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Rigid Body Simulation

https://github.com/chandlerprall/Physijs https://threejs.org/examples/#physics ammo_instancing
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e Nolting, Wolfgang, Grundkurs Theoretische Physik 1, Klassische Mechanik,
Band 1 Springer, 2. Auflage 2003
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Vectors - Notation
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e In the following, force
vectors are usually
decomposed Into
components that are parallel
or perpendicular to another
vector

e For this we Introduce the two
vectorial short notation that
project perpendicularly or
onto the vector.

e® The same notation Is used
for the lengths of the
respective components,
except that the symbol is not
written bold and without a
vector.
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e A rigid body can be positioned
IN space by means of an
Fuclidean transformation, I.e. a
rotation and a translation.

@ For this one defines a local
object coordinate system O per
rigid body.

® The natural origin Is the center
of mass X of the rigid body.

® A natural orientation results

from the inertia tensor (see
slides 1211).

@ In 2D the orientation is defined
by an angle a. In general, a
rotation matrix R can be used.

4
K} %
I

+T

X=X
object/ / X

point center of  object
gravity  position
vector
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Discrete Case
e Rigid body is decomposed into

discrete point masses x;, m;. y
e The center of mass X is the X,
average position weighted with
the point mass, which is derived
from the affine combination 00000
1 O « I
X=M2mi£i 5’68'000
i O0000
e with the total mass M: 00000
M = Z m; . .
l. ® summations become integrals:
Continuous Case
® here one defines the mass M = JP(E)dV
density 4
p=dM/dV

1
X=MJVP(£)£CW
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Notation

e IV and O stand for world and
object coordinate system.

e A subscript defines the
coordinate system in which
the vector components are
given.

e For base vectors, the
additional superscripts
indicate which coordinate
system is spanned by the
base.

e For positioning, an Euclidean
transformation from the
natural object coordinates
into world coordinates is
given.

~ 0

y
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Kinematics
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e By derivation with respect to
time one receives two contribu-
tions to the velocity

Linear velocity

@ Describes the uniform motion of Vw

the rigid body

Angular velocity
@ Describes the change of
orientation

@ For infinitesimal small dt
rotation can be assumed to be
constant around fixed axis n

e with angular vel;city defined as
a

—

w

= -—w, W
Xy = Rrp+ X 0
Wy 0

X, = RF + X,

— A w

R=(R(A,da)R-R)/dt

AR +(1—AAT cosde +A’sin da
%/_/ %/_/
do -0 1 da

—1+A'da

dt
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Dynamics - Forces and Accelerations

e |n the following we assume the
world coordinate system as
default even if the subscript W
IS not given.

e As with kinematics, dynamics
can be split into linear and
angular motion.

Linear Dynamics

e All forces acting on the body are
applied to the center of mass
and added to the total force
which, according to Newton,
changes the linear velocity and . . ER
the linear momentum. Fi = z F, =MV =P

@ The procedure Is equivalent to L
the one for point masses

simple example
that shows, why
force needs to be
transported to
centroid also ortho-
gonal to force action
lines

with linear momentum P = MV
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Dynamics - Torque |

Angular Dynamics

e Torque T is the rotational
equivalent to force

@ fJorque measures lever action with

that a force f‘} acts on center of
mass X when force is applied to
an object position vector ;.

e Torgue points along the rotation
axis and in 2D orthogonal to 2D
plane (up or down)

e® The absolute value T can be
computed from the length of 7,
which is the length of the lever,

and the component of the force only 2D 3D case
orthogonal to ;. =
O - =2k, T =rxF
e Any force F; therefore acts twice i i i i
— once for linear and once for the T = T T —
angular dynamics tot — ; i Tiort = ,Ti
l
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Dynamics - Torque Il VAW und Visuatisierung
Rotation & Newton's Laws A
e For now, we will look at only
one point mass, which circles _
around the center of mass with X “
the angular velocity. EAS v
e For an acceleration on the orbit g L~

a force is needed which
accelerates the point mass
according to Newton's Znd law. only 2D 3D case

e This force can be directly

converted into the Vi = lho Vi =0oXT;
corresponding torgue. F —mv F — m\7
. : i — VY | i Vi
e |f one uses the vector identity . ,
= Mo =M. xT;
ix(bx&) =(@-&b—(d- b) 2. = -
T.=mr"w Ti:mirix(a)xrl)
the angular acceleration can be -m (Ez 1—Fp7
factored out also in the vectorial AN 1
case.
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Rotation & Newton's Laws

e Summing the contributions of
all point masses yields the total
torque

e This is proportional to the
angular acceleration in 2D.

e The proportionality constant is
called the moment of inertia and
Is the equivalent to the mass In
linear dynamics.

e |t grows quadratically Iin the
distance to the axis of rotation.

e |n 3D we obtain a symmetric
3x3-matrix

® In the continuous case, the
Inertia tensor results from

| = [ p(F)F? - FFT JoF

" v und Visualisierung
/ﬁi’mi
& °°/
X-T00000 X
O0000
0000
2D case T (Zm )a)—la)
moment
of inertia: I o Z m r
3D case Tges = (Zi m,( = ))w
sym. !
inertia  J = Zml(r —77!) € R3S
tensor:
ye+z7  —Xy,  —XZ,
:Zimi — XY Xi2+zi2 —Yi{
— X4 Vi Xi2+yi2
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Dynamics - Inertia Tensor ||

Example of circular disk of radius y

® This is the 2D case and therefore
a moment of inertia is calculated.

@ Radius I1s r, and density constant r\
equals p, over total disk L - g
® The best way is to transform the Po
Integral into cylinder coordinates
and integrate them by angle :j p(F)r2dydx
(yields a factor of 2m) and radius.
® The result can be interpreted in (5
such a way that the circular disk = J I [r-dg-dr]
0 0

has the same inertia with regard
to rotation as a ring or point mass

at radius 1/v2

3 1 4
77_[,00 rdr =7zl
0
_ 1 2
_EMoro
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Example Cuboid

e [t is important to place the origin
In the center of mass.

e By alignment to the main axes,
a diagonal matrix with three
main moments of inertia is
obtained I, 1, I,:

c/2 bl2 al2 y2+22
L= [pENF2-FF)r= [ [ [ g —xy
—c/2-b/2-al2 — X7
2 2
abcb L 0
12 o
0 abca e 0
12 .
0 0 abca +b
12

x? + 72

Cr
b| X®
— >
— XZ
—yz |dxdydz
X° +y°
b2+c> 0 0 .0
0 a’ +c? 0 |=]0 I,
0 0 a’ +b? 0 O

check out: http://www.cs.berkeley.edu/~jfc/mirtich/massProps.html
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Dynamics - Natural Coord.
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System li

@ Since the tensor of inertia is
symmetric and positive definite,
one can always find an
orthonormal coordinate system
In which the tensor is diagonal
and completely defined by I,
L, I,.

e This is typically used as a
natural coordinate system.

e Caution in contrast to mass, the
Inertia tensor must be
transformed from the object to
the world coordinate system.
The rotation matrix of the
orientation will be multiplied
from the left and transposed
from the right.
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Dynamics - Angular Momentum

e o the relation between force and -
liInear momentum corresonds a 'd :
similar relation between torque S|F = MV |
and angular momentum

e~
I
P
el

e Angular momentum L is a
vectorial conserved quantity

e |nertia tensor changes over time
with rotation matrix .
I(t) = R(WI,R"(t) R=wR
I'=RI,R" +RI,R" S|T = I + 'L |
I=wRI,RT —RI,R" w* = *I — Iw*

of 1

® L and w are parallel if w points
along a main axis of the inertia

tensor, and it holds T=L=Iw

e In case of equal momentums of
inertia all their linear combinations
vield such main axes.
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Dynamics - Angular Momentum
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Example: nutation of spinning top T=Iw+w

e |f top spinning around main axis K 0
that is tilted by angle 8 from the 6./

vertical axis, gravity generates a &
torque T pointing along u axis in
figure on right side

e® [his torque rotates main axis K
around vertical axis

~
N

See also: https://www.youtube.com/watch?v=DG3TuMyOUAM

e Angular velocity of precession
fulfills I Prolate top Q Oblate top D
T=w, XL
Py oummeer T4 T4
such that w, = — momontans  Figaren-
p Sin GL Drehachse achse
e® Precession speeds up with o ™
decrease In angular momentum N7 p
e |f 8 changes over time the motion ~_ /*\
Is called nutation which can be s
described by cones (Rastpoikegan) © (Qsngpsikegen

J.> J, J, < d,
(a) (b)

S. Gumhold, CG3 WS 23/24 - ngld Bodies Taken from https:/elearning.physik.uni-frankfurt.de/data 14


https://elearning.physik.uni-frankfurt.de/data/FB13-PhysikOnline/lm_data/lm_324/daten/kap_3/node80.htm
https://www.youtube.com/watch?v=DG3TuMy0UAM

(/‘VA\

Equations of Motion R=&'R L=lo G g
e The state of the rigid body is (X
uniquely defined by position, IR
orientation, linear and angular - R
momentum. y= o)
e The time evolution function is _
computed from previous \ L)
observations in world space . N
e Here, only reciprocal values of (X)) ( =P
mass and inertia tensor are : 11" R
needed. 1?('[ y) = R _
e transformation of the inverse | P geS(t Y)
inertia tensor to world space: = .
3 LT \ I—) K ges(t y)
' =RIg'R
e if a O is stored in reciprocal e Caution: R must be orthogonalized
mass or tensor of inertia, this after each integration step. This can
corresponds to an infinite mass be done, for example, with polar

decomposition.
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Bullet Block Experiment

e https://www.youtube.com/watch ?v=v\WWVZ6 APXM4w

e \Vhich block flies higher?

S. Gumhold, CG3WS 23/24 - Rigid Bodies 18


https://www.youtube.com/watch?v=vWVZ6APXM4w

