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01 Motivation/Zielstellung

• nicht selten hochkomplexe Beschreibungen von Naturphänomenen in der Computergraphik

• typischerweise große Datenmengen (z.B. Zeitreihe einer abgetasteten Fluidoberfläche über 
128³-Gitter: ~7,8 GiB bei 1000 Zeitschritten und 4 Byte floats) 

• Finden von Strukturen in der Datenflut, um dieselben Phänomene mit weniger Variablen 
beschreiben zu können

• kann durch Dimensionsreduktionsverfahren erreicht werden
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01 Motivation/Zielstellung

Ziel der Belegarbeit:

Anwendung von Dimensionsreduktionsverfahren auf Fluidgrenzflächen analog Treuille [TLP06]

zur Datenkompression und Animation

ausgewählt wurden:

• Hauptkomponentenanalyse (PCA) als lineares 

• Kern-PCA als nichtlineares Verfahren 
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01 Motivation/Zielstellung
Grundidee der Reduktionsverfahren:

• transformiere Daten in ein Koordinatensystem, in welchem ihre Beschreibung mit weniger 
Komponenten auskommt

• PCA erreicht dies, indem Richtungen der größten Varianzen gefunden werden, sie heißen 
Hauptkomponenten

• Reduktion besteht im Vernachlässigen von niederwertigen Richtungen
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02 Grundlagen

Oberflächen in der Fluidsimulation - Level sets

• Eingabedaten in Form von sog. level sets gegeben

• vergleichbar mit Definition für impliziten 
Kurven/Flächen[OF02]:

- gegeben eine implizite Funktion φφφφ deren 
Nullstellenmenge δφδφδφδφ die Isokurve/fläche erklärt:

- Unterschied zum level set: Isokurve/fläche muss 
hier nicht zwangsläufig Nullstellenmenge sein:
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03 Hauptkomponentenanalyse (PCA)

• wohlbekanntes mathematisches Verfahren, Ursprünge im ausgehenden 19.Jh./frühen 20.Jh., 
v.a. durch Pearson und Hotelling [Jol02]

• Stärken spielten sich mit Verfügbarkeit von leistungsfähigen Rechnern aus, damit konnte 
Verfahren auf multidimensionale Daten angewendet werden

• lineares Verfahren, universell anwendbar, durch Orthogonalität einfache Hin- und 
Rückabbildung in bzw. aus reduzierten Raum möglich

• Finden der Hauptkomponenten über Eigenwertzerlegung, sodass Nebenabhängigkeiten in den 
Daten minimiert werden (lassen sich über die Kovarianz beschreiben)

• nach der Transformationen in Bildraum sind Varianzen maximiert und Kovarianzen minimiert
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03 Hauptkomponentenanalyse (PCA)

Der PCA-Algorithmus [Shl03]

• Daten werden als Spaltenvektoren einer großen Matrix X aufgefasst:
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03 Hauptkomponentenanalyse (PCA)

Reduzieren der Basis – Verwerfen von Eigenvektoren: 

• Die ersten M Eigenvektoren werden als Hauptkomponenten bezeichnet und bilden die 
reduzierte Basis B

Merkmalsextraktion: 

• Projektion der Datenvektoren auf Hauptkomponenten ergibt Merkmalsmatrix A:
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K
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Merkmale beschreiben die Datenvektoren im transformierten (reduzierten) Raum
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03 Kompression mithilfe der PCA
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03 Kompression mithilfe der PCA

Kompressionsgrad K:

MNK /=

(wenn räumliche Auflösung wesentlich 

größer als zeitliche, d.h. N >> T)

MTK /≈

2. mit Rekonstruktion:

(inkl. Speicherung d. Hauptkomponenten)

1. reine Merkmalsextraktion:

(ohne Speicherung d. Hauptkomponenten)

Speicherverbrauch im komprimierten Fall:
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04 Kern-PCA
• verknüpft Kernmethoden mit Mitteln der PCA, um nichtlineare Muster zu finden

Grundlage bildet  Abbildung ΦΦΦΦ, welche x in hochdimensionalen Raum H abbildet:

• durch Entzerrung werden nichtlineare Strukturen im  Eingaberaum in H linear, sodass PCA-
Algorithmus optimal ansetzen kann
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• Φ Φ Φ Φ ist dabei in seiner Komplexität unbeschränkt
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04 Kern-PCA
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04 Kern-PCA
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04 Kern-PCA

Problem: potenzielle Unbeschränktheit von H und ΦΦΦΦ, explizites Ausrechnen nicht möglich

Trick: Kernfunktionen

• PCA lässt sich allein auf Grundlage von Skalarprodukten beschreiben

• Definition sog. Kernfunktionen, die Skalarprodukte zweier Vektoren aus H in RN berechnen 
können:
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• Sigmoid-Kerne:
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04 Kern-PCA

Die Kernmatrix K [SS01]

• K ist Gram'sche Matrix in H [SA94]
(die Matrix aller N² Einträge zu einer Bilinearform, z.B. Skalarprodukt, definiert auf N-dimensionalem Körper) 

• Einträge sind die paarweisen Skalarprodukte der Bildvektoren in H, welche sich über die 
Kernfunktionen in RN berechnen lassen
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04 Kern-PCA
Der (Um-)Weg

• Eigenwertzerlegung der Kovarianzmatrix C entspricht Eigenwertzerlegung von K [SS01]:

(die erhaltenen Eigenvektoren αααα stimmen bis auf konstanten Koeffizienten mit Hauptkomponenten 
b überein, müssen noch umnormalisiert werden � αααα∗∗∗∗)
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rrr
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• Reduktion besteht wieder im Verwerfen von Eigenvektoren

• durch Mächtigkeit von ΦΦΦΦ kann im Bildraum H höhere Abstraktion und damit größere Reduktion 
erreicht werden [SMS99] als bei PCA, Wahl des Kernes jedoch abhängig vom Inhalt der Daten

Merkmalsextraktion:

Merkmalsvektoren ergeben sich wieder analog PCA: KaaA
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04 Kern-PCA

Probleme im Hochdimensionalen

• Mittelwertbereinigung nicht direkt möglich, aber indirekt über Modifikation der Kernmatrix [SS01]:
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• Eigenwertzerlegung mit modifizierter Kernmatrix entspricht dann der Eigenwertzerlegung der 
Kovarianzmatrix in H nach vorheriger Mittelwertbereinigung

E… Einheitsmatrix
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04 Kern-PCA

Urbild-Problem [SS01]:
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04 Kern-PCA
(Exakte) Rekonstruktion

• analog PCA: Abbildung der Merkmale auf Hauptkomponenten. 

• Anschließend Anwendung einer invertierbaren Funktion 
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PROBLEM: Mittelwertfrei? Vor der Anwendung der Umkehrabbildung müssten die Mittelwerte 
rückgerechnet werden, diese sind jedoch niemals explizit ausgerechnet worden

�Weg: Urbildapproximation, z.B. durch senkrechte Projektion von  auf                        [SS01]

),(),( yxkyxfk

rrrr
=

Für bestimmte Gruppen von Kernen möglich (polynomielle ungeraden Grades sowie Sigmoid-Kerne)

∑ ∑∑∑
−

=

−

=

−
−

=

−
−

=










===

1

0

1

0

1
1

0

1
1

0

),(ˆ)),((,
N

i

i

T

j

ijjk

N

i

iik

N

i

ii eexkfeezkfeezz
rrrrrrrrrr

α

für ergibt sich für z:

mit ∑
−

=

=
1

0

,,
~ˆ

M

i

jiitj aa α

)(
~

ix
rr

Φ )(span z
r

Φ



TU Dresden, 16.09.2010 Dimensionsreduktionsverfahren Folie 21 von 28

05 Simulation

Ursprünglicher Ansatz: 

Modellreduktion analog Treuille über Galerkin-Projektion:

• Neben Datenvektoren wird Zeitentwicklungsfunktion des Modells in reduzierten Raum überführt:

• Im Rahmen der Belegarbeit ist Zeitentwicklungsfunktion nicht gegeben, sondern reines level set
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05 Simulation
Ein einfaches Modell:

• Grundlage ist die Interpretation der Zeitfunktionen der Merkmale bei bestimmten Datensätzen

• Hauptkomponenten beschreiben die Orte der Dynamik und Merkmale die Intensität

• Interpretation als Moden, Annäherung der Merkmalsverläufe mit gedämpften Sinusschwingungen [Kut04]

Visualisierung der 1. Hauptkomponente 
eines Datensatzes

Verlauf des zugehörigen Merkmals
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05 Simulation
� Approximation der i-ten Merkmalsentwicklungsfunktion durch Summen gedämpfter 
(harmonischer) Partialschwingungen (d.h. ganzzahlige Vielfache der Grundschwingung) 

Modellformel:
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Approximation eines rekonstruierten Datenvektors:

Offset, Amplitudendämpfung, Maximalamplitude, spektrale Dämpfung, Grundfrequenz, Phasenlage
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06 Ergebnisse

• Eigenwerte sind Maß für die Rekonstruktionsqualität

• In der Literatur findet sich ein Wert von 70 Prozent als 
zufriedenstellend [Ser02] - Praxis zeigt, dass auch 
niedrigere Werte visuell überzeugen können

Rekonstruktionen eines 3D-Datensatzes mit 
unterschiedlicher Anzahl an Hauptkomponenten

5,340,23,1860,4196,8∅

7,43203,09481515

5,96223,36391334

3,26602,8702003

4,85603,59813002

5,02393,06642001

KvN (visuell)KεN (ε>70%)TZeit-
reihe

Kompressionsraten nach  statischer Schwelle (Kε) und visueller 
Beurteilung (Kv). T… Anz. Der Zeitschritte, N… Anz. der 
verwendeten Hauptkomponenten
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06 Ergebnisse
• Wichtig für das Gelingen war die 
Einführung eines Vorfilterungsschrittes:

• dadurch andere Verteilung der Varianzen 
und deutlich kleinere Fehler:
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06 Ergebnisse

Simulation:

• einfache periodische Ausschwingvorgänge können animiert werden

• Simulationszeitraum unabhängig vom Trainingszeitraum

• Modellparameter zur Laufzeit einstellbar

• basierend auf dem vorhandenen Bildmaterial als Trainingsdaten, nicht physikalisch korrekt
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07 Diskussion
PCA:

• effizient anwendbar durch Orthogonalität

• schlägt jedoch fehl, wenn Richtungen der größten Varianz nicht zwangsläufig Richtungen der 
größten Bedeutsamkeit sind oder diese nicht orthogonal stehen � ICA [HO00]

• speicherhungrig, Kovarianzmatrix wächst quadratisch (128³-Set � 16 TiB bei 4 Byte float)

� SVD mit transponierter Datenmatrix (wenn N >> T)

• schlechte Ergebnisse ohne Vorfilterung (in diesem Fall Optimierung des gesamten Distanzfeldes)

KPCA:

• Ergebnisse stehen noch aus

• Problem Mittelwertbefreiung und geeigneten Kern finden 

Simulation:

• keine chaotischen Vorgänge simulierbar

• nicht interaktiv im Sinne der direkten Interaktion mit der Oberfläche, lediglich Parameter
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08 Demonstration

Vielen Dank für die Aufmerksamkeit!
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Anhang – Herleitung KPCA

∑
−

=

Φ⋅Φ=
1

0

)()(/1ˆ
T

j

T

jj xxTC
rrrr

bCb
rr

ˆ=λEigenwertproblem:

Kovarianzmatrix:

bCxbxTt tt

rrrrrr
K ˆ),(),(:10 Φ=Φ−=∀ λ

Alle Lösungen für b liegen in linearer Hülle von (ΦΦΦΦ(x0)… ΦΦΦΦ(xT-1)), somit gilt:

Zudem lassen sich die b als Linearkombinationen der ΦΦΦΦ(xi) darstellen:

)(
1

0

i

T

i

i xb
rrr

Φ=∑
−

=

α

(1)

(3)

(2)



TU Dresden, 16.09.2010 Dimensionsreduktionsverfahren Folie 31 von 28

Anhang – Herleitung KPCA
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Anhang – Herleitung KPCA
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Merkmalsextraktion bei M Hauptkomponenten:
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Unter Zuhilfenahme der Kernfunktionen k sowie Kernmatrix K ergibt sich:
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