CG3WS23/24

S. Gumhold – Advanced Materials

Fresnel Equations for Dielectric

- define propagation slow down $\rho = \frac{n_t}{n_i}$
- and magnification of ray width $m = \frac{\cos \theta_t}{\cos \theta_i}$
- Snell's law $n_i \sin \theta_i = n_t \sin \theta_t$ allows to compute

$$\cos \theta_t = \sqrt{1 - \sin^2 \theta_t} = \sqrt{1 - \left(\frac{n_i}{n_t} \sin \theta_i\right)^2}$$

• the definitions simplify Fresnel Equations significantly:

Freshel Equations for Dielectric $m = \frac{\cos \theta_{t}}{\cos \theta_{i}}$ $\rho = \frac{n_{t}}{n_{i}}$ $\rho = \frac{n_{t}}{n_{i}}$ $r_{\perp} = \frac{1 - \rho m}{1 + \rho m}$ orthogonal $L_{\perp} = \frac{2}{1 + \rho m}$ $r_{\perp} = \frac{1}{1 - \rho m}$ $r_{\perp} = \frac{1 - \rho m}{1 + \rho m}$ $r_{\perp} = \frac{1 - \rho m}{1 + \rho m}$ $r_{\perp} = \frac{1 - \rho m}{1 + \rho m}$ $r_{\perp} = \frac{1 - \rho m}{1 + \rho m}$ $r_{\perp} = \frac{1 - \rho m}{1 + \rho m}$

- fraction of reflected light (reflectance) is computed as $F_{r,*} = r_*^2$
- fraction of transmitted light (transmittance) computes to $F_{t,*} = \rho m t_*^2$
- for both components we have energy preservation

$$F_{r,*}+F_{t,*}=1$$

• when ignoring polarization one combines by averaging $F_r = \frac{1}{2}(F_{r,\parallel} + F_{r,\perp}) \wedge F_t = \frac{1}{2}(F_{t,\parallel} + F_{t,\perp})$

Air to Glass example

- notation:
 - p ... parallel (||)
 - s ... orthogonal [senkrecht] (⊥)

•
$$R_* = F_{r,*}$$
 and $T_* = F_{t,*}$

- example: $n_{air} \approx 1 < n_{glass} \approx 1.5$ Note:
- Total reflection at $\theta = 90^{\circ}$ for both polarizations
- $r_{\parallel} = 0$ when reflected ray is orthogonal to transmitted ray "<u>Brewster's angle</u>": $\theta_B = \arctan \rho$ (56.3° for $\rho = 1.5$)

S. Gumhold – Advanced Materials

Glass to Air example

Note:

- amplitude transmission factors can be larger than 1
- transmitted power factor is $F_{t,*} = \rho m t_*^2$ with $m \to 0$ at total reflection
- Total internal reflection from Snell's law when $\theta_t = 90^\circ$: $n_i \sin \theta_T = n_t$ yields $\theta_T = \arcsin \rho$

S. Gumhold – Advanced Materials

Fresnel Equations for Metals

- for metals no transmitted ray is needed
- refraction index of the metal is complex: $n_t = \eta_t + i\kappa_t$, where κ_t is called extinction coefficient.
- we assume real refraction index of exterior material n_i such that the propagation slow down is: $\rho = \frac{\eta_t}{n_i} + i \frac{\kappa_t}{n_i}$
- Snell's law holds also for complex case: $n_i \sin \theta_i = \eta_t \sin \theta_t$ and allows to eliminate θ_t . Computing $F_* = r_* \bar{r}_*$ results in:

$$F_{\perp} = \frac{(a - \cos \theta_{i})^{2} + b^{2}}{(a + \cos \theta_{i})^{2} + b^{2}} \qquad a = \frac{1}{2}\sqrt{c + d} \qquad c = \sqrt{d^{2} + 4n^{2}\kappa^{2}}$$
$$F_{\parallel} = F_{\perp} \cdot \frac{(a - \sin \theta_{i} \tan \theta_{i})^{2} + b^{2}}{(a + \sin \theta_{i} \tan \theta_{i})^{2} + b^{2}} \qquad b = \frac{1}{2}\sqrt{c - d} \qquad d = n^{2} - \kappa^{2} - \sin^{2} \theta_{i}$$

Fresnel Approximations for Metals

• Cook and Torrance approximate n and κ for metals from one reflectance measurement $F_r(\theta_i = 0)$ and assume n = 1 when computing κ and $\kappa = 0$ when computing n:

$$n \approx \frac{1 + \sqrt{F_r(0)}}{1 - \sqrt{F_r(0)}} \quad \wedge \quad \kappa \approx 2 \sqrt{\frac{F_r(0)}{1 - F_r(0)}}$$

• Schlick's approximation assumes $\kappa \approx 0$ and $1.4 \le n \le 2.2$ $F_{Schlick} = \frac{(n-1)^2 + 2n(1 - \cos \theta_i)^5}{(n+1)^2}$

• Lazányi's approximation incorporates also κ : $F_{Lazányi} = \frac{(n-1)^2 + 4n(1 - \cos \theta_i)^5 + \kappa^2}{(n+1)^2 + \kappa^2}$ optionally the correction $a \cos \theta_i (1 - \cos \theta_i)^{\alpha}$ is "compensated" subtracted with material specific parameters a and α .

Metal Fresnel Term Approximations

 Lazániy, István, and László Szirmay-Kalos. "Fresnel term approximations for metals.,, (2005) <u>pdf</u>

Spectral Complex Refractive Indices

online source: <u>https://refractiveindex.info</u>

Oren-Nayar

Real Image

Lambertian Model

Oren-Nayar Model

Photograph of a matte vase and its renderings with the Lambertian model and the Oren-Nayar model. ©Wikipedia

Influence of roughness parameter. © Wikipedia

- Oren-Nayar use Micro-Facette model with diffuse V-shaped grooves distributed according to Gaussian with standard deviation $\sigma \in [0,1]$ to model retro-reflective materials.
- They approximate direct and indirect reflection and geometry term and provide a simple but coarse approximation:

 $f_{d,Oren-Nayar}(\widehat{\boldsymbol{\omega}}_{out},\widehat{\boldsymbol{\omega}}_{in}) = \frac{1}{\pi}(A+B\cos_{+}(\phi_{in}-\phi_{out})\sin\alpha\tan\beta)$ $A = 1 - 0.5\frac{\sigma^{2}}{\sigma^{2}+0.33}, B = 0.45\frac{\sigma^{2}}{\sigma^{2}+0.09}, [\alpha|\beta] = [\max|\min]\{\theta_{in}, \theta_{out}\}$

Anisotropic APS-BRDF

- Reference: <u>Ashikmin, Premoze, Shirley, A Microfacet-based</u> <u>BRDF Generator, 2000</u>
- specular reflection is modeled through $F_{m}(\langle \widehat{\boldsymbol{\omega}}_{in}, \widehat{\boldsymbol{\omega}}_{h} \rangle) \cdot f \cdot D(\widehat{\boldsymbol{\omega}}_{h})$

$$f_{\rm s,APS}(\widehat{\boldsymbol{\omega}}_{\rm out},\widehat{\boldsymbol{\omega}}_{\rm in}) = \frac{T_r(\langle \boldsymbol{\omega}_{\rm in},\boldsymbol{\omega}_{\rm h}\rangle) - D(\langle \boldsymbol{\omega}_{\rm h}\rangle)}{4 \cdot g(\widehat{\boldsymbol{\omega}}_{\rm in}) \cdot g(\widehat{\boldsymbol{\omega}}_{\rm out})}$$

• where f is a normalization constant extracted from the distribution $D(\hat{\omega}_h)$, which can be varied:

$$f = \int \langle \widehat{\boldsymbol{n}}, \widehat{\boldsymbol{\omega}}_{\mathrm{h}} \rangle D(\widehat{\boldsymbol{\omega}}_{\mathrm{h}}) d\Omega_{h},$$

 shadow and self-occlusion is implemented with the following pre-compute and tabulated function

$$g(\widehat{\boldsymbol{\omega}}) = \int \langle \widehat{\boldsymbol{\omega}}, \widehat{\boldsymbol{\omega}}_{\mathrm{h}} \rangle_{+} \cdot D(\widehat{\boldsymbol{\omega}}_{\mathrm{h}}) d\Omega_{\mathrm{h}}$$

with two underlying assumptions: shadow and self-occlusion is uncorrelated and microfacet orientation is independent of its visibility.

Anisotropic APS-BRDF

• one example anisotropic distribution is based on Gaussian with dependence to ϕ_{h} :

$$D(\widehat{\boldsymbol{\omega}}_{\rm h}) = c_1 \cdot \exp\left(-\tan^2 \theta_h \left(\frac{\cos^2 \phi_h}{\sigma_x^2} + \frac{\sin^2 \phi_h}{\sigma_y^2}\right)\right)$$

- To support anisotropy, one needs a tangent vector \vec{t} pointing in x-direction within tangent space.
- Fresnel term is approximated through Schlick [94].
- Specular term becomes quite large for θ_{in} → 0 such that together with diffuse reflection, energy preservation is not given anymore. For this diffuse BRDF is corrected to f_{d,APS}(ô_{out}, ô_{in}) = c₂ · (1 R_s(ô_{in})) · (1 B_s(ô_{out})) with [bi-]hemispherical reflectance R_s/B_s of specular term f_{s,APS} only.

()

 σ_v

 σ_x

Anisotropic APS-BRDF – Results

Figure 10: Microgeometry of our sample of satin.

Figure 12: Microgeometry of velvet (left) and $p(\mathbf{h})$ used to model it (right).

Figure 11: Synthetic satin (left)

Figure 13: A tablecloth made of two different colors of slanted fiber velvets.

THE BRDF ZOO

BRDF Explorer

BRDF Explorer		- 🗆	×
File Utilities Help			
RDF Parameters 🗗	X 3D Plot		₽×
Luminance 💌			
Log plot: y = log10(x + 1.0)			
Multiply by N . L			
_Incident angle - thetaL			
72.63			
Incident angle - phiL			
115.2			
ashikhman_shirley.brdf			
Visible O 👌 🔹			
Rs			
0.107			
Rd			
0.573			
[27.973			
✓ coupled diffuse			
cooktorrance brdf	3D Plot Albedo Theta H Theta D Theta V Polar Plot		
			đΧ
0.00997			
,			
0.15			
✓ include_F			
₩ include_G			
phong.brdf			
Visible			
100			
₩ divide_by_NdotL			
blinnphong.brdf	No IBL		6
	, ', ', ', ', ', ', ', ', ', ', ', ', ',		
		1.94	
100	Exposure		
V divide_by_NdotL		1.272	
lambert.brdf			
	Image Slice Lit Object Lit Sphere		

BRDF Models, Technical Report LSI-2012-001

Rosana Montes, Carlos

Ureña, An Overview of

Column Explanations

- physical ... derived from laws of physics
- plausible ... non negativ symmetric, energy conservation
- sampling ... efficient importance sampling possible

Granier-Heidrich

Overview over BRDF models

		iys	au	csi	nis	Ē	3.0	ate
•	Models	Ч	Ы	Ē	Αı	Sa	Re	W
	Ideal Specular	*	*	▼	▼	*	х	perfect specular
	Ideal Diffuse	*	*	V	V	*	x	perfect diffuse
	<i>M</i> innaert	•	• • •	V	V	V	5.35x	Moon surf.
	Torrance-Sparrow	*	V	*	*	V		rough surf.
	Beard-Maxwell	*	V	*	V	V	397 <i>x</i>	painted surf.
	Blinn-Phong	•	V	V	V	*	9.18x	rough surf.
	Cook-Torrance	*	*	*	V	V	16.9x	metal,plastic
ו	Kajiya	*	V	*	*	V		metal,plastic
'e,	Poulin-Fournier	*	V	V	*	V	67x	clothes
	Strauss	•		*	V	V	14.88x	metal,plastic
	He et al.	*	*	*	V	V	120x	metal
	Ward	•	V	▼	*	*	7.9x	wood
	Westin	*	• • •	*	*	V		metal
	Lewis	•	*	▼	V	*	10.73x	mats
	Schlick	•	*	*	*	•	26.95x	heterogeneous
	<i>H</i> anrahan	*	• • •	*	V	V		human skin
	Oren-Nayar	*	*	V	V	*	10.98x	matte, dirty.
	Neumann	•	*	V	*	*		metal,plastic
	Lafortune	•	*	V	*	*	5.43x	rough surf.
	Coupled	*	*	*	V	*	17.65 <i>x</i>	polished surf.
	Ashikhmin-Shirley	*	V	*	*	*	79.6x	polished surf.

pling

V

. . .

otrotopic

el Eq.

ible

ical

*

Cost (cycles

Computergraphik und Visualisierung

Material Type

old-dirty metal

Graphical overview of BRDF models

Figure 2: A graphical classification of the BRDFs cited in this paper. Some BRDFs are built on previous ones.

BRDF MEASUREMENT

Gonioreflectometer

- \bullet measures reflectance for combinations of sensor ($\widehat{\pmb{\omega}}_{\rm out}$) and light source position ($\widehat{\pmb{\omega}}_{\rm in}$)
- Helmholtz reciprocity and isotropy of BRDF help to reduce number of necessary measurements
- one can move sensor or rotate sample

S. Gumhold – Advanced Materials

BRDF Measurement Samples

- a single BRDF sample can be illustated by two dots (orange for light and blue for sensor) on a hemi-sphere drawn from above with the normal direction in the center
- Helmholz Reciprocity implies that measurement of interchanged dots yields the same value

 For isotropic BRDFs all measurements with the dots rotated around the normal direction yield the same value

isotropic

- to completely measure a BRDF we need to sample all combinations of light and sensor locations.
- Helmholz Reciprocity allows to reduce sampling of light or sensor location to half of the hemi-sphere

 For isotropic BRDFs or when rotating the material sample with a turn table, sensor locations can be restricted to a 1D half arc

Image Based BRDF Measurement

Fig. 3. Schematic of measurement setup.

idea:

- capture many samples from curved surface with one image from a CCD camera
- store samples in large table and interpolate / extrapolate

preparation:

- determine surface geometry from known geometry or 3D scan
- calibration of setup and object
- S. Gumhold Advanced Materials

Fig. 9. BRDF of typical skin, showing coverage and scatter in raw data

Marschner, Stephen R., et al. "<u>Image-based BRDF</u> <u>measurement including human skin</u>." *Eurographics Workshop on Rendering Techniques*. Springer, Vienna, 1999.

Lafortune Model

- Idea: extended Phong model by further lobes for non-ideal reflection components
- In the coordinate system with surface normals as zaxis, the reflected vector can be calculated from the incoming direction by multiplying with $diag(-1 \ -1 \ 1).$
- Extension by adding several lobes, which are defined by different diagonal matrices D_i .

or

$$\hat{n} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \hat{r}_{0} = 2\langle \hat{n}, \hat{l} \rangle \hat{n} - \hat{l}$$

$$\hat{r}_{1}$$

$$\hat{r}_{2}$$

$$\hat{r}_{2}$$

$$\hat{r}_{2} = \begin{pmatrix} -l_{x} \\ -l_{y} \\ l_{z} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} l_{x} \\ l_{y} \\ l_{z} \end{pmatrix}$$

$$f_{\text{spec,Lafortune},i} = \langle \hat{e}, D_{i} \hat{l} \rangle_{+}^{s_{i}} \longrightarrow$$

$$\ddot{r}_{\text{Lafortune}} = f_{\text{diff}} \ddot{r}_{d} + \sum_{i} f_{\text{spec,Lafortune},i} \ddot{r}_{s,i}$$

_____1

$$\widehat{\boldsymbol{n}} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{1} \end{pmatrix} \widehat{\boldsymbol{r}}_{0} = 2\langle \widehat{\boldsymbol{n}}, \widehat{\boldsymbol{l}} \rangle \widehat{\boldsymbol{n}} - \widehat{\boldsymbol{l}}$$

Fitting of Lafortune Parameters

reduce number of parameters by assuming that BRDF is isotropic:

$$\ddot{\boldsymbol{f}}_{\text{Lafortune}}(\hat{\boldsymbol{l}}, \hat{\boldsymbol{e}}) = \ddot{\boldsymbol{\rho}}_{\text{diff}} + \sum_{i} (\ddot{\boldsymbol{C}}_{t,i}(l_{x}e_{x} + l_{y}e_{y}) + \ddot{\boldsymbol{C}}_{n,i}l_{z}e_{z})^{\ddot{\boldsymbol{s}}_{i}}$$

- diffuse component plus several Phong-lobes
- total of 3(1 + 3i) parameters (e.g. 12 for 1-lobe model)
- use non linear fitting approach to estimate parameters from set of samples

Examples – MPII Saarbrücken

Setup with

- 3D scanner (structured light)
- digital camera (HDR)
- point-light source
- dark room array
- calibration targets (checkerboard)

fit of single BRDF

Cluster extraction and fit of one BRDF per cluster

Examples – MPII Saarbrücken

Photo

Rekonstruktion

Examples – MPII Saarbrücken

Max Planck Geometry

Max Planck BRDF

Minerva BRDF

Bidirectional texture function (BTF)

Bidirectional texture function (BTF)

(b) ABRDF representation

(a) Texture representation

BTF

- given extended material sample
- sample hemisphere with p camera and q light directions
- for each pair of directions acquire image of $n \times n$ reflectance samples

Apparent BTF

- rearrange BTF into image of n × n apparent BRDFs sampled on p × q camera-light pairs
- it is called "apparent" as the surface has significant bumps and the camera / light ray intersect the surface at different texture locations

BTF Measurement in Bonn (<u>slides</u>)

Figure 1: The DOME II BTF acquisition setup. One quarter has been slid open to expose the view on the inside.

Databases

 61 samples with 205 measurements per sample and 205 additional samples for anisotropy of BRDF, fitted BRDF models & BTFs

BTFDBB: BTF Datenbank Bonn und Messlabor

- UBO2003 Datasets ... 6 Samples with 81x81x256x256 resolution
- ATRIUM Datasets ... 4 Samples with 81x81x800x800 resolution
- OBJECTS2011 Datasets ... 4 Objects with BTF HDR-Textures (100-300GB), <u>WebGLViewer</u>
- Spectral Datasets ... 4 Samples with multichannel spectral images
- OBJECTS2012 Datasets ... 12 Objects with compressed BTFs
- UBO2014 Datasets ... 7x12 samples with 151x151x512x512 resolution

OBJECTS2012 Datasets

Bidirectional Subsurface Scattering Reflection Distribution Function

BSSRDF

Bidirectional Subsurface Scattering Reflection Distributior Function

- Split incoming light at surface into par reflected via BRDF and part that enters surface and gets scattered inside of the surface before it exists a different location
- The internal scattering process is called subsurface scattering and can be modelled by a BSSRDF parameterized additionally over point <u>p</u>out where light leaves the surface.
- The subsurface reflection process has to be integrated additionally over area such that BSSRDF is derivative with respect to light power: $f_{SS}(\underline{p}_{in}, \hat{\boldsymbol{\omega}}_{in}, \underline{p}_{out}, \hat{\boldsymbol{\omega}}_{out}) = \frac{dL_{out}(\underline{p}_{out}, \hat{\boldsymbol{\omega}}_{out})}{d\Phi_{in}(\underline{p}_{in}, \hat{\boldsymbol{\omega}}_{in})}$

BSSRDF

Bidirectional Subsurface Scattering Reflection Distribution Function

- unit: *1/(m²·sr)*
- 8-dimensional parameter space

Literature:

 F. E. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg and T. Limperis, Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US), October 1977

Examples for BRDF and BSSRDF

Left: BRDF "hard" light distribution right: BSSRDF describes light transport and scattering inside of material.

S. Gumhold – Advanced Materials

Beispiele für BRDF und BSSRDF

left: BRDF "hard" light distribution.

right: BSSRDF much more natural light distribution on skin. additionally: internal color bleeding in shadowed region under nose.

Examples for BSSRDF

Photography

Simulation

low fat

full fat organic?