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CG3 – Rigid Body Simulation

Rigid Body Simulation

https://github.com/chandlerprall/Physijs https://threejs.org/examples/#physics_ammo_instancing
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 Throw box into rotational motions along main axes

 One axis results in unstable rotations, why?

 Check out:
 Intermediate axis theorem

 Tennis Racket Theorem

 Dzhanibekov Effect, or

https://www.camein.com/rotating-bodies-dzhanibekov-effect/
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Literatur
 Baraff, David. Rigid Body Simulation I + II (Siggraph course, Physically Based

Modeling 1997) link

 Nolting, Wolfgang, Grundkurs Theoretische Physik 1, Klassische Mechanik, 
Band 1 Springer, 2. Auflage 2003
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Vectors – Notation

 In the following, force 
vectors are usually 
decomposed into 
components that are parallel
or perpendicular to another 
vector

 For this we introduce the two 
vectorial short notation that 
project perpendicularly or 
onto the vector.

 The same notation is used 
for the lengths of the 
respective components, 
except that the symbol is not 
written bold and without a 
vector.
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Placement – Natural Coord. System I

X
x̂

r


rXx




ŷ

object

point center of

gravity

object

position

vector

 A rigid body can be positioned 
in space by means of an 
Euclidean transformation, i.e. a 
rotation and a translation.

 For this one defines a local 
object coordinate system 𝑂 per 
rigid body. 

 The natural origin is the center 
of mass 𝑿 of the rigid body.

 A natural orientation results 
from the inertia tensor (see 
slides 12ff). 

 In 2D the orientation is defined 
by an angle 𝛼. In general, a 
rotation matrix 𝑹 can be used.
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Placement – Center of Gravity

X x̂

ŷ

ii m,x

Discrete Case

 Rigid body is decomposed into
discrete point masses 𝒙𝑖 , 𝑚𝑖.

 The center of mass 𝑿 is the 
average position weighted with 
the point mass, which is derived 
from the affine combination

𝑿 =
1

𝑀


𝒊

𝑚𝑖𝒙𝑖

 with the total mass 𝑀:

𝑀 =

𝒊

𝑚𝑖

Continuous Case

 here one defines the mass
density

𝜌 = 𝑑𝑀/𝑑𝑉

 summations become integrals:

𝑀 = න
𝑉

𝜌 𝒙 𝑑𝑉

𝑿 =
1

𝑀
න
𝑉

𝜌 𝒙 𝒙𝑑𝑉
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Placement

  WOOW XXxRx 

O
x̂

OŷNotation

 𝑊 and 𝑂 stand for world and 
object coordinate system.

 A subscript defines the 
coordinate system in which 
the vector components are 
given.

 For base vectors, the 
additional superscripts 
indicate which coordinate 
system is spanned by the 
base.

 For positioning, an Euclidean 
transformation from the 
natural object coordinates 
into world coordinates is 
given.
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Kinematics

 By derivation with respect to 
time one receives two contribu-
tions to the velocity (note that 
𝒓𝑂 does not change over time)

Linear velocity

 Describes the uniform motion of 
the rigid body (which can also 
rotate around the center of 
mass).

Angular velocity

 Describes the change of 
orientation

 For infinitesimal small 𝑑𝑡
rotation can be assumed to be 
constant around fixed axis ෝ𝒏

 with angular velocity defined as

𝝎 =
𝑑𝛼

𝑑𝑡
ෝ𝒏
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Dynamics – Forces and Accelerations

 In the following we assume the 
world coordinate system as 
default even if the subscript 𝑊
is not given.

 As with kinematics, dynamics 
can be split into linear and 
angular motion.

Linear Dynamics

 All forces acting on the body are 
applied to the center of mass 
and added to the total force 
which, according to Newton, 
changes the linear velocity and 
the linear momentum.

 The procedure is equivalent to 
the one for point masses

X

1r
 2r
3r



1F


2F


3F


simple example

that shows, why

force needs to be

transported to

centroid also ortho-

gonal to force action

lines

with linear momentum 𝑷 = 𝑀𝑽

9

𝑭tot =
𝑖
𝑭𝑖 = 𝑴 ሶ𝑽 = ሶ𝑷



Computergraphik
und Visualisierung

S. Gumhold, CG3 WS 24/25 – Rigid Bodies

Dynamics – Torque I

Angular Dynamics

 Torque 𝑻 is the rotational 
equivalent to force

 Torque measures lever action with 

that a force 𝑭𝑖 acts on center of 
mass 𝑿 when force is applied to 
an object position vector 𝒓𝑖.

 Torque points along the rotation 
axis and in 2D orthogonal to 2D 
plane (up or down)

 The absolute value 𝑇 can be 
computed from the length of 𝒓𝑖, 
which is the length of the lever, 
and the component of the force 
orthogonal to 𝒓𝑖.

 Any force 𝑭𝑖 therefore acts twice 
– once for linear and once for the 
angular dynamics
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𝑻tot =
𝑖
𝑻𝑖𝑇tot =

𝑖
𝑇𝑖
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Dynamics – Torque II

Rotation & Newton‘s Laws

 For now, we will look at only 
one point mass, which circles 
around the center of mass with 
the angular velocity.

 For an acceleration on the orbit 
a force is needed which 
accelerates the point mass 
according to Newton's 2nd law.

 This force can be directly 
converted into the 
corresponding torque.

 If one uses the vector identity

Ԧ𝑎 × 𝑏 × Ԧ𝑐 = Ԧ𝑎 ⋅ Ԧ𝑐 𝑏 − Ԧ𝑎 ⋅ 𝑏 Ԧ𝑐

the angular acceleration can be 
factored out also in the vectorial
case.
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Dynamics – Inertia Tensor I

Rotation & Newton‘s Laws

 Summing the contributions of 
all point masses yields the total 
torque 

 This is proportional to the 
angular acceleration in 2D. 

 The proportionality constant is 
called the moment of inertia and 
is the equivalent to the mass in 
linear dynamics. 

 It grows quadratically in the 
distance to the axis of rotation.

 In 3D we obtain a symmetric
3x3-matrix

 In the continuous case, the 
inertia tensor results from

2D case

3D case
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x̂

ŷ

Dynamics – Inertia Tensor II

Example of circular disk of radius 𝑟0
 This is the 2D case and therefore 

a moment of inertia is calculated.

 Radius is 𝑟0 and density constant 
equals 0 over total disk

 The best way is to transform the 
integral into cylinder coordinates 
and integrate them by angle 
(yields a factor of 2𝜋) and radius.

 The result can be interpreted in 
such a way that the circular disk 
has the same inertia with regard 
to rotation as a ring or point mass 

at radius 1/ 2 𝑟0
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Dynamics – Inertia Tensor III

Example Cuboid

 It is important to place the origin 
in the center of mass.

 By alignment to the main axes, 
a diagonal matrix with three 
main moments of inertia is 
obtained 𝐼𝑥, 𝐼𝑦, 𝐼𝑧:
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check out: http://www.cs.berkeley.edu/~jfc/mirtich/massProps.html
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Dynamics – Natural Coord. System II

 Since the tensor of inertia is 
symmetric and positive definite, 
one can always find an 
orthonormal coordinate system 
in which the tensor is diagonal 
and completely defined by 𝐼𝑥, 
𝐼𝑦, 𝐼𝑧.

 This is typically used as a 
natural coordinate system.

 Caution in contrast to mass, the 
inertia tensor must be 
transformed from the object to 
the world coordinate system. 
The rotation matrix of the 
orientation will be multiplied 
from the left and transposed 
from the right.
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Dynamics – Angular Momentum

 To the relation between force and
linear momentum corresonds a 
similar relation between torque
and angular momentum

 Angular momentum 𝑳 is a 
vectorial conserved quantity

 Inertia tensor changes over time 
with rotation matrix

𝑰 𝑡 = 𝑹 𝑡 𝑰𝑜𝑹
𝑇 𝑡

 𝑳 and 𝝎 are parallel if 𝝎 points
along a main axis of the inertia

tensor, and it holds 𝑻 = ሶ𝑳 = 𝑰 ሶ𝝎

 In case of equal momentums of
inertia all their linear combinations
yield such main axes.
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⇒ 𝑻 = ሶ𝑳

𝑷 = 𝑀𝑽

𝑳 = 𝑰𝝎

⇒ 𝑻 = 𝑰 ሶ𝝎 + ሶ𝑰𝝎

ሶ𝑰 = ሶ𝑹𝑰𝑜𝑹
𝑇 + 𝑹𝑰𝑜 ሶ𝑹𝑇

ሶ𝑹 = 𝝎∗𝑹

ሶ𝑰 = 𝝎∗𝑹𝑰𝑜𝑹
𝑇 − 𝑹𝑰𝑜𝑹

𝑇𝝎∗ = 𝝎∗𝑰 − 𝑰𝝎∗

⇒ 𝑻 = 𝑰 ሶ𝝎 + 𝝎∗𝑰𝝎 − 𝑰ถ𝝎∗𝝎

𝟎⇒ 𝑻 = 𝑰 ሶ𝝎 + 𝝎∗𝑰𝝎

⇒ 𝑻 = 𝑰 ሶ𝝎 + 𝝎∗𝑳

⇒ 𝑭 = ሶ𝑷

⇒ 𝑭 = 𝑀 ሶ𝑽
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Dynamics – Angular Momentum

Example: nutation of spinning top

 If top spinning around main axis 𝑲
that is tilted by angle 𝜃 from the 
vertical axis, gravity generates a 

torque 𝑻 pointing along ෝ𝒖 axis in 
figure on right side

 This torque rotates main axis 𝑲
around vertical axis

 Angular velocity of precession
fulfills

𝑻 = 𝝎p × 𝑳

such that 𝜔p =
𝑇

sin 𝜃⋅𝐿

 Precession speeds up with
decrease in angular momentum

 If 𝜃 changes over time the motion
is called nutation which can be
described by cones

Taken from https://elearning.physik.uni-frankfurt.de/data

See also: https://www.youtube.com/watch?v=DG3TuMy0UAM
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𝑻 = 𝑰 ሶ𝝎 + 𝝎∗𝑳

Prolate top Oblate top

https://elearning.physik.uni-frankfurt.de/data/FB13-PhysikOnline/lm_data/lm_324/daten/kap_3/node80.htm
https://www.youtube.com/watch?v=DG3TuMy0UAM
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Equations of Motion

 The state of the rigid body is 
uniquely defined by position, 
orientation, linear and angular 
momentum.

 The time evolution function is 
computed from previous 
observations in world space

 Here, only reciprocal values of 
mass and inertia tensor are 
needed. 

 transformation of the inverse 
inertia tensor to world space:

 if a 0 is stored in reciprocal 
mass or tensor of inertia, this 
corresponds to an infinite mass

 Caution: 𝑹 must be orthogonalized
after each integration step. This can 
be done, for example, with polar 
decomposition.
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 https://www.youtube.com/watch?v=vWVZ6APXM4w

 Which block flies higher?
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