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01 Motivation/Zielstellung

e nicht selten hochkomplexe Beschreibungen von Naturphanomenen in der Computergraphik

o typischerweise groBe Datenmengen (z.B. Zeitreihe einer abgetasteten Fluidoberflache tUber
1283-Gitter: ~7,8 GiB bei 1000 Zeitschritten und 4 Byte floats)

e Finden von Strukturen in der Datenflut, um dieselben Phanomene mit weniger Variablen
beschreiben zu kdnnen

e kann durch Dimensionsreduktionsverfahren erreicht werden
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01 Motivation/Zielstellung

Ziel der Belegarbeit:

Anwendung von Dimensionsreduktionsverfahren auf Fluidgrenzflachen analog Treuille [TLPO6]
zur Datenkompression und Animation

ausgewahlt wurden:
e Hauptkomponentenanalyse (PCA) als lineares
e Kern-PCA als nichtlineares Verfahren
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01 Motivation/Zielstellung

Grundidee der Reduktionsverfahren:

e transformiere Daten in ein Koordinatensystem, in welchem ihre Beschreibung mit weniger
Komponenten auskommt

e PCA erreicht dies, indem Richtungen der gréoBten Varianzen gefunden werden, sie heiBen
Hauptkomponenten

e Reduktion besteht im Vernachlassigen von niederwertigen Richtungen
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02 Grundlagen

Oberflachen in der Fluidsimulation - Level sets
e Eingabedaten in Form von sog. level sets gegeben

e vergleichbar mit Definition far impliziten
Kurven/Flachen[oF02]:

- gegeben eine implizite Funktion ¢ deren
Nullstellenmenge 8¢ die Isokurve/flache erklart:

op={x1¢(x)=0}

- Unterschied zum level set: Isokurve/flache muss
hier nicht zwangslaufig Nullstellenmenge sein:
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Datensatze als abgetastete
Skalarwerte Uber einem uniformen
Gitter (eingetragen der Fluidrand)
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03 Hauptkomponentenanalyse (PCA)

e wohlbekanntes mathematisches Verfahren, Urspriinge im ausgehenden 19.Jh./frihen 20.]h.,
v.a. durch Pearson und Hotelling [10102]

e Starken spielten sich mit Verfligbarkeit von leistungsfahigen Rechnern aus, damit konnte
Verfahren auf multidimensionale Daten angewendet werden

e lineares Verfahren, universell anwendbar, durch Orthogonalitat einfache Hin- und
Ruckabbildung in bzw. aus reduzierten Raum maoglich

e Finden der Hauptkomponenten Uber Eigenwertzerlegung, sodass Nebenabhangigkeiten in den
Daten minimiert werden (lassen sich Uber die Kovarianz beschreiben)

e nach der Transformationen in Bildraum sind Varianzen maximiert und Kovarianzen minimiert
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03 Hauptkomponentenanalyse (PCA)

Der PCA-Algorithmus [shi03]

e Daten werden als Spaltenvektoren einer groBen Matrix X aufgefasst:

X = (Xgo ¥ %7 ))

e Aufstellen der Kovarianzmatrix

CX —xx' (bei mittelwertbereinigten Daten)

1
T-1

e L0sen des Eigenwertproblems:
b =AC,
e Mittel: SVD

T =
A=U2XV" Vv enthalt Eigenvektoren b von C, fir A E( T—l) X'
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03 Hauptkomponentenanalyse (PCA)

Reduzieren der Basis — Verwerfen von Eigenvektoren:

e Die ersten M Eigenvektoren werden als Hauptkomponenten bezeichnet und bilden die
reduzierte Basis B

Merkmalsextraktion:
e Projektion der Datenvektoren auf Hauptkomponenten ergibt Merkmalsmatrix A:

A=(d,...d, ,)=B-X dimd, <dim¥,

Merkmale beschreiben die Datenvektoren im transformierten (reduzierten) Raum

Rekonstruktion: ~

X=B"-A BT = !

(aufgrund der Orthogonalitat)
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03 Kompression mithilfe der PCA

I
Xo|X1[X )_ét ... Datenvektor mit N Eintragen einer

- Zeitreihe mit T Zeitschritten

N // Y
X, € R N / ( t=T -1
I N
v |
t=0

Speicherverbrauch im unkomprimierten Fall:

S o« N T
f f

Dimension d. Anzahl der
Datensatzes Datensatze

TU Dresden, 16.09.2010 Dimensionsreduktionsverfahren Folie 10 von 28



TECHNISCHE '7& .
@ UNIVERSITAT N Computergraphik
DRESDEN und Visualisierung

03 Kompression mithilfe der PCA

Speicherverbrauch im komprimierten Fall:

1. reine Merkmalsextraktion: 2. mit Rekonstruktion:
(ohne Speicherung d. Hauptkomponenten) (inkl. Speicherung d. Hauptkomponenten)
S o M -T SocM-(T'+N)

M... Dimension eines Merkmalsvektors (M < N)

Kompressionsgrad K:

K=N/IM K=T/M

(wenn raumliche Aufldosung wesentlich
groler als zeitliche, d.h. N >>T)
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04 Kern-PCA

e verknlUpft Kernmethoden mit Mitteln der PCA, um nichtlineare Muster zu finden
Grundlage bildet Abbildung ®, welche x in hochdimensionalen Raum H abbildet:

®: R — H
X - oX)
e ® ist dabei in seiner Komplexitat unbeschrankt

e durch Entzerrung werden nichtlineare Strukturen im Eingaberaum in H linear, sodass PCA-
Algorithmus optimal ansetzen kann

yA yA

~ ] A >

>
X

PCA Kern-PCA

S 4
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04 Kern-PCA

? 1 .
y RN H
pcA * Kern-PCA
X = (5(:0... ’;ét"' ';C)T—l) )2 —_ (q)(-;éo )--- q)(i‘:t)"' CI)(';C)T—l))
] 2 I 5y
C.=——XxXx"’ Cy =—XX"
T ToT-1
/U;:/ICX Ab = AC,
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04 Kern-PCA

)A
y RN
>
PCA ’
X =(Xy.e X,.000 X
1 T
C,=—-XX
T—-1
Ab = AC,

v A
CI) H
* Kern-PCA "
) X =(®(F)... ®(X,)... (%))

Nicht epr|2|t moglich!

6 1
Cx T —

Kerne, Kernmatrix
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04 Kern-PCA

Problem: potenzielle Unbeschranktheit von H und &, explizites Ausrechnen nicht moglich
Trick: Kernfunktionen

e PCA lasst sich allein auf Grundlage von Skalarprodukten beschreiben

e Definition sog. Kernfunktionen, die Skalarprodukte zweier Vektoren aus H in RN berechnen
kdnnen:

k(X 5) = (B(H), D))

Klassen von Kernen [SMS99][YZZL08]:
| ©oen e \d
e polynomielle Kerne: k(x,y)= <x, y>
e Sigmoid-Kerne: k(x, 5;) = tanh(l(<5c', §>+ 9)

e Kerne fUr GauB'sche RBF: k(X,y) = eXp(— ||55 - §||/(20'2))
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04 Kern-PCA

Die Kernmatrix K [SS01]

e K ist Gram'sche Matrix in H [5A94]
(die Matrix aller N2 Eintrage zu einer Bilinearform, z.B. Skalarprodukt, definiert auf N-dimensionalem Koérper)

e Eintrage sind die paarweisen Skalarprodukte der Bildvektoren in H, welche sich Uber die
Kernfunktionen in RN berechnen lassen

((BG).BGE)) o (BG).BE )| [ kGpFy) o+ k(F Ty

\<(_I>)(55T1;9(_I>)(550)> <(_IS(.;C>T1);(_I>)(5C)T1)>/ \k()_éT—.l’)_éO) k()_éT—l.’)_éT—l)}

Skalarprodukt in H kann in RN berechnet werden
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04 Kern-PCA

Der (Um-)Weg

e Eigenwertzerlegung der Kovarianzmatrix C entspricht Eigenwertzerlegung von K [SS017]:
Ab=AC, = la=Ka

(die erhaltenen Eigenvektoren o stimmen bis auf konstanten Koeffizienten mit Hauptkomponenten
b Uberein, missen noch umnormalisiert werden 2> o*)

e Reduktion besteht wieder im Verwerfen von Eigenvektoren

e durch Machtigkeit von ® kann im Bildraum H héhere Abstraktion und damit gréBere Reduktion
erreicht werden [sms99] als bei PCA, Wahl des Kernes jedoch abhangig vom Inhalt der Daten

Merkmalsextraktion: ( a, )
Merkmalsvektoren ergeben sich wieder analog PCA: (= ~ _ :
9 9 A=(@a,...a;)=| : |'K
\&M—U
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04 Kern-PCA

Probleme im Hochdimensionalen

e Mittelwertbereinigung nicht direkt mdglich, aber indirekt Gber Modifikation der Kernmatrix [sso01]:

K=K —lEK —lKE +L2EKE E... Einheitsmatrix

T T T

e Eigenwertzerlegung mit modifizierter Kernmatrix entspricht dann der Eigenwertzerlegung der
Kovarianzmatrix in H nach vorheriger Mittelwertbereinigung
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04 Kern-PCA

Urbild-Problem [sso01]:

Rekonstruktion ist
Linearkombination:
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04 Kern-PCA

(Exakte) Rekonstruktion

e analog PCA: Abbildung der Merkmale auf Hauptkomponenten.
 AnschlieBend Anwendung einer invertierbaren Funktion f, (<)_é, §>) =k(X,y)

~ M-I
fur ®d(x,)= ) ab, =P(z) ergibt sich fur z:
i=0

N-1 N-1 N-1 T-1 R M-l _
=Y (Z.¢)e. =D f. (k(Z.6))é =) fkl(z &jk(xj,a.)ja. mit  d; =D a,d,,

i= i=0 i=0 j=0 '

Flr bestimmte Gruppen von Kernen moglich (polynomielle ungeraden Grades sowie Sigmoid-Kerne)

PROBLEM: Mittelwertfrei? Vor der Anwendung der Umkehrabbildung mussten die Mittelwerte
rickgerechnet werden, diese sind jedoch niemals explizit ausgerechnet worden

>Weg: Urbildapproximation, z.B. durch senkrechte Projektion von Ef)()‘@.) auf span ®(z) [SS01]
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05 Simulation

Urspringlicher Ansatz:
Modellreduktion analog Treuille Uber Galerkin-Projektion:

e Neben Datenvektoren wird Zeitentwicklungsfunktion des Modells in reduzierten Raum Uberfahrt:
: _, < ~ = _ X —>
X:F(.X):> x:F(x) mit
B

d, B :d—Xx
o oB

“qz.b.u

e Im Rahmen der Belegarbeit ist Zeitentwicklungsfunktion nicht gegeben, sondern reines level set
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05 Simulation

Ein einfaches Modell:

e Grundlage ist die Interpretation der Zeitfunktionen der Merkmale bei bestimmten Datensatzen
e Hauptkomponenten beschreiben die Orte der Dynamik und Merkmale die Intensitat
e Interpretation als Moden, Annaherung der Merkmalsverlaufe mit gedampften Sinusschwingungen [Kut04]
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Visualisierung der 1. Hauptkomponente Verlauf des zugehdrigen Merkmals
eines Datensatzes
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05 Simulation

- Approximation der i-ten Merkmalsentwicklungsfunktion durch Summen gedampfter
(harmonischer) Partialschwingungen (d.h. ganzzahlige Vielfache der Grundschwingung)

Modellformel: . Anzahl der Oberschwingungen

Vi=0.M-1:y.(t)=0,+e-35.-> e PisinRQr -nft+¢.)

T T N N

Offset, Amplitudendampfung, Maximalamplitude, spektrale Dampfung, Grundfrequenz, Phasenlage

Approximation eines rekonstruierten Datenvektors:

_ M -1 . - M -1 .
xj:Zal bz —> X]zzyl(t:]) bl
i=0 i=0
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06 Ergebnisse

e Eigenwerte sind MalB fur die Rekonstruktionsqualitat

e In der Literatur findet sich ein Wert von 70 Prozent als
zufriedenstellend [ser02] - Praxis zeigt, dass auch
niedrigere Werte visuell Gberzeugen kénnen

Zeit- T N (e>70%) Ke N (visuell) Kv

reihe
1 200 64 3,06 39 5,02
2 300 81 3,59 60 4,85
3 200 70 2,8 60 3,26
4 133 39 3,36 22 5,96
5 151 48 3,09 20 7,43
%) 196,8 60,4 3,18 40,2 5,3

Kompressionsraten nach statischer Schwelle (Ke) und visueller
Beurteilung (Kv). T... Anz. Der Zeitschritte, N... Anz. der
verwendeten Hauptkomponenten

Original

Rekonstruktionen eines 3D-Datensatzes mit
unterschiedlicher Anzahl an Hauptkomponenten
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Mittlerer MSE
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06 Ergebnisse

e Wichtig fur das Gelingen war die
Einflhrung eines Vorfilterungsschrittes:

e dadurch andere Verteilung der Varianzen
und deutlich kleinere Fehler:

n
11 21 31 41 51 61 71 81 91 101 111 121 131
\
\\ ohne Vorfilterung
] g
\-“.‘-
—
T— —————
_-—--"-"———-—.___ _"'"'""----—-....__
—
it \Vorfilterunig
""‘==§
'-\\

Mittlerer MSE der Testzeitreihen (gemittelt iber die Gesamtheit aller Zeitreihen) in Ab-

hiingigkeit der Vorfilterung sowie der Anzahl n der verwendeten Hauptkomponenten.

1 wenn X, >¢

filt(x,,e)=4 —1 wenn —X,>¢
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0
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o
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Kumulativer Anteil an der
Gesamtvarianz [%]

Anteil des n-ten Eigenwertes an der Gesamtvarianz ohne Vorfilterung
Anteil des n-ten Eigenwertes an der Gesamtvarianz mit Vorfilterung
= = = Kumulativer Anteil der ersten n Eigenwerte an der Gesamtvarianz ohne Vorfilterung
- = = Kumulativer Anteil der ersten n Eigenwerte an der Gesamtvarianz mit Vorfilterung
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06 Ergebnisse

Simulation:

e einfache periodische Ausschwingvorgange kénnen animiert werden
e Simulationszeitraum unabhangig vom Trainingszeitraum

e Modellparameter zur Laufzeit einstellbar

e basierend auf dem vorhandenen Bildmaterial als Trainingsdaten, nicht physikalisch korrekt
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07 Diskussion

PCA:
o effizient anwendbar durch Orthogonalitat

e schlagt jedoch fehl, wenn Richtungen der groBten Varianz nicht zwangslaufig Richtungen der
groBten Bedeutsamkeit sind oder diese nicht orthogonal stehen = ICA [HO00]

e speicherhungrig, Kovarianzmatrix wachst quadratisch (1283-Set > 16 TiB bei 4 Byte float)
- SVD mit transponierter Datenmatrix (wenn N >> T)
e schlechte Ergebnisse ohne Vorfilterung (in diesem Fall Optimierung des gesamten Distanzfeldes)

KPCA:
e Ergebnisse stehen noch aus
e Problem Mittelwertbefreiung und geeigneten Kern finden

Simulation:
e keine chaotischen Vorgange simulierbar
e nicht interaktiv im Sinne der direkten Interaktion mit der Oberflache, lediglich Parameter
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08 Demonstration

Vielen Dank fur die Aufmerksamkeit!
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Anhang - Herleitung KPCA

>
|

: . _ 3 = = \T
Kovarianzmatrix: C —1/TZ D(x;) P(x;) (1)
Eigenwertproblem: Ab = Cb
Alle Loésungen fur b liegen in linearer Hille von (®(Xq)... ®(x1-1)), somit gilt:

Vi =0..T-1:(® (%), 4b ) = (B(%),Ch) 2)

Zudem lassen sich die b als Linearkombinationen der ®(x;) darstellen:

N
p—

b = aiCT)(?ci) (3)

i

Il
)
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Anhang - Herleitung KPCA

(3) in (2):
~ -1 ~ T-1
Vit =o...T—1:<cI>(5c;),/lz aiq>(5c’i)>:<c1>(5c;),c aid>(5c’i)> (4)
i=0 i=0
(1) in (4):
- - . -1
Vt=0...T—1: <¢(ft),lz al.cp()‘é,.)> = <<I>(5c’t),1/T - alCI)(fcl.)>
i=0 i=0
T-1 _ . T-1 _ T-1 _ _ .
A 0 (D(E),BE)) =1ITY o B(F,), ) P(E)P(E), D))
i=0 i=0 j=0
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TAKa = K&

Die LOosungen von Zﬁ(: Ko mit Z —TA erfiillen das Eigenwertproblem.

AnschlieBende Normierung der ¢ , sodass korrespondierende b die Lédnge Eins haben,

0 Vii(b,,b,) =1

—

>Normierungsvorschrift: mit b = OJZ.CT)()_C’Z.) ergibt sich lE<67,K67>
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Merkmalsextraktion bei M Hauptkomponenten:
R _ M -1 R R I T
a,, =(D(E).b,)= Y. &, (PE), B(,)) mit b= a®(x)
m=0

Unter Zuhilfenahme der Kernfunktionen k sowie Kernmatrix K ergibt sich:

M -1

M -1
Z&i,mk(it’in@) = &i,met :<
m=0

a, ;

Qi

,-,kt> mit 12; als t-te Spalte von K

Matrix aller Merkmale:

. OSQH

A=(a,...a; )=| : |'K

[

(1)
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