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Aufgabenstellung

Thema:

Dimensionsreduktionsverfahren in der computergraphischen Fluidsimulation

Zielstellung:

Ziel dieser Arbeit ist es, verschiedene Verfahren zur Dimensionsreduktion auf die interaktive Animation
von Fluidgrenzflichen anzuwenden und zu bewerten. Die Arbeit von A. Treuille et al. Model Reduction
for Real-time Fluids (2006) bildet dabei das Vorbild. Zur Auswertung stehen Zeitreihen des Lehrstuhl-

fluidsimulators zur Verfiigung. Im Einzelnen sind folgende Teilaufgaben zu bearbeiten:

e Literaturrecherche iiber Dimensionsreduktionsverfahren in der Computergraphik mit Ausblicken

in die mathematischen Grundlagen

o Anwendung der linearen Hauptkomponentenanalyse auf verschiedene Fluidsimulationszeitreihen

in Form von Level-set-Rohdaten

e Anwendung wenigstens einer nichtlinearen Dimensionsreduktionsmethode (z.B. Kern-PCA oder

Diffusionsabbildung)

e Erprobung und prototypische Implementierung der interaktiven Simulation in reduzierten Syste-

men per Galerkin-Projektion analog Treuille et al.
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1 Einleitung

Motivation und Zielstellung

In der Computergraphik werden nicht selten komplexe hochdimensionale Beschreibungen von Naturphé-
nomenen hervorgebracht, welche einerseits von anspruchsvollen mathematisch-physikalisch motivierten
Ansitzen und Modellen herriihren, andererseits durch das Abtasten und Diskretisieren der realen Natur
bedingt sind. Durch die Flut an Daten fallen hierbei zum Teil riesige Informationsmengen an. Oft jedoch
liegen der gefundenen hochdimensionalen Datenmenge viel einfachere Strukturen zugrunde, mit welcher

sich dieselben Vorginge beschreiben lassen.

Die Methoden der Dimensionsreduktionsverfahren finden ebenjene Strukturen, worauthin eine Verein-
fachung der Daten vorgenommen werden kann. Ein bekanntes mathematisches Verfahren stellt hierbei
die Hauptkomponentenanalyse dar, im englischen Sprachraum als Principal Components Analysis, kurz
PCA, bezeichnet, welche Nebenabhiingigkeiten in Datenstrukturen findet. Dieses Verfahren wurde um
1930 entwickelt, das innewohnende Potenzial konnte allerdings erst mit der Verfiigbarkeit von geeigne-

ten GroBrechnern in vollem Umfang ausgeschopft werden.

In der Computergrafik findet die Hauptkomponentenanalyse unter anderem in der Fluidsimulation An-
wendung. So ist es mittlerweile moglich, rechenintensive Fluidsimulationen nicht nur echtzeitfahig im
Sinne der graphischen Visualisierung, sondern auch durch Echtzeit-Interaktion fiir den Nutzer erforsch-
bar zu machen. Dies wird erreicht, indem die notwendigen Berechnungen der Navier-Stokes-Gleichungen

sowie der Nutzereingaben vollstindig in einem reduzierten Raum stattfinden (vgl. [TLPO6]).

Die vorliegende Arbeit kniipft an diesem Punkt an und untersucht die PCA im Hinblick auf ihre Eigen-
schaften als Dimensionsreduktionsverfahren bei der Anwendung auf Fluidgrenzflachen. Dabei kann sie
einerseits direkt zur Kompression der Daten verwendet werden, andererseits konnen mit ihr Strukturen in
den Daten gefunden werden, welche erlauben, ein Simulationsmodell zu definieren, das nutzerabhéngige
Animationen ermoglicht. Im Gegensatz zu [TLPO06] besteht hierbei die Schwierigkeit, dass anstelle eines
Vektorfeldes lediglich ein skalares Feld in Form von level sets als Losung einer Offline-Fluidsimulation
zur Verfiigung steht, um zugrundeliegende Strukturen zu finden; d.h. insbesondere, dass die Vorgénge,

welche zur Auspriagung der entsprechenden Fluidoberfldche fiithrten, unbekannt sind.
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Neben der Anwendung der PCA als lineares Verfahren wird des Weiteren der Fragestellung nachge-
gangen, inwieweit nichtlineare Verfahren zur Daten-Analyse geeignet sind und ob durch sie woméglich
noch bessere Ergebnisse erreicht werden konnen. Zu diesem Zweck wurde die sogenannte Kern-PCA

untersucht, die das PCA-Verfahren mit den Mitteln der nichtlinearen Kernmethoden kombiniert.

Gliederung der Arbeit

Zunichst werden in Kapitel 2 verwandte Arbeiten thematisiert, welche sich mit Dimensionsreduktions-
verfahren in der computergraphischen Fluidsimulation beschiftigen. Kapitel 3 widmet sich den metho-
dischen Grundlagen der linearen und der nichtlineare Hauptkomponentenanalyse. Dabei wird detailliert
auf die Algorithmen sowie die mathematischen Aspekte eingegangen, ebenso werden Probleme und de-
ren Losungsansitze diskutiert. Den Abschluss dieses Kapitels bildet die Beschreibung des entwickelten

Simulationsmodelles.

Begleitend zur vorliegenden Arbeit wurde eine Analysesoftware entwickelt, deren Funktionalititen und
Hilfsstrukturen in Kapitel 4 beschrieben werden. In den darauffolgenden Kapiteln 5 und 6 werden die
Ergebnisse der Untersuchungen an den Testzeitreihen vorgestellt und diskutiert. Kapitel 7 schliet die

Arbeit mit der Zusammenfassung.
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2 Verwandte Arbeiten

Die Hauptkomponentenanalyse ist als Dimensionsreduktionsverfahren in der Fluidsimulation nicht un-
bekannt und findet seit den siebziger Jahren des zwanzigsten Jahrhunderts Anwendung, z.B. durch J.
Lumley [Lum70], L. Sirovich [Sir87] oder P. Holmes [HLB96]. Sie ist auch unter der Bezeichnung Pro-
per Orthogonal Decomposition, kurz POD (vgl. [Row05] und [TLP06]), bekannt. Bei diesen Verfahren
wird u.a. die sogenannte Galerkin-Projektion angewandt, um neben den Datenvektoren auch die Zeit-
entwicklungsgleichungen des Fluidmodells in einen reduzierten Raum zu iiberfiihren und folglich mit
weniger Unbekannten zu rechnen. Ein Vorteil der POD-Methode ist u.a. der Wegfall der Behandlung von
Randbedingungen, da sie durch die Vollsimulation a priori vorliegen und damit implizit in das reduzierte
Modell einflieBen. Weiterhin sind alle Berechnungen unabhéngig von der Grofe des Simulationsraumes,

sondern nur von der GréBe der Basis, welche durch die Hauptkomponenten gebildet wird.

Zur Reduzierung der Rechenkomplexitit bei der Berechnung der Hauptkomponenten, im Duktus der
POD-Methode auch als POD modes bezeichnet (vgl. [Row05]), fithrte Sirovich die sogenannte Snap
Shot-Methode ein, um ein reduziertes Modell nicht mehr aus der gesamten Fluidsimulation, sondern aus

einer Reihe von Momentanzustinden zu errechnen.

Diesen Ansatz verfolgte A. Treuille [TLPO06] in seiner Arbeit und prisentiert ein um eine interaktive
Komponente erweitertes Modell: Es konnen anwendergesteuerte Hindernisse in Echtzeit im Fluidstrom
simuliert werden. Treuille koppelt das reduzierte Modell des gesamten Fluidstromes mit einem reduzier-
ten Modell, welches aus den Fluidbewegegungen in der unmittelbaren Nihe des interaktiven Objektes
hervorgeht und wiederum mithilfe der PCA und der Snap Shot-Methode gewonnen wurde, so, dass die
No-Slip-Bedingung am Objektrand effizient berechnet werden kann. Dazu fiihrt er Operatoren ein, wel-
che Rotation und Translation der Bezugssysteme ineinander iiberfiihren sowie einen Speed-Operator
zur Berechnung der Normalengeschwindigkeiten an allen abgetasteten Oberflichenpunkten. In einem
ersten Schritt, dem feed foward, werden die Bereiche des globalen Fluid-Vektorfeldes in der lokalen
Nihe des interaktiven Objektes in dessen Koordinatensystem umgerechnet und die No-Slip-Bedingung
erzwungen. Im zweiten Schritt, dem feed backward erfolgt die Berechnung der Krifte, die durch die
Nutzer-Interaktion mit dem Objekt auf das Fluid einwirken, welche anschlieBend wieder vom lokalen

Objekt-Bezugssytem in das globale Koordinatensystem umgerechnet werden.
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Zur Effizienzsteigerung seines Interaktionsmodells fiihrt Treuille eine Vorberechnung der feed foward-
und feed backward-Matrizen fiir diskretisierte Orientierungen, d.h. Rotation und Translation, durch, wo-
bei der Speicheraufwand fiir diese Matrizen quadratisch von der Diskretisierungsschrittweite abhéngt.
Durch die Offline-Berechnung kann nunmehr sogar die Kopplung zwischen Fluid und interaktivem Ob-

jekt vollstiandig im reduzierten Raum berechnet werden.

Ansitze, welche die PCA/POD-Methode mit Algorithmen verbinden, die iiber lange Simulationszei-
ten eine hohere Stabilitdt und akkuratere Ergebnisse als die Snap Shot-Methode liefern, sind u.a. durch
C.W. Rowley [Row05] beschrieben. Er kombiniert die Methode der balanced truncation mit der POD-
Methode zur balanced POD. Eine approximierende Variante der PCA sowie der nichtlinearen Kern-PCA

(vgl. Kapitel 3.3) wird von Shawn Martin [Mar06] vorgestellt und auf Taylor-Couette-Fliisse angewandt.
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3 Methodik

3.1 Oberflachen in der Fluidsimulation: Level Sets

Die Reprisention einer Oberfliche als sogenanntes level set ist eine weitverbreitete Darstellungsform

und eng verwandt mit der mathematischen Definition fiir implizite Flichen'.

Im Folgenden werden diese beiden Darstellungsformen kurz erklirt. Zunédchst sei die Darstellung einer

impliziten Flache beschrieben:

Es wird eine Funktion ®(z) : RY -5 R eingefiihrt, welche an allen Punkten x (x € R") des betrachteten
Raumes definiert sei. Sie wird weiterhin so gewihlt, dass durch sie, abhingig von ihrem Funktionswert,
drei Regionen Q7, Q~ und 61 erklirt werden konnen (vgl. [OF02]). Fiir alle Punkte x ., die auBerhalb
der impliziten Fliche liegen, soll der Funktionswert von ®(z, ) groBer Null sein. Die Menge dieser
Punkte ist QT = {z|®(z) > 0}. Die Menge Q~ der Punkte, welche innerhalb der impliziten Fliche
liegen, ist analog mit 2~ = {z|®(z) < 0} beschrieben. Die implizite Fliche 62 ist genau dort definiert,
wo der Funktionswert von ® gleich Null wird, d.h. §Q = {z|®(z) = 0}.2

Ein level set ist nun die Menge von Punkten, fiir welche die Funktion ®(z) ein und denselben konstanten

Funktionswert A liefert. Sei diese Menge mit I'A bezeichnet, so gilt (analog 6€2):

Ia = {z]®(2) = A} (3.1)

Man sieht, dass sich das level set I' A ebenso als implizite Fliche darstellen ldsst. Dazu wird die implizite
Funktion & (z) = ®(z) — A gewihlt. Sie hat als Nullstellenmenge 6€25 genau die Menge der Punkte,

welche durch das level set I'A beschrieben sind.

Weitere Bezeichnungen fiir level set sind u.a. Isokonturlinien im zweidimensionalen bzw. Isofldichen im

dreidimensionalen Fall.

' Anm.: Beide Darstellungsformen unterscheiden sich semantisch, lassen sich jedoch gegenseitig ineinander iiberfiihren.
>Wihrend ®(z) im n-dimensionalen Raum definiert ist, so hat §Q die Dimension (n — 1) (vgl. [OF02]).
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3.2 Die Hauptkomponentenanalyse (PCA)

3.2.1 Die historische Entwicklung der Hauptkomponentenanalyse

Die Methode der Hauptkomponentenanalyse ist ein wohlbekanntes Verfahren der multivariaten Statistik,
um komplexe Daten zu vereinfachen und zu restrukturieren (vgl. [Jol02]). Ihre Urspriinge reichen bis
zum Ende des 19. Jahrhunderts zuriick, als u.a. durch E. Beltrami und M.E.C. Jordan Methoden zur Sin-
guldarwertzerlegung in einer Form entwickelt wurden, wie sie auch in der heutigen PCA Anwendung fin-
den. Die ersten Beschreibungen des Verfahrens, welches heute als Hauptkomponentenanalyse bezeichnet
wird, geht auf die Arbeiten von Karl Pearson (1901) und Harold Hotelling (1933) zuriick, wobei beide
unterschiedliche Ansitze verwendeten — Pearson versuchte Mengen von Punkten in p-dimensionalen
Réaume durch Geraden und Ebenen anzundhern, wihrend Hotelling ausgehend von der Faktorenanalyse
zur PCA kam. Pearson erklérte, dass seine Methoden einfach auf entsprechende numerische Probleme
hoher Dimension angewandt werden konnen, auch wenn die Berechnungen per Hand fiir vier oder mehr
Unbekannte mithsam wiirden — dies war lange vor der allgemeinen Verfiigbarkeit von elektronischen Re-
chenanlagen. Der Begriff Hauptkomponente geht auf Hotelling zuriick: Seine Methode orientierte sich an
der Faktorenanalyse, welche von dem Psychologen Charles Spearman im beginnenden 20. Jahrhundert
entwickelt und durch den der Begriff des Fakrors geprigt wurde. Um seine Methode abzugrenzen und
um weiterer Konfusion mit dem mathematischen Begriff Faktor aus dem Weg zu gehen, fiihrte Hotelling
den Begriff Komponente ein. Er wihlte sie so, dass sie je einen akkumulativen Anteil an der Summe der
gesamten Varianz aller urspriinglichen Variablen leisteten und nannte die so erhaltenen Vektoren Haupt-
komponenten. Das Verfahren betitelte er mit ,,method of principal components — Methode der Haupt-
komponenten. Hotelling beschrieb weiterhin, wie die Hauptkomponenten mithilfe der Potenzmethode
gefunden werden konnen sowie deren geometrische Interpretation. In den unmittelbaren Jahren nach
Hotellings Publikation wurden nur wenige verschiedene Anwendungen und Erweiterungen der PCA-
Methode vorgenommen. Mit dem Vormarsch der elektronischen Rechner sollte sich dies dndern: Etwa
25 Jahre nach Hotellings Paper wurden explosionsartig Weiterentwicklungen und differenzierte Anwen-
dungen der PCA vorangetrieben. Nun wurde das Potenzial deutlich, welches sich aus der Anwendung
der PCA auf hochdimensionale Daten ergibt®. Als weitere wichtige Publikationen in den, beziiglich der
PCA, aufblithenden 60-er Jahren des 20. Jahrhunderts seien die Arbeiten von T.W. Anderson [And63],
C.R. Rao [Rao64], J.C. Gower [Gow66] und J.N.R. Jeffers [Jef67] genannt (vgl. [Jol02]).

Die Hauptkomponentenanalyse entwickelte sich zu einem etablierten Verfahren, welches heute in nahe-

zu allen wissenschaftlichen Disziplinen ihre Anwendung findet. In der Computergraphik sind die Auf-

°Anm.: ,,Hochdimensional* nicht mehr im Sinne Pearsons, sondern mit weit mehr als vier Unbekannten.
A Hochd 1“ nicht mehr im Sinne P d t weit mehr al Unbekannt
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gabengebiete der PCA weit gestreut: Sie findet Anwendung in einfachen Berechnungsverfahren, z.B.
beim Berechnen optimaler Boundingboxen (vgl. [DKKRO7]), wie auch in komplexen Beleuchtungs-
rechnungen, z.B. beim Rendern komplexer Oberflichen mithilfe bidirektionaler Texturfunktionen (vgl.
[MMKO04]) oder zur Manipulation sowie Inter- und Extrapolation aufgezeichneter Motion Capture Daten

(vel. [GBTO4]).

Synonym zum Terminus Hauptkomponentenanalyse werden auch die Begriffe Karhunen-Loéve-Trans-

formation, Hotelling-Transformation bzw. Proper Orthogonal Decomposition (vgl. Kap. 2) verwendet.

3.2.2 Grundlagen zur PCA

Im Folgenden werden die Ansitze und wesentlichen Schritte des PCA-Algorithmus beschrieben.

Die grundsitzliche Zielstellung der PCA ist die Transformation der Daten in ein geeignetes Koordinaten-
system, in welchem sie im Idealfall redundanzfrei beschrieben werden kénnen. Eine solche Redundanz
ist insbesondere dann gegeben, wenn zwei Variablen eines Datensatzes einen Zusammenhang aufweisen,
d.h. wenn sich der Anteil einer Variablen aus der jeweils anderen ableiten ldsst. Die PCA transformiert
die Datensétze so, dass genau diese Zusammenhinge minimiert und die Daten mit weniger Variablen

dargestellt werden konnen.

Zu einer Menge von 7' mittelwertbereinigten Datensitzen #; € R”Y wird eine neue Basis B = {gz|z =
0..N — 1, N € IN} gefunden, deren Basisvektoren b; € RY orthonormal sind — sie werden die Haupt-
komponenten genannt. Ein Datensatz ldsst sich sodann als Linearkombination dieser I Basisvektoren

darstellen:

N—-1
T = Z a; - b; (3.2)
1=0

Eine Reduktion der Dimension erfolgt durch die Vernachldssigung von Hauptkomponenten. Der Daten-
vektor Z; wird durch den Vektor y?t approximiert, wobei %t aus einer Linearkombination der ersten M

Basisvektoren hervorgeht:

1t

8

M—-1
v=> b (M<I) (3.3)
=0

Das Ziel besteht darin, den mittleren quadratischen Fehler respektive den euklidischen Abstand zwischen
dem Ursprungsdatensatz 7; und dem approximierenden Vektor Z; zu minimieren, d.h. es erfolgt eine

Optimierung im Sinne der Methode der kleinsten Quadrate.
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min||:§’t - ft||2 (34)

Bei der Hauptkomponentenanalyse wird dies erreicht, indem man die Basis B so wihlt, dass die Richtun-
gen der Hauptkomponenten gleich den Richtungen der gréfiten Streuungen in den Datensétzen entspre-
chen. Als Streuungsmal} wird hierbei die Varianz verwendet. Das Minimierungsziel ist erfiillt, wenn die
Hauptkomponenten entsprechend des zugehdrigen Streuungsanteils sortiert werden. Genau dann wird

||Z; — #||2 minimal.
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Abbildung 3.1: Plot von 100 Datensitzen &; = (ng, n1)? (vgl. [Jol02]).
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Abbildung 3.2: Plot der Daten aus Abb. 3.1 beziiglich ihrer Hauptkomponenten by und b, .

Die Abbildung 3.1 zeigt beispielhaft eine Menge von Datensétzen bestehend aus zwei stark korrelier-

ten Variablen ng und ni; beide besitzen ungefihr die gleiche Streuung. Die grofite Streuung in den
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Abbildung 3.3: Plot der rekonstruierten Daten aus Abb. 3.1 mithilfe der ersten Hauptkomponente

Daten ldsst sich jedoch in einer Richtung finden, welche schrig zu den Richtungen von ng und n; ver-
lauft. Sie ist genau die Richtung der ersten Hauptkomponente by, orthogonal dazu ist die Richtung der
zweiten Hauptkomponente b;, welche einen geringeren Streuungsanteil hat. Abbildung 3.2 zeigt die
Datensitze beziiglich ihrer Hauptkomponenten. Die Dimensionreduktion besteht nun darin, von einer
Datenbeschreibung in Abhiéngigkeit zweier Variablen ng und n; auf eine Darstellung abhingig von ei-
ner Variablen by iiberzugehen und die Richtung b; mit dem kleinsten Streuungsanteil zu verwerfen. Das
Ergebnis nach der Riicktransformation in den urspriinglichen Raum der Eingabedaten ist eine lineare

Korrelation zwischen ng und nq (vgl. Abb. 3.3).

3.2.3 Varianz und Kovarianz in der PCA

Die Varianz o ist ein MaB fiir die Streuung einer Variablen und Grundlage fiir das Optimierungsziel der
PCA, da sie die Richtungen der Hauptkomponenten festlegt. Sie ist fiir eindimensionale Datensitze x;

(t = 0..T — 1) definiert als:

=
L

1
? 71 (z — 2)° (3.5)

Q
Il

I}

[en}

Die Varianz lisst sich fiir mehrdimensionale Datenvektoren 7; € RY analog definieren als:

er (Z1,0 — Zo)?

S
L

(3.6)

Qy
Il
Q
)
Il
N~
|
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Hierbei bezeichnet x; ,, die n-te Komponente des t¢-ten Datenvektors und 7,, den Mittelwert der n-ten

Komponente der Datenvektoren.

Im Folgenden sei v, der Vektor aller Eintrige der jeweils n-ten Komponente aus den 7" Datensétzen, d.h.
1771 = (CUO,na Tins---yTtmny--- afol,n) (37)

Sofern die Datensitze mittelwertbereinigt sind, lisst sie sich dann die Varianz o2 der n-ten Komponente

tibersichtlich als Skalarprodukt darstellen:

1
0 = g (Un, i) (3.8)

Die Kovarianz ist eine Verallgemeinerung des Varianzbegriffes und beschreibt den linearen Zusammen-

hang zwischen zwei Komponenten n1 und n2. Sie wird analog zur Varianz definiert:
2 _

Onln2 = T_1 (Un1, Un2) 3.9
Der Betrag von U?Ll,n2 ist ein MaB fiir die Stirke des linearen Zusammenhangs zwischen den Kompo-
nenten n1 und n2. Je hoher dieser Betrag ist, desto grofier ist der Zusammenhang. Das Vorzeichen von
ail’ng beschreibt die Richtung des Zusammenhangs. Ein positives Vorzeichen bedeutet einen gleich-
sinnigen Zusammenhang: Hat eine Komponente nl einen hohen Betrag, so hat die Komponente n2
ebenfalls einen hohen Betrag (vgl. Abb. 3.1). Ein negatives Vorzeichen bedeutet einen gegensitzlichen
Zusammenhang: Hat eine Komponente n1 einen hohen Betrag, so hat die Komponente n2 einen niedri-
gen Betrag. Ist U%LHQ = 0 erfiillt, so besteht kein linearer Zusammenhang zwischen den Komponenten

nl und n2.

Eine weitere mogliche Notationsform fiir die Kovarianz ist die Matrixschreibweise. Fasst man die Vek-

toren ¥,,1 und ¥,s als (1 x T)-Matrizen auf, so ldsst sich die Kovarianz als Matrixprodukt aufschreiben:

1
Onin2 = Vol V2! (3.10)

Mithilfe dieser Darstellungsform kann nun von der Kovarianz zweier Komponenten auf die Kovarianzen

ganzer Mengen von Komponenten verallgemeinert werden.

Zunichst werden die Datensitze in Matrizenschreibweise notiert. Die Menge der 1" Datensétze sei durch

die Matrix X reprasentiert. Die Datenvektoren werden hierbei als Spaltenvektoren aufgefasst:
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X = (l’o 1 Tt fT—l)
0,0 1,0 o TT-1,0
To1 11 Tro11 (3.11)
To,N—1 T1,N-1 - TT-1,N-1

Die Menge aller Kovarianzen kdonnen ebenfalls kompakt in einer Matrix zusammengefasst werden — der
sog. Kovarianzmatrix. Diese sei mit C bezeichnet. Sie wird wie die Kovarianz 02, , 5 als Matrixprodukt
beschrieben:

1
C= ﬁX -XT (3.12)

Eine weitere niitzliche Darstellung der Kovarianzmatrix ist die Notation als Summe der Dyaden der

Datenvektoren:

1 T—1
C:Tlt;@-f? (3.13)

Diese Form entsteht durch die Zerlegung von X in Blockmatrizen, und zwar so, dass ein Block gerade

einem Datenvektor entspricht. Mit der Definition von X aus Gleichung 3.11 gilt (vgl. [Ser02]):

X = (Zo, &1s. .., Tty Tro1) = (Xo X1 ... X ... X1_1) (3.14)

sowie

XX" = (Xg...X1_1) - (X0 ... X1_17)

Xol 4+ . 4+ Xp_q - Xp_q1?

Xo

T-1 T-1

> X X' =) F i
t=0 t=0

(3.15)

Die Eintrdge auf der Hauptdiagonalen von C sind genau die Varianzen der Datenreihe, wihrend auf den

restlichen Eintrdgen die paarweisen Kovarianzen zu finden sind.

90,0 00,1 Og,N—1
2 2 2
1 01,0 oiqa 7 01 N-1
C=— ’ ’ ’ (3.16)
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Die Kovarianzmatrix ist stets symmetrisch, da das Skalarprodukt zweier Vektoren kommutativ ist:

.
0—7211,712 - T _1 <UTL17U7’L2>

r . .
:ﬁ@n%vnl)

2
= Un2,n1
Eine symmetrische Matrix hat die Eigenschaft, in jedem Fall orthogonal diagonalisierbar zu sein; eine Ei-

genwertzerlegung von C liefert orthogonale Eigenvektoren sowie stets reelle Eigenwerte (vgl. [Ser02]).

3.2.4 Der PCA-Algorithmus: Von der Kovarianzmatrix zum Eigenwertproblem

Das Ziel der PCA ist das Finden einer orthonormalen Basis B, welche das Koordinatensystem so trans-
formiert, dass die paarweisen Kovarianzen der Komponenten der Datenreihe X nach dem Basiswechsel
den Wert Null und die Varianzen maximale Werte annehmen, was bedeutet, dass die einzelnen Kompo-
nentenvektoren nunmehr keinen linearen Zusammenhang mehr aufweisen. Die zugehorige Kovarianz-

matrix hat dann die Gestalt einer Diagonalmatrix.

Die Datenmatrix nach der Transformation sei mit Y bezeichnet und es sei Y = B - X. Ist die Kovarianz-
matrix Cy = +15Y - Y7 eine Diagonalmatrix, so sind die Zeilenvektoren der Basis B die gesuchten

Hauptkomponenten.

Man kann zeigen, dass die Eigenwertzerlegung der Kovarianzmatrix Cx = ﬁX -XT' die gewiinschten

Basisvektoren b; liefert. Dazu bringt man Cy in eine neue Form:

1

Cy=yijY-YT (3.17)
1 T
1
:7FjTBXXTBT (3.19)
= %B(XXT)BT (3.20)

Die Matrix XX ist aufgrund ihrer Definition immer symmetrisch (vgl. Kap. 3.2.3). Daraus folgt, dass
sie stets diagonalisierbar ist. XX liisst sich demnach formulieren als XX” = EDE” . Dabei enthalten
die Spalten der Matrix E die Eigenvektoren von XX, D ist die Diagonalmatrix der Eigenwerte von
X X", Wshlt man nun B so, dass B = ET gilt, dann enthélt B nun die Eigenvektoren von XX in
Form von Zeilenvektoren. XX Iisst sich nun als XX” = B”DB formulieren. Da die Orthonormalitiit

eine Bedingung an die Basis B ist, folgt B = B! und es gilt:

XXT =B 'DB (3.21)
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Setzt man 3.21 in 3.20 ein, so erhilt man:

Cy = %B(XXT)BT (3.22)
= %B(B%DB)BT (3.23)
= ﬁ(BB_l)D(BB_l) (3.24)
_ %D (3.25)

Wie man sieht, ist die Kovarianzmatrix Cy diagonalisiert und B erfiillt die urspriingliche Zielsetzung:
B transformiert einen Datensatz X so, dass die Kovarianzen zwischen den Komponenten verschwinden.
Um also die Hauptkomponenten zu finden, miissen die Eigenvektoren von XX berechnet werden. Dies

sind dann genau die Zeilenvektoren von B.
In der Praxis kann dies effektiv z.B. iiber die SVD*-Methode erfolgen:

Zu jeder Matrix Y gibt es eine Zerlegung Y = UXV’, wobei U und V orthonormal sind. Es gilt
weiterhin:
Y'Yy =(UuzvhHT.uzv?
=vy'u’ . uzv’ (3.26)

=vxTsvT

Somit ist V die Matrix der Eigenvektoren und 37X die Matrix der Eigenwerte von Y7'Y . Wihlt man

xT (3.27)

so erhélt man fiir

1
Yy = — xXxT 3.28
T (3.28)

die Kovarianzmatrix von X. Die gesuchte Basis B ergibt sich nun wie folgt: Die SVD-Zerlegung von Y
liefert die orthonormale Basis V, welche die gesuchten Eigenvektoren von B in Form von Spaltenvek-

toren enthilt, d.h. VI = B.

3.2.5 Die Bedeutung der Eigenwerte

In der Hauptkomponentenanalyse kann der Eigenwert \; der Kovarianzmatrix als ein Ma8 fiir die ,,Rele-
vanz* des zugehorigen Eigenvektors b;, d.h. der zugehorigen Hauptkomponente, betrachtet werden. Die

Eigenwerte sind gleich den Eintrigen auf den Diagonalen der Kovarianzmatrix Cy des Datenvektors Y

*Anm.: Die Abkiirzung SVD steht fiir Singular Value Decomposition.
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nach Ausfiithrung der PCA. Sie sind also gleich den Varianzen des transformierten Datensatzes. Werden
sie so normiert, dass sie in der Summe Eins ergeben, dann lésst sich direkt der von ihnen erfasste Anteil

an der Gesamtvarianz angeben. Die normierten Eigenwerte \; bestimmen sich wie folgt:

~ ;i

Ni= =+ (3.29)
Zi Ai
Liegen die Paare von Eigenwerten und Eigenvektoren in einer geordneten Reihenfolge vor, so kann
die Dimensionsreduktion durch das Vernachldssigen aller Eigenvektoren bis auf die ersten M erfolgen,

deren Eigenwerte einen bestimmten Anteil an der Gesamtvarianz erkldren. Dieser Anteil sei mit €y

(epy = 0...1, epr € R) bezeichnet. Er lisst sich wie folgt berechnen:

M-—1 _
=3 N (3.30)
=0

Der Wert €, kann als der prozentuale Anteil am Informationsgehalt des Datensatzes betrachtet werden,
welcher in den ersten M Hauptkomponenten verbleibt. Um in einem konkreten Anwendungsfall die
Anzahl der verwendeten Hauptkomponenten festzulegen, wird ein Schwellwert ¢* eingefiihrt, welcher
den prozentualen Mindestanteil an der Gesamtinformation angibt. Gesucht ist dann das kleinste M, fiir

das eps > €* erfiillt ist.

3.2.6 Die Merkmalsvektoren

Das Ergebnis der PCA-Analyse ist die Restrukturierung des Datenvektors 7, beziiglich seiner Haupt-
komponenten b;. Durch den Basiswechsel wird ein sog. Merkmalsvektor gewonnen, welcher den Da-

tensatz neu beschreibt. Die Eintrige des Merkmalsvektores sind genau die a; der Linearkombination
Ty = Zi]\ial a; - b.
Ein Merkmal a; wird ermittelt, indem der Datenvektor auf die Hauptkomponente b; projiziert wird:

a; = <a‘:’t,5¢> (3.31)
Analog berechnet man den Merkmalsvektor a@; eines Datensatzes in Matrixschreibweise:

ao

d; = : =Bz (3.32)

ap—1
Die Matrix A aller Merkmalsvektoren @, kann als Matrixprodukt geschrieben werden®:

A = (do,@r,....d,....ar-1) =B-X (3.33)

>Anm.: Die Matrix A entspricht genau der Matrix Y aus Kap. 3.2.4, d.h. die korrespondierende Kovarianzmatrix C 4 ist

diagonal.



3. METHODIK 17

3.2.7 Rekonstruktion

Die Extraktion der relevanten Merkmale eines Datensatzes stellt in vielen Anwendungsgebieten eine
Grundlage zur weiteren Verarbeitung dar. Durch die Dimensionsreduktion nach der Transformation der
Daten in den Merkmalsraum konnen erhebliche Rechenkosten eingespart werden (vgl. [TLP06]), da die
Linge der Merkmalsvektoren in der Praxis wesentlich kleiner ist als die der urspriinglichen Datenvek-
toren. Ein klassischer Anwendungsfall der Hauptkomponentenanalyse sind Klassifikationsverfahren wie
die Clusteranalyse. Hier geniigen oft wenige Merkmalswerte aus, um eine eindeutige Gruppenzugeho-

rigkeit entscheiden zu kdnnen.

In dieser Arbeit wird die Hauptkomponentenanalyse hingegen zur Kompression von Daten-Zeitreihen
und nicht zur Klassifikation eingesetzt. Die Rekonstruktion aus dem reduzierten Raum der Merkma-
le in den Raum der Eingabedaten ist daher zur Beurteilung der visuellen Qualitdt unumgénglich. Sie
erfolgt durch die Riickprojektion der Merkmalsvektoren mithilfe der ersten M Hauptkomponenten bi

(¢ = 0..M — 1). Ein rekonstruierter Datenvektor aé't berechnet sich aus den Merkmalen a; wie folgt:
. M-1
Fo=) ai-b (3.34)
i=0

Kompakter lédsst sich die Rekonstruktion in Matrixschreibweise formulieren. Sei X die Menge der re-
konstruierten Datenvektoren mit X = (5?0 .. .E?T_l) und A die Menge der Merkmalsvektoren mit

A = (@...dr_1) sowie die Basis B = (by . ..by—1) gegeben, so gilt:

X=BT.A (3.35)

3.2.8 Datenkompression mithilfe der PCA

Das folgende Kapitel beschiftigt sich mit den Kompressionseigenschaften der Hauptkomponentenana-
lyse und gibt Aufschluss iiber den Grad der Kompression, welcher in der Praxis zu erwarten ist. Dieser
ist stark abhiingig vom Inhalt der analysierten Zeitreihe; bei Datensétzen mit starkem linearem Zusam-
menhang zwischen den einzelnen Komponenten ist von einer hohen Kompression auszugehen, ist dieser

hingegen nicht gegeben, so kann nur von einer schwachen Kompression ausgegangen werden.

Die Speicherkosten S, eines Datenvektors #'; sind proportional zu seiner Lange NV:

S, o< N (3.36)

Der Speicherverbrauch Sy der gesamten unkomprimierten Zeitreihe X lésst sich demnach angeben als
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Produkt der Linge N des Datenvektors multipliziert mit der Anzahl der Zeitschritte 7"

Sx o« N-T (3.37)

Die Speicherkosten eines Merkmalsvektors a; der Linge M ergeben sich analog Gleichung 3.36:

Sq o< M (3.38)

Analog zu Sx konnen die Speicherkosten S 4 der 7' Merkmalsvektoren der gesamten Zeitreihe bestimmt
werden:

SaxM-T (3.39)

Wird im entsprechenden Anwendungsfall allein die Matrix A aller Merkmalsvektoren fiir weitere Be-
rechnungen benétigt, so ergibt sich der Kompressionsgrad K 4 aus Sx und S 4 mit den Proportionalitits-
faktoren c¢; und cs:

S X Cl - N-T i C1 N

KAEizi —_— e — = C

N
= s (3.40)
SA co - M-T C9 M M

Geht man davon aus, dass die N Komponenten eines Datenvektors im gleichen Format wie die M/ Kom-

ponenten eines Merkmalvektors gespeichert werden, so gilt ¢ = 1 und 3.40 vereinfacht sich zu:

Ky = Vi (3.41)

Der Kompressionsgrad ist demnach allein durch das Verhiltnis der Lingen von Daten- und Merkmals-
vektor beschrieben. Generell kann ein Speichervorteil nur dann erreicht werden, wenn die Linge der

Merkmalsvektoren kleiner als die der Datenvekoren ist.

Da in dieser Arbeit neben der Darstellung der Datenvektoren in Form ihrer Merkmalsvektoren auch
die Rekonstruktion ebenjener erforderlich ist, miissen neben den Merkmalsvektoren auch die Haupt-
komponenten gespeichert werden. Dies bedeutet einen zusitzlichen Speicheraufwand. Die Linge einer
Hauptkomponente EZ ist gleich der Linge eines Datenvektors und benétigt demzufolge den gleichen
Speicheraufwand: S, = S,. Die Speicherkosten Sp aller M Basisvektoren sind unabhéngig von der
Anzahl T der Zeitschritte:

Spx N-M (3.42)

Der kumulative Speicheraufwand Sr der komprimierten Zeitreihe ergibt sich, unter der Annahme glei-
cher Speicherformate fiir die Eintrdge in den Vektoren 5; und @, d.h. gleicher Proportionalititsfaktoren

fiir S und S 4, wie folgt:
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Sk =Sp+ 54 (3.43)
=c¢-N-M+c- M-T (3.44)
=c-M-(N+T) (3.45)

Spoc M- (N +T) (3.46)

Die Anzahl M der verwendeten Hauptkomponenten legt zugleich die Lange der Merkmalsvektoren fest.

Gesucht ist nun die obere Schranke M*, bei der ST, = Sx gilt. Es ergibt sich genau dann ein Speicher-
vorteil, d.h. Sg < Sx, wenn M kleiner M* gewihlt wird. Dabei werden wiederum die Speicherformate

fuir die Eintrdge in den Vektoren als identisch angenommen. M * lésst sie wie folgt bestimmen:

Sk =Sx
M*- (N+T)=N-T (3.47)
N-T
M* =
N+T
Es wird eine Hilfsvariable h eingefiihrt mit
N
h= T = const. (3.48)

Sie beschreibt das Verhéltnis von rdaumlicher zu zeitlicher Auflosung der Zeitreihe, mit /V als Anzahl der
Gitterpunkte und 7" als Anzahl der Zeitschritte. Im Folgenden wird angenommen, dass N > T. Setzt

man Gleichung 3.48 in 3.47 ein, so erhilt man fiir M *:

_N-T

- N+T

_ h-T?

 h-T+T
h-T?

(h+1)-T
h

Mf=_—"_.T
h+1

*

(3.49)

Unter der Bedingung N > T gilt hi+1 ~ 1 und

M*~T (3.50)

Die PCA kann also nur dann zur Speicherkompression eingesetzt werden, wenn die Anzahl M der Haupt-

komponenten kleiner ist als die Anzahl der Zeitschritte 7. Der Kompressionsgrad K i 1dsst sich hierbei
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als Verhiltnis von 1" und M darstellen:
N-T
Kgp= 3.51
R (N+T)- M 3-51)
h T
_ L .52
h+1 M (3.52)
T
Kp~ i (3.53)

3.2.9 Ein Beispiel

Den Abschluss iiber die Kapitel zur PCA soll eine Beispielrechnung bilden. Gegeben ist eine hypotheti-

sche Zeitreihe X = (7|%; € R, t =0...5) mit #; = (no.e, e, N2, ng)l:

1 2 3 4 5 6
6 —5 —4 -3 —2 -1
3/2 3 9/2 6 15/2 9
o 5 3 5 1 2

Die linearen Zusammenhinge unter den ersten drei Komponenten sind leicht erkennbar, wihrend bei

der letzten kein solcher offensichtlicher Zusammenhang mit einer jeweils anderen Komponente besteht.

Abbildung 3.4 illustriert die Abhingigkeiten, dargestellt sind die Werte der einzelnen Komponenten

iber der Zeit. Man sieht deutlich den gleichsinnigen Zusammenhang zwischen der ersten und zweiten

Komponente (vgl. Kap. 3.2.3) sowie den proportionalen Zusammenhang zwischen der ersten und dritten.

Es ist zu erwarten, dass die Hauptkomponentenanalyse zwei starke Hauptkomponenten extrahiert.

10
5 r o] VVB i
c K g
c L
IS _
< (5]
g o0
o
o
£
o
X
S n0 ——
nl
n2 o
n3 o
-10 ‘ ‘
0 1 2 3 4 5

Abbildung 3.4: Plot der vier Komponenten ny . . . n3 der Datenvektoren &y der Beispiel-Zeitreihe X ent-

lang ¢.
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Die erste beschreibt die Information, welche sich aus den drei untereinander abhingigen Komponenten
ng, n1 und ng ergibt und die zweite beschreibt die Information, welche sich in der letzten Komponente

ns verbirgt.

Zunichst wird die Datenreihe mittelwertbereinigt, sodass sich die Berechnung der Kovarianzen auf die

Berechnung der Skalarprodukte reduziert:

—-5/2 —3/2 —1/2 1/2 3/2 5/2
~5/2 —3/2 —1/2 1/2 3/2 5/2
~15/4 —9/4 —3/4 3/4 9/4 15/4
—-8/3  7/3 1/3 7/3 —5/3 —2/3

Die Kovarianzmatrix C errechnet sich wie folgt:

X =

7/2 7/2 21/4 0
Uooop | 7/2 7/2 214 0
21/4 21/4 63/8 0

0 0 0 64/15

Nach der Eigenwertzerlegung ergeben sich folgende, bereits normierte, Eigenwerte Ai:

X = (0.777,0.223,0,0)

Die Vermutung wird bestitigt: Ein kumulativer Varianzanteil von 100% wird durch die ersten zwei Ei-
genwerte abgedeckt, die gesamte Information eines Datenvektors ldsst sich demnach durch zwei anstelle
von vier Variablen ausdriicken. Die den Eigenwerten zugehorigen Eigenvektoren €; sind die Spaltenvek-

toren der Matrix E:
2/3 0 =3/2 -1

2/3 0 0 1
1 0 1 0
0 1 0 0
Die beiden ersten — normierten — Spaltenvektoren €y und €, bilden die ersten beiden Hauptkomponenten

50 und 512

L L & 1 .
boEeoz ST = = 2,2,3,0
el = v 3530
bi=é =L =(0,0,0,1)7T
el

Die Basis B ergibt sich aus den Hauptkomponenten als Zeilenvektoren:

b 1 2 23 0
by VIT \ 0 0 0 VI7
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Die Merkmalsvektoren a; werden durch die Projektion von X auf B gewonnen; dies entspricht ihrem
Matrixprodukt:

—5V/17/4 —3V17/4 —V17/4 V17/4 3/17/4 5/17/4
-8/3 7/3 1/3 7/3  -5/3  —2/3

A

(@...d5) =B X =

Die Abbildung 3.5 veranschaulicht die Daten nach der Projektion in die Basis B. Die Datensiitze 7y € R*
sind durch die Merkmale d@; € R? vollstindig beschrieben: Die Komponenten ng, n; und ng werden
gemeinsam durch das lineare Merkmal ag beschrieben®, die Komponente ns durch das Merkmal a;

(man vergleiche den Verlauf des Graphen fiir n3 in Abb. 3.4 mit dem fiir a; in Abb. 3.5).

6 T
a0 —+—
al ////
4 ////
///
/)\‘(
///
2 r e g
© ///
Q e
[ e
E O p
=< 7
o -
s A
2 e
//
///
-4 + P //
///
-6 L
0 1 2 3 4 5

Abbildung 3.5: Plot der berechneten Merkmale ag und a; der Datenreihe X entlang ¢.

Im Folgenden werden die Kompressionsgrade K 4 und K berechnet (vgl. Kap. 3.2.8). Zunéchst wird
von einer reinen Merkmalsextraktion ausgegangen, bei der sich der Kompressionsgrad K 4 aus dem

Verhiltnis Sx /S ergibt:
S _N-T 462
Sy M-T 26 1

Die Datensitze werden in diesem Fall um den Faktor 2 komprimiert. Soll spiter eine Rekonstruktion der

Ky

urspriinglichen Zeitreihe erfolgen, so miissen zusitzlich die Hauptkomponenten gespeichert werden. Es

ergibt sich folgender Kompressionsgrad Kr:

Ko Sx __ N.T 46 6
B= 9 M- (N+T) 2-(446) 5

Die Zeitreihe kann um den Faktor 1,2 komprimiert werden. Ein hoherer Wert wiirde sich im Falle der
Rekonstruktion dann ergeben, wenn, unter sonst gleichen Abhéngigkeiten, entweder die Anzahl der Zeit-

schritte hoher wire oder das Verhiltnis zwischen der Anzahl der Komponenten n; und der Anzahl der

SAnm.: Die Linearitit, durch welche sich der Graph von aq auszeichnet, ist jedoch allein der Wahl der Ursprungsdaten

geschuldet.
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Hauptkomponenten b; grofer wire. Eine weitere Option zur Erhohung des Kompressionsgrades bestiin-
de in der Vernachlédssigung der zweiten Hauptkomponente. Dann wiren immerhin noch ca. 77% der Ge-
samtvarianz durch die verbleibende erste Hauptkomponente erklirt, der Kompressionsfaktor K 4 wiirde
auf 4 und Ky auf 2, 4 steigen, jedoch kann dann die vierte Komponente ng der Beispiel-Datenvektoren

nicht wieder rekonstruiert werden.

3.2.10 Lineare Interpolation der Datenvektoren im Merkmalsraum

Ber der Hauptkomponentenanalyse wird ein Datenvektor durch einen Basiswechsel in einen Merkmals-
vektor iiberfiihrt. Es handelt sich dabei um eine /ineare Abbildung mit der Abbildungsmatrix B. Eine
Abbildung v : E — F, wobei E und F Vektorrdume iiber einem Korper K sind, hei3t linear, wenn sie

folgende Bedingungen erfiillt (vgl. [Ser02]):

u(z +y) = u(x) + u(y)

u(tz) = tu(x)

mitx,y € Eundt € K.

Die Linearitit der PCA ldsst sich daher nutzen, um zwei Datenvektoren im Merkmalsraum linear zu
interpolieren. Dazu seien T, X2 € R” mit ihren zugehorigen Merkmalen @1, @y sowie der Basis BT

gegeben. Es gelte:

71 =BT .
o = BT - dy

Sei &+ das Ergebnis der linearen Interpolation von Z; und Zo mithilfe des Parameters ¢, so gilt:

Fimp = (1 — 1) - &1 + ¢ - o
=(1-t)-BY-a+t-BT.a,
=BT . (1-t)-a1+B' -t -a
=B" [(1-t)-a@ +1t-a

T
=B - i

Man sieht, dass Z;,,; durch die lineare Interpolation von a1 und @ im Merkmalsraum mit anschlieBender

Riickabbildung ausgedriickt werden kann.
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3.3 Die nichtlineare Kern-PCA

Die Kern-PCA ist eine Verallgemeinerung der PCA und stellt die Verkniipfung von Kernmethoden mit
den Werkzeugen der Hauptkomponentenanalyse dar. Grundlage dafiir sind sogenannte Kernfunktionen,
kurz Kerne, welche an spiterer Stelle noch detaillierter beschrieben werden. Sie ermdglichen die Extrak-
tion von Merkmalsvektoren, welche mit der klassischen PCA nicht gefunden werden kénnen. Durch ihre
Effizienz, die leichte Anwendbarkeit sowie der Kombinierbarkeit auf vielen Anwendungsgebieten, wie
z.B. der Muster-Erkennung, Cluster-Analyse oder der Support Vektor Maschinen (vgl. [SSO1], [KPKO1],
[YZZ1.08]), sind die Kernmethoden in den letzten Jahren zu einem Standardwerkzeug geworden. Dabei
wird die rechentechnische Effizienz eines linearen Verfahrens, in der vorliegenden Arbeit ist dies die

PCA, mit der Flexibilitit eines nichtlinearen Systems kombiniert (vgl. [CSTO03]).

Wihrend bei der Hauptkomponentenanalyse lineare Zusammenhénge aufgezeigt werden, konnen bei der
Anwendung der Kern-PCA auch relevante nichtlineare Abhingigkeiten aus den Daten extrahiert werden.

Im Folgenden wird die Idee hinter den Kernmethoden erldutert.

3.3.1 Die Idee der Kerne

Die Grundlage der Kernmethoden bildet die nichtlineare Abbildung ® (%), welche einen Datenvektor ¥

in einen hochdimensionalen Merkmalsraum # abbildet:

d:RY - H

T O(F)

Abbildung 3.6 zeigt die Transformation der Daten aus dem urspriinglichen Raum in den hochdimensio-
nalen Raum A mithilfe von ®. Durch die nichtlineare ,,Entzerrung* werden die Richtungen der groften
Varianzen in ‘H linear, sodass eine Hauptkomponentenanalyse hier optimal, d.h. im Sinne des Auffindens

hoher Varianzanteile in den ersten Hauptkomponenten, ansetzen kann.

Die Dimension von H ist dabei nicht beschrinkt, was zundchst vermuten ldsst, dass das Problem, welches
es zu losen gilt, rechentechnisch schwieriger wird, da durch die, gegeniiber dem urspriinglichen Raum,
hohere Dimension des Merkmalsraumes 7 wesentlich mehr Datensitze benétigt wiirden, um selbigen
abzudecken. Dieses Problem ist auch bekannt unter dem Schlagwort ,,curse of dimensionality*, geprigt
durch Richard Bellman. Es ldsst sich jedoch zeigen, dass ebendies bei der Verwendung von Kernalgorith-
men nicht zutreffend ist (vgl. [SSO1]). So konnen im Merkmalsraum H meist einfache Klassen linearer
Algorithmen verwendet werden, da die Reichhaltigkeit der Transformation allein in der Abbildung ®

steckt.
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Abbildung 3.6: Die nichtlineare Transformation ® : RV — H (vgl. [SS01] S.432).

Hier setzen die Kernfunktionen an: Mit ihrer Hilfe kann das Ergebnis des Skalarproduktes zweier Vek-
toren & () und ®(j7) im Merkmalsraum  effektiv berechnet werden, jedoch ohne die komplexe Abbil-
dung von RY auf #H explizit ausfithren zu miissen. Durch die geschickte Definition von ® konnen die

Skalarprodukte im urspriinglichen niederdimensionalen Raum berechnet werden.

Die Kernfunktion k£ wird wie folgt definiert:

k(Z,§) = <<i>‘(f),<f>(g)> (3.54)

Dazu ein kleines Beispiel (vgl. [SS01]):

d:R> > H

(z0,21) = (23,27, V2x011)

Fiir dieses Beispiel kann nun ein ,,passender* Kern k(Z, i) gefunden werden:

= (x(g)v I’%, \[2330351) : (y(%a y%v \@yﬂyl)T
= ((z0,21) - (yo,51)")?
= a2

= <.%‘ ) 37>

Der Kern berechnet im Eingaberaum das Skalarprodukt zweier Vektoren des ,,hochdimensionalen Merk-
malsraumes rechen-extensiv, indem das euklidische Skalarprodukt gebildet und dessen Ergebnis an-

schlieBend quadriert wird. Der Beispiel-Kern & = (-, ->2 gehort zur Klasse der polynomiellen Kerne.

Er kann verallgemeinert werden zu:

k() = (@, (Z,7 € RN und N, d € IN)
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Die Klasse der polynomiellen Kerne berechnen die Skalarprodukte im Raum aller Produkte von d Ein-

tragen der Vektoren & bzw. ¢ ([SSO1]).

Neben den polynomiellen Kernen gibt es zahlreiche weitere Kernfunktionen (vgl. [SMS99], [YZZL08])

wie z.B.:

e Sigmoid-Kerne: k(Z,y) = tanh(k (Z,y) + 0)
e Kerne fiir Gauf’sche Radiale-Basis-Funktionen: k(Z, i) = exp(— || — 7|* /(202))

2\ 1

e Inverse Multiquadratische Kerne: k(Z, ) = ————
’ Vla—yl*+?

Es lésst sich zeigen, dass jeder Algorithmus, welcher sich allein auf Basis von Skalarprodukten formu-
lieren ldsst, durch die Anwendung der Kernmethoden implizit in H ausgefiihrt und somit nichtlinear
verallgemeinert werden kann (vgl. [SMS99]). Die vorliegende Arbeit zeigt dies im Folgenden fiir die

Verkniipfung von Kernmethoden mit der Hauptkomponentenanalyse zur sog. Kern-PCA.

3.3.2 Die Kernmatrix

Mithilfe der Kernfunktion k(&;, Z;) kann fiir eine Zeitreihe eine spezielle Form einer Gram’schen Matrix
(vgl. [SA94]) aufgestellt werden, die sogenannte Kernmatrix (vgl. [SSO1]). Eine Gram’sche Matrix M

ist die Matrix aller paarweisen Skalarprodukte der 7" Datenvektoren & :

< Ty, Ty > < Ty, Tp_1 >

< Tp_1,Tp_1> -0 < Tp_1,Tp_1 >

Die Kernfunktionen k(&;, ©;) = (®(&;), ®(Z;)) substituieren die Skalarprodukte in M und die Kernma-

trix K wird wie folgt definiert:

(@(Zo), (o)) (®(Zo), P(Z7-1))
K=
(@(Z7-1), 2(Z0)) (@(Z7-1), (Tr-1))
(3.55)
k(Zo, Zo) k(Zo, Z7-1)
k(Zr—1,%0) -+ k(Zr—1,T7-1)

Die Kernmatrix ist demzufolge die Gram’sche Matrix der Zeitreihe im Merkmalsraum 7, deren Eintrige

im Ursprungsraum berechnet werden konnen.
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3.3.3 Die Anwendung der Kernfunktionen auf die PCA

Gegeben sei die nichtlineare Abbildung ®, welche die Zeitreihe X = (Zy...Z7—_1) in den Merkmals-

raum H transformiert:

d:RY - H

X = X = (D(Z) ... ®(T7_1))

Im Folgenden wird davon ausgegangen, dass die transformierte Zeitreihe X bereits zentriert, d.h. mit-
telwertbereinigt, wurde. Wie dies effizient ohne die explizite Berechnung von ® bewerkstelligt werden

kann, wird an spiterer Stelle im Detail erldutert.

Zuniichst wird die Kovarianzmatrix C analog Gleichung 3.13 aus Kapitel 3.2.3 definiert (vgl. [SSO1]):

C= (7)) - ()T (3.56)

Wie in der klassischen PCA gilt es nun, die Paare von Eigenwerten A und Eigenvektoren b der Kovari-
anzmatrix zu finden mit A > Ound b € £ (0. Dazu muss folgendes Eigenwertproblem geldst:

b= Cbh (3.57)

Alle Losungen b mit A > 0 liegen in der linearen Hiille von (®(Z) . .. ®(Z7_1)). Gleichung 3.57 kann
somit umformuliert werden zu:
VE=0...T—1:\ <<I>(ft),5> - <®(ft), CE> (3.58)

Zudem existieren die Koeffizienten o; (¢ = 0...7T — 1), mit denen sich die Eigenvektoren b als Linear-

kombinationen der ®(;) darstellen lassen:

Kombiniert man 3.58 und 3.59, so erhélt man (vgl. [SSO1]):

T-1 T-1 T-1
S S 1 . S . S
VE=0...T—1:\ Z ai (B(T), (1)) = Z o <<1>(g;t), Z d(;) (B(Z)), <I>(xi)>> (3.60)
=0 =0 7=0
Unter Zuhilfenahme der Definition der Kernmatrix K aus Gleichung 3.55 und der dyadischen Schreib-

weise nach Gleichung 3.13 lidsst sich 3.60 formulieren als:

T)Kd = K?a @=(ag...ar_1)") (3.61)
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Es kann gezeigt werden, dass genau die Losungen des Eigenwertproblems T'A@ = K& zu den Losungen
fiir A @ aus 3.61 fiihren (vgl. [SSO1]). Dazu seien die ersten M Eigenwerte von K, die groer Null sind,
mit ), bezeichnet und es gilt:

Am =T, (3.62)

AnschlieBend miissen die Eigenvektoren &; normalisiert werden, und zwar dergestalt, dass die korre-
spondierenden Hauptkomponenten I;Z wie in der Standard-PCA die Linge Eins haben, d.h. insbesondere

< I;i, I;z >= 1. Es ergibt sich eine Normalisierungsvorschrift fiir die ersten M Eigenvektoren @,:

1 =< dpp, Kdyy >= Ay, < G, Gy > (3.63)

Die Losungen obiger Gleichung sind die normalisierten Eigenvektoren @ Mit:

Gy = —m (mit X, > 0) (3.64)

Vi

Die Extraktion der Merkmalsvektoren, im Folgenden mit @; bezeichnet, gestaltet sich in der Kern-PCA

analog zur klassischen Hauptkomponentenanalyse (vgl. Kap. 3.2.6), d.h. es erfolgt eine Projektion der
Datenvektoren auf die Hauptkomponenten b;. Im Gegensatz zur PCA entsprechen die Datenvektoren

dabei den bereits transformierten Ursprungsdaten, d.h. den ®(Z;).

Die i-te Komponente des Merkmalsvektors @z, welcher mit dem ¢-ten Datenvektor verkniipft ist, sei mit

d;; bezeichnet und berechnet sich wie folgt:
M-1
i =< ®(F), b >= Y G < (&), () > (3.65)
m=0

Das Skalarprodukt < ®(Z,,), ®(Z;) > wird unter Zuhilfenahme der Kernfunktion k(Z;, ¥;) berechnet

und es ergibt sich:

M—1 M—1
At = Z &k (T, Tp) = Z G mKe =< al, ke > (3.66)

Hierbei ist Et der ¢-te Spaltenvektor der Kernmatrix K.

Die Menge aller Merkmalsvektoren 1isst sich in einer kompakten Form als Matrix A darstellen:

—

ao

A= (Gy...dr1)= : K (3.67)

an—1

Eine Dimensionsreduktion erfolgt bei der Kern-PCA analog zur herkommlichen PCA durch das Vernach-

lassigen von Hauptkomponenten sowie den zugehdrigen Eintridgen in den Merkmalsvektoren. Dabei gibt



3. METHODIK 29

der i-te Eigenwert wiederum den durch die zugehorige ¢-te Hauptkomponente erkléarten Varianzanteil an
der Gesamtvarianz an (vgl. Kap. 3.2.5).

Durch die Michtigkeit der gewihlten nichtlinearen Abbildung ®, respektive der Kernfunktion k(Z, 3),
konnen die Datensitze jedoch, bei gleicher urspriinglicher Varianzverteilung, mit weniger Hauptkom-
ponenten bzw. Merkmalen beschrieben werden als in der Standard-PCA, d.h. im Allgemeinen gilt:

|dt kpcal < |d,pcal. Die Wahl der verwendeten Kernfunktion hingt dabei vom konkreten Anwen-

dungsfall ab (vgl. [SMS99] und [SSO01]).

3.3.4 Ein Beispiel

Gegeben seien die Daten X = (#|#; € R?) als Punktwolke einer gleichverteilt abgestasteten Kreis-
scheibe mit dem Radius Eins um den Mittelpunkt ¢ = (1,1)” (vgl. Abb 3.7). Es ist leicht zu erkennen,
dass keine signifikante Richtung der grofiten Varianz existiert. Eine herkommliche Hauptkomponenten-

analyse liefert fiir die normalisierten Eigenwerte folgende Ergebnisse:

o = 0.53

A\ = 0.47

Nach der Interpretation des prozentualen Anteils an der Gesamtinformation eines Datensatzes (vgl. Kap.
3.2.5), sicht man, dass die beiden den Eigenwerten Ao und \; zugehdrigen Hauptkomponenten anni-
hernd den gleichen Informationsgehalt aufweisen und somit eine Dimensionsreduktion im Sinne des

Vernachlissigens einer dieser beiden Vektoren nicht zielfithrend ist.

Im Folgenden wird gepriift, ob die Kern-PCA ebendieses leisten kann. Die Wahl des Kerns féllt auf den

weiter oben bereits erwédhnten polynomiellen:
k(xvy) =<,y >?
Die dazugehdrige Abbildung ist @ : (zg,71) +— (22,22, 1v/22021). Sie bildet den zweidimensionalen

Datenvektor Z; auf den dreidimensionalen Bildvektor :%t ab. Abbildung 3.8 zeigt die Daten nach ihrer

Transformation.

Die Kern-PCA liefert folgende (bereits normalisierten) Eigenwerte:
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Abbildung 3.7: Die Punktwolke einer gleichverteilt abgetasteten Kreisscheibe.”

Hier werden aufgrund der hoheren Dimensionalitit des Bildraumes drei Eigenwerte ermittelt. Deren
Werte weisen jedoch eine andere Verteilung als jene der klassischen PCA auf: Augenscheinlich ist der
Betrag des ersten Eigenwertes bei der Kern-PCA hoher als der bei der PCA, d.h. es wird ein groBerer
Anteil an der Gesamtinformationen durch die erste Hauptkomponente beschrieben. Dies bezieht sich
jedoch auf den Informationsgehalt im Bildraum: Die Bilder der Daten konnen bei der Kern-PCA besser

approximiert werden, als es die PCA im Raum der urspriinglichen Daten vermag.

Zur Vergleichbarkeit der Approximationsfehler e beider Verfahren wird die relative mittlere quadratische

Abweichung als FehlermaB verwendet®:

— o 2
> -
t

-2
A
t

e

Es ergibt sich fiir die PCA ein Fehler ey, = 0.471 und fiir die Kern-PCA ein Fehler expc, = 0.328.

Zu beachten ist, dass der Fehler im Falle der Kern-PCA fiir die Rekonstruktion im Bildraum berechnet
wurde. Die Approximation nach der Riicktransformation in den urspriinglichen Raum muss deswegen

nicht zwangslédufig besser sein als die der PCA.

7 Anm.: Der eingezeichnete Umkreis der Punktwolke dient lediglich der Illustration und ist nicht Teil der Daten.
8 Anm.: Die hier verwendete Definition der relativen mittleren quadratischen Abweichung setzt die Mittelwertfreiheit der

Daten voraus, welche im Falle der PCA resp. Kern-PCA durch den Zentrierungsschritt zunéchst gegeben ist. Ergo sollte die

Fehlerrechnung wihrend des Rekonstruktionsschrittes vor der Riickrechnung der Mittelwerte erfolgen.
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Abbildung 3.8: Die Daten aus Abb. 3.7 nach der nichtlinearen Transformation ® in der xy-Ebene (links)

und der yz-Ebene (rechts).

3.3.5 Herausforderungen im Hochdimensionalen
3.3.5.1 Indirekte Mittelwertbereinigung

Bisher erfolgte die Anwendung der Kern-PCA stets unter der Annahme, dass die Vektoren ®(Z;) bereits
in einer mittelwertbereinigten Form vorliegen. In der Praxis kann hiervon allerdings nicht ausgegangen

werden — es stellt sich demnach die Frage, wie eine solche Zentrierung erreicht werden soll.

Eine Mittelwertbereinigung der Datenreihe im Ursprungsraum, d.h. vor der Transformation in den hoch-
dimensionalen Raum 7, lieB3e sich effizient bewerkstelligen, jedoch kann sie die Zentriertheit der Daten
in H nicht erzielen, da diese im Allgemeinen durch die Abbildung ® verloren geht. Die explizite Mittel-
wertbereinigung im Merkmalsraum H ist unter Umstéinden zu rechenintensiv, da die Komplexitéit von ®

nicht beschrinkt ist (vgl. Kap. 3.3.1).°

Eine Mittelwertbereinigung kann jedoch indirekt {iber eine Modifikation der Kernmatrix K erfolgen. Es

wird eine Matrix K wie folgt gebildet (vgl. [SSO1]):

Kij = (K- 17K — K17 + 17K17); (3.68)

Hierbei steht die Kurzschreibweise 17 fiir die komponentenweise durch 1" geteilte Einheitsmatrix, d.h.
(1r)ij = 7 - L.

Wird anstelle von K die modifizierte Kernmatrix K verwendet und die Eigenvektoren @ von K be-

rechnet, so entspricht dies einer Kern-PCA mit K unter Verwendung bereits zentrierter ® ().

 Anm.: Genau diesem Umstand ist schlieBlich die Anwendung des sog. Kerntricks geschuldet: Der KPCA-Algorithmus um-

geht die explizite Berechnung der ®(Z;) durch die Ausnutzung der Kernfunktionen.
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3.3.5.2 Das Urbild-Problem

Der Merkmalsraum # ist die lineare Hiille aller Bilder der Transformation ®(Z;):

H = span(P (7)) (3.69)

Die Menge aller Abbildungen @ ist dabei eine Untermenge von H (vgl. Abb. 3.9), was bedeutet, dass

nicht fiir alle Linearkombinationen von ®(Z;) ein Urbild existieren kann.

Sei W ein Vektor in #H, welcher aus der Linearkombination von ®(Z;) entsteht:

N
-

v =Y 6 (#) (3.70)

<.
Il
o

Man sieht, dass ¥ nicht notwendigerweise das Bild ®(Z;) eines zugehorigen Datenvektors Z; des Ein-
gaberaums sein muss. Dies trifft insbesondere auf die Hauptkomponenten zu (vgl. Gl. 3.59), d.h. es gibt
im Allgemeinen im Eingaberaum keine entsprechende Darstellung der korrespondierenden Hauptkom-

ponente aus dem Bildraum.'®

P
RN — . H-=span O(RN)

Abbildung 3.9: Das Urbildproblem: Ein Vektor ¥ € H, welcher aus Linearkombinationen von ®(&;)
gebildet wird, muss keine Entsprechung 7 = ®~1(¥) im Urbildraum R” haben (vgl.
[SSO1] S.545).

9 Anm.: AuBer fiir den trivialen Fall, bei dem fiir alle Hauptkomponenten gilt, dass der Merkmalswert zur zugehorigen Haupt-

komponente gleich Eins und alle restlichen Merkmalswerte gleich Null sind. Dann allerdings wire ¥y = ®(Z).
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3.3.6 Rekonstruktion

Viele Disziplinen, in denen die Kern-PCA Anwendung findet — wie z.B. die Mustererkennung — bedienen
sich ihrer allein zur Berechnung der Merkmalsvektoren im Bildraum. Dass dies effizient iiber die Kern-
funktionen erfolgen kann, wurde in Kap. 3.3.3 beschrieben. Sollen die Daten jedoch zu einem spiteren
Zeitpunkt rekonstruiert werden, so benotigt man neben den Merkmalen zusétzlich die Hauptkomponen-
ten, welche jedoch aufgrund der unbeschrinkten Komplexitdt von H nicht explizit berechnet werden
konnen und fiir die es unter Umsténden keine Entsprechung im Urbildraum gibt (vgl. Kap. 3.3.5.2). Das
folgende Kapitel zeigt, wie es fiir ausgewihlte Kernfunktionen dennoch méglich ist, eine Rekonstruktion

durchzufiihren.

Die Rekonstruktion der Daten im Bildraum erfolgt analog zur Standard-PCA: Die Merkmalsvektoren
werden auf die Hauptkomponenten projiziert und man erhélt das Bild ®(Z;) des rekonstruierten Daten-
vektors:

M-1

O(FH) =Y ari b (3.71)

1=
Den rekonstruierten Datenvektor im Eingaberaum erhilt man schlieBlich durch die Anwendung der Um-
kehrabbildung ®~!. Durch die unbeschrinkte Komplexitit von ® ist dies nicht in jedem Fall direkt

moglich, durchaus jedoch fiir bestimmte Gruppen von Kernfunktionen.

Im Folgenden wird davon ausgegangen, dass die Rekonstruktionen der durch die Kern-PCA kompri-
mierten Daten im Eingaberaum dargestellt werden konnen und es wird ein Verfahren zur exakten Rekon-
struktion der Urbilder vorgestellt. Im anderen Falle konnen dariiber hinaus approximierende Techniken

angewendet werden.

3.3.6.1 Exakte Rekonstruktion

—

Sei ¥ eine Linearkombination von Bildern ®(;) in H:

[y

v =3 4;®(z) (3.72)
=0

<

Existert zudem ein Vektor 7 (Z € RY), so dass ®(Z) = W gilt, und eine invertierbare Funktion f; mit
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Te(< 2,2 >) = k( ), dann gibt es eine Zerlegung von Z wie folgt (vgl. [SSO1])
N-1
F=) <z&>§

i=0
N-1

=) fil(k(z.&)e (3.73)
i=0
N-1

= f ! Z aj xja 62 é'z
1=0

Die & (mit € € RV und i = 0... N — 1) werden hierbei so gewihlt, dass sie im Eingaberaum eine

orthonormale Basis der Dimension N bilden.

Die Wahl von f;, ist entscheidend fiir das Gelingen des Verfahrens, da die Invertierbarkeit sichergestellt

sein muss.

Kerne, welche eine solche Umkehrabbildung f, ! besitzen, sind unter anderem:

e Polynomielle Kerne: k(%, ') = (< &, # > +c)% mit ¢ > 0 und d ungerade

e Sigmoid-Kerne: k(Z,7’) = tanh(k < Z, 7' > +0) mitx,0 € R

Nun miissen noch die &; gefunden, so dass ®(2) = U = Z]T;()l &;®(Z;) und die Zerlegung nach
Gleichung 3.73 erfolgen kann. Dazu sei zundchst noch einmal die Definition eines Datenvektors im

Bildraum mithilfe der Hauptkomponenten betrachtet. Dieser ist laut Gleichung 3.71:
M-1
F)= Y ap;-b; (3.74)
i=0

Weiterhin kann die Hauptkomponente gz selbst wiederum als Linearkombination der (normalisierten)

Eigenvektoren der Kernmatrix dargestellt werden (vgl. Gl. 3.59):

|
—

T
bi = ;- () (3.75)

.
Il
o

Setzt man nun Gl. 3.75 in GI. 3.74 ein, so erhélt man eine neue Formulierung fiir die ®(7;):

S

-1 T—

O(F) = Y ari » 6O

j=0
-1

;_-

Il
= o

Il
"ﬂs
/—\
IME g
£
EL
&,
~—
Ql

(3.76)

<.
I
o
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Setzt man ¢&; = Zf\io_l at;0; 5 und ¥ = ®(2) = ®(&y), so erhilt man fiir ¥ die Form aus Gleichung

3.72 und es kann nun eine Rekonstruktion nach GI. 3.73 erfolgen:

N-1 T-1
= —1 N S S o
Z= Z f G;k(Z;,€) | €
i=0 =0
(3.77)
N-1 T—1M-1
—1 - = —
= fr ag 10y k(Z5,€) | €
=0 j=0 1=0

Die Methode der exakten Rekonstruktion hat jedoch einen entscheidenden praktischen Nachteil. Es muss
davon ausgegangen werden, dass die Daten im Bildraum schon mittelwertbereinigt wurden. Dieses Pro-
blem wurde bereits in Kap. 3.3.5.1 thematisiert. Die Zentrierung kann indirekt ausgefiihrt werden, jedoch
liegen die Mittelwerte dann nicht in einer nutzbaren expliziten Form vor, um vor der Anwendung der

Umkehrfunktion f,~ ! die Bilder (%) wieder in ihre urspriingliche Lage im Raum # zu bringen.

3.3.6.2 Urbild-Approximation

Da im Allgemeinen nicht davon ausgegangen werden kann, dass die Linearkombination ¥ von Datenvek-
toren im Bildraum auf einen Datenvektor Zim Urraum zuriickgefiihrt kann, ist die exakte Rekonstruktion

hinsichtlich der praktischen Anwendbarkeit ein eher unbefriedigender Ansatz.

Eine Antwort hierauf liegt im Auffinden eines Vektors Z im Eingaberaum, dessen Bild ®(Z) die Line-
arkombination ¥ im Sinne der kleinsten Fehlerquadrate approximiert, ergo die Minimierung des Terms
|¥ — ®(2) H2 Allgemeiner kann man formulieren, dass nicht der quadratische Abstand zwischen ¥ und
®(Z), sondern || — & (Z)||* minimiert werde, d.h. dass eine zusitzliche lineare Skalierung von ®(Z)
zuldssig ist (vgl. [SSO01]). Die Losung letzteren Minimierungszieles ist die orthogonale Projektion von ¥

auf die lineare Hiille von ®(2) (vgl. Abb. 3.10). Der Abstand sei dabei mit e bezeichnet und es gilt:

- 2
= H < \IJ_,’<I>(,2)#> B
< P(2),0(2) > (3.78)
o - <V, d(2) >2
B < ®(2),®(2) >
<, B(Z)>2

Die Minimierung von e geht mit der Maximierung des Terms ZH(5,6(0> einher, welcher jedoch mittels

Kernfunktionen dargestellt werden kann, da er ausschlieBlich Skalarprodukte enthilt.

Scholkopf [SSO01] stellt iterative Algorithmen vor, welche approximierende Urbilder in diesem Sinne
finden, z.B. einen Fixpunktiterationsansatz fiir Kerne radialer Basisfunktionen. Ein weiterer Ansatz wird
durch Shawn Martin [Mar06] beschrieben. Er entwickelt eine approximierende Variante der Kern-PCA,
bei welcher der Basiswechsel durch eine Umformulierung des Gram-Schmidt-Orthonormalisierungs-

verfahrens gewonnen wird. Eine weitere Transformation ermoglicht, dass die Vektoren des Bildraumes
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durch Linearkombinationen von Ortsvektoren des Eingaberaumes ausgedriickt werden konnen. Durch
diese Verfahrensweise kann eine Darstellung der Hauptkomponenten in H sowie die Rekonstruktion

erreicht werden.

| P
[ §

N
~N

D(z)

H

Abbildung 3.10: Auffinden von approximierenden Urbildern durch das Minimieren der Distanz zwischen

U und der Projektion von W auf span(®(2)) (vgl. [SSO1] S.547).

3.4 Interaktive Simulation

Im folgenden Kapitel wird ein einfaches Modell zur parametrisierten Manipulation von level set-Ani-
mationen entwickelt. Als Zielstellung soll hierbei, anstelle der physikalisch korrekten Simulation, die
iiberzeugende visuelle Anmutung der Fluidoberflichenbewegung in den Vordergrund treten; die An-
forderungen des Anwendungsgebietes sind Interaktion und Echtzeitfihigkeit. Die urspriingliche Aufga-
benstellung dieser Arbeit war, die Ansédtze und Methoden A. Treuilles [TLP06] auf Fluidoberflachen
anzuwenden, insbesondere alle notwendigen Simulationsberechnungen im reduzierten Raum effizient
mit wenigen Unbekannten durchzufiihren. In solchen reduzierten Fluidmodellen (vgl. Kap. 2) wird dazu

hiufig die sogenannte Galerkin-Projektion angewendet:

Die Galerkin-Projektion

Neben der Dimensionsreduktion der Datenvektoren einer Zeitreihe ermoglicht die Methode der Galerkin-
Projektion eine Modell-Reduktion, sodass die Zeitentwicklungsfunktion der Simulation im reduzierten
Merkmalsraum berechnet werden kann. Es sei durch ein Dimensionsreduktionsverfahren eine Projektion

B : ¥ — 7 in den reduzierten Raum gegeben sowie die Riickprojektion B~ : Z — T des reduzierten
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Vektors in den Raum der Datenvektoren'!. Die Zeitentwicklung der Simulation lisst sich als gewohnli-

ches Differentialgleichungssystem beschreiben:

& = F(Z) (3.79)
Es soll nun ein Analogon im reduzierten Raum gefunden werden:

i=TF(7) (3.80)

F entsteht durch die Anwendung der Galerkin-Projektion von F in den reduzierten Raum mithilfe von
B (vgl. [TLP06)):
F=BoFoB™! (3.81)

Somit kann die Zeitentwicklung der Simulation effizient im reduzierten Raum berechnet werden.

3.4.1 Finden eines Modells

Osher und Fedkiw [OF02] stellen Methoden vor, wie die Evolution einer Oberfliche berechnet werden
kann, solange die Geschwindigkeitsvektoren des Fluidvektorfeldes in der unmittelbaren lokalen Um-
gebung, wenigsten jedoch die Geschwindigkeitsvektoren an der Oberflache selbst, gegeben sind. Im
Rahmen dieser Arbeit liegen die Simulationszeitreihen nur in Form von level sets vor; das die Fluid-
Bewegung beschreibende Vektorfeld ist nicht gegeben. Die Frage ist nun, ob sich dennoch eine Zeit-
entwicklung mithilfe von Differentialgleichungen formulieren ldsst. Bislang konnte diese jedoch nicht

gefunden werden.

Ein einfaches heuristisches Modell

Zur Gewinnung eines einfachen parametrisierbaren Modells soll die Interpretation der Hauptkompo-
nenten und Merkmalsvektoren herangezogen werden. Durch die Anwendung der Hauptkomponenten-
analyse wird die Zeitreihe in ein Koordinatensystem transformiert, in welchem die Basisvektoren — die
Hauptkomponenten — entlang der grofiten Varianzen liegen. Eine plausible visuelle Interpretation dieser
Hauptkomponenten: Sie reprisentieren die Schwingungsmoden des Fluids (vgl. Abb. 3.11). Diese Inter-
pretation wird zusétzlich durch die korrespondierenden Merkmale gestiitzt, deren zeitliche Verldufe als
Schwingungen aufgefasst werden konnen (vgl. Abb. 3.13). Dabei weisen die den ersten Hauptkompo-

nenten zugeordneten Merkmale Schwingungen mit niedriger Frequenz und hoher Amplitude auf, was

" Anm.: Im Falle der PCA ist B die Matrix, deren Spalten die Hauptkomponenten und es gilt: B~ = B7.



3. METHODIK 38

Abbildung 3.11: Visualisierung der Hauptkomponenten einer Testzeitreihe. Interpretation als Schwin-
gungsmoden: Die n-te Hauptkomponente beschreibt fiir kleine n die Orte der Dynamik
niederfrequenter Moden, fiir grofle n beschreibt sie die Orte der Dynamik hochfrequen-

ter Moden.
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genau dem Optimierungsziel der PCA entspricht'?, vice versa weisen die zeitlichen Verldufe der Merk-
male, welche den hoheren Hauptkomponenten zugeordnet sind, hohere Frequenzen und kleinere Am-
plituden auf. Abbildung 3.12 illustriert diesen Sachverhalt und stellt fiir alle n Merkmalsvektoren einer
Testzeitreihe die maximale, minimale und mittlere Amplitude dar. Abbildung 3.13 zeigt fiir ausgewéhlte
Basisvektoren b,, die Zeitentwicklungen der zugehorigen Merkmale, d.h. die n-ten Eintridge iiber allen
Merkmalsvektoren entlang der Zeit. Zu erkennen sind die schwingungsihnlichen Amplitudenverlidufe

mit steigender Frequenz sowie immer kleiner werdender Amplituden fiir wachsende n.

40

30

20

o

mittlere Amplitude

d

Amplitude
o

1 1 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Abbildung 3.12: Maximale, minimale und mittlere Amplitude der Zeitentwicklung des n-ten Merkmals

einer Testzeitreihe.

Der Modellansatz besteht darin, die Zeitentwicklungen der Merkmale durch analytische Funktionen zu
substituieren. Dabei werden die Schwingungsverldufe durch die Summe von Harmonischen angenihert,
d.h. die Zeitenwicklung der Amplitude eines Merkmals wird durch akkumulierte Sinusschwingungen
beschrieben, deren Frequenzen ganzzahlige Vielfache einer Grundfrequenz sind!?. Die Gesamtheit aller
Teilschwingungen bildet dann eine Approximation der Zeitentwicklung der Fluidoberfldache, wobei sich
die Teilschwingungen nach dem Superpositionsprinzip in ihrer Uberlagerung nicht beeinflussen. Dieses
Modell lasst sich aufgrund der Darstellung der Datenvektoren, wie sie nach der Hauptkomponentenana-

lyse vorliegen, leicht anwenden. Ein Datenvektor ist nach der Ausfithrung der PCA in folgender Form

2Anm.: Die Amplitude des Merkmals beschreibt die Stirke der korrespondierenden Hauptkomponente beziiglich des re-
konstruierten Datensatzes (vgl. Gl. 3.2). Hohe Amplituden in den ersten Merkmalen spiegeln den Fakt wider, dass hohe

Varianzen durch die ersten Hauptkomponenten reprisentiert werden.
'3 Anm.: Dieses Approximationsmodell ist u.a. in der Akustik bekannt (vgl. [Kut04]).
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gegeben (vgl. Gl. 3.3):

1t

8

M—-1
= Z a; - b; (3.82)
i=0
Die Merkmale a; werden nun durch die stetigen Funktionen y;(¢) angenéhert:
a; = yi(t = j) (3.83)

Dabei werden die Funktionen y;(t) wie folgt definiert:

g

yi(t) = 0; +§i- Y _sin(2wnfit + ;) (3.84)
n=0

Hierbei definiert n; die Anzahl der Harmonischen, ¢; die Amplitude der Grundschwingung, f; die Grund-

frequenz, ¢; die Phase und o; einen Offset-Wert.

Um das Modell flexibler zu gestalten, wird im Folgenden die Amplitudenfunktion y;(¢) um zusétzliche
Terme erweitert. Der Schwingungsvorgang der Fluidoberfliche wird als Relaxationsprozess aufgefasst —
ein Prozess, welcher nach Anregung mit fortschreitender Zeit in einen Gleichgewichtszustand iibergeht.

Zunichst wird die Amplitudenfunktion y;(¢) mit einem Exponentialterm erweitert:

ng

yi(t) = 0; + e i Ui - Z sin(2mn fit + ¢;) (3.85)

n=0

Der Term e ?

% mit §; als Dampfungskonstante erzielt das Abklingen des Schwingungsvorgangs, y;(t)
wird zur geddmpften Schwingung. Im nichsten Schritt wird ein Exponentialterm mit der Konstanten (3;
zur Beddmpfung der relativen Spektralanteile der Harmonischen eingefiihrt. Die Funktion y;(t) wird
dann zur Summe von geddmpften Partialschwingungen:
n;
yi(t) = 0; +e g - Z e~ VB gin(2nn fit + ;) (3.86)
n=0
Abbildung 3.14 zeigt beispielhaft die Zeitentwicklung einer Oszillation y;(t) aus iiberlagerten Harmo-
nischen mit n; = 9, ¢; = 1, f; = 1/100, 6; = 0.004, 5; = 0.2, ¢; = 0 und o; = 0 sowie deren

Linienspektrum.

Der Datenvektor Z; kann nun mithilfe von A/ Paaren von Funktionen y;(¢) und Hauptkomponenten b;
approximiert werden:

M_
T~ Y yilt =) b (3.87)

—_

= -
—

i (oi +e Wi g, Z e~ (VB gin(2mnfij + <p1)> - b; (3.88)
=0

&
X

n=0
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Abbildung 3.14: Links: Amplitudenfunktion y;(t) als Uberlagerung von Harmonischen. Rechts: Relative

spektrale Anteile der Partialschwingungen von y;(¢) bezogen auf die Grundfrequenz fj.
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4 Prototypische Umsetzung

Um die die PCA in der Praxis anwenden und ihre Eigenschaften studieren zu konnen, wurde ein wis-
senschaftlicher Prototyp auf OpenGL-Basis entwickelt. Die Implementierung der Analysesoftware er-
folgte in C++ und setzt auf dem GLUT-Framework' [KRO1], welches die Anbindung an das Fenster-
system mitsamt OpenGL-Kontext bereitstellt und das Eventhandling von Tastatur- und Mausereignissen
verwaltet sowie der GLUI 2 [RSB06], zur Bereitstellung der graphischen Benutzeroberfliche mit ei-
ner Reihe vordefinierter Steuerelemente, auf. Beide Frameworks stellen fiir kleine bis mittlere Projekte
einen guten Kompromiss aus Funktionalitdt und einfacher Einbindung dar. Die Emulation der nativen

Betriebssystem-Steuerelemente durch OpenGL-Pendants macht sie zudem plattformunabhéngig.

Fiir die notwendigen mathematischen Berechnungen, insbesondere fiir die Matrizenoperationen sowie
die SVD-Dekomposition, wurde auf die Bibliotheken des lehrstuhleigenen CGV-Frameworks zuriickge-

griffen.

4.1 Layout

Der Prototyp ist aufgrund der Restriktionen des GLUI-Frameworks als Mehr-Fenster-Anwendung rea-
lisiert?, wodurch dem Nutzer eine freie Anordnung der einzelnen Unterfenster auf dem Bildschirm er-
moglicht wird. Die Applikation ist in zwei primire Ansichten gegliedert: In einem Meniifenster werden
alle Programmfunktionalititen verwaltet, wihrend in einem OpenGL-Fenster die Zeitreihen visualisiert

werden.

4.1.1 Menufunktionen

Vom Meniifenster lassen sich sdmtliche Funktionen des Prototyps erreichen und alle relevanten Unter-

fenster aufrufen. Zur platzsparenden Gestaltung der Bedienelemente wurden bei der Implementierung

' Anm.: Die Abkiirzung GLUT steht fiir OpenGL Utility Toolkit.
2Anm.: Die Abkiirzung GLUI steht fiir OpenGL User Interface Library.
3Anm.: GLUT bietet neben dem standardmiBigen OpenGL-Viewport lediglich ein Kontextmenii als Steuerelement an, wih-

rend sich in durch GLUI erzeugten Fenstern neben den vorgefertigten Steuertypen keine weiteren OpenGL-Inhalte darstel-

len lassen
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Abbildung 4.1: Die Hauptansicht der Anwendung.

sogenannte Rollouts verwendet, welche durch das GLUI-Framework als Alternative zu den bekannteren
Tabs bereitgestellt werden. Die Zuordnung der einzelnen Steuerelemente zu den Rollouts erfolgt nach

funktionaler Aufgabe, es lassen sich dabei fiinf Hauptbereiche festlegen:

e Dateifunktionen

e Analyse-Informationen
e Rekonstruktion

e Rendering

e Simulation

Dateifunktionen

Der PCA-Algorithmus mit simtlichen zugehorigen Hilfsstrukturen wird durch eine selbstverwaltende
Klasse gekapselt, welche u.a. ein Interface zum Laden und Speichern bereitstellt. Neben allen relevanten
Variablen konnen insbesondere die Hauptkomponenten und Merkmalsvektoren in eine Datei gesichert
werden. Dies erfolgt zustandsbasiert, sodass bei erneutem Laden alle Nutzereingaben, wie z.B. die An-

zahl der zur Rekonstruktion verwendeten Hauptkomponenten, wiederhergestellt werden konnen.

Das Importieren von Zeitreihen wird iiber das Hauptmenii verwaltet und erfolgt iiber ein separates Me-

nii; hier konnen die einzulesenden Datensétze ausgewihlt und angepasste Import-Optionen angewendet
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werden:

Anzahl der Dimensionen: Die Anwendung kann 2D- und 3D-Datensitze verarbeiten und darstel-
len (vgl. Abschnitt Rendering). Hier kann festgelegt werden, welcher der beiden Modi aktiv sein

soll.

Transponieren der Datensétze: Die Datenvektoren der Zeitreihe konnen vor Anwendung der
PCA transponiert werden. Dies ist gerade bei hochauflosenden Datensétzen beziiglich des Speicher-
und Rechenaufwandes giinstiger, da die zu berechnenden Matrizen kleiner als im nicht transpo-

nierten Fall sind.

Normalisieren der Datensitze: Die Werte der Zeitreihe konnen vor der Anwendung der PCA-
Analyse auf das Intervall [—1, 1] normalisiert werden. Diese Funktion schafft eine Basis zur Ver-
gleichbarkeit der Analyse-Ergebnisse verschiedener Zeitreihen, z.B. beziiglich der Fehlerbetrach-

tung.

Vorfilterung: Die Daten konnen vor Anwendung der PCA einer Schwellwertfilterung unterzogen
werden. Hierbei kann der Nutzer einen Abstandswert definieren: Ist der Betrag des skalaren Wertes
an einem Gitterpunkt des Datensatzes kleiner als dieser Abstandswert, so wird der Gitterpunkt der

Fluidoberfliche zugeordnet (vgl. Kap. 4.3).

Analyse-Informationen

Uber den Meniipunkt ,,Analyse-Informationen* konnen verschiedenste Informationen zur analysierten

Zeitreihe abgefragt werden, u.a.:

Rekonstruktionsfehler: Bei der Fehlerbetrachtung werden minimale, maximale und mittlere Feh-

ler ermittelt, als FehlermaB dient die mittlere quadratische Abweichung (vgl. Kap. 5).

Varianzanteile: Es werden die durch die ersten n Eigenwerte erklédrten absoluten sowie kumula-

tiven Anteile der Gesamtvarianz einer Zeitreihe aufgelistet.

Zeitentwicklung der Merkmale: Uber ein Unterfenster kann die Amplitude eines jeden Merk-
mals liber der Zeit visualisiert werden. Die Skalierung der Amplitudenachse erfolgt dabei automa-

tisch auf das optimale Werte-Intervall.
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Rekonstruktion

In dieser Sektion wird die Anzahl der zur Analyse und Rekonstruktion verwendeten Hauptkomponenten
festgelegt. Die Rekonstruktion kann einerseits mithilfe der ersten M Eigenvektoren b; (i=0...M—-1)
erfolgen, andererseits ldsst sich durch den Nutzer ein Intervall [ig, i.] angeben, welches die Eigenvek-
toren 5j (J € [is,ic)) definiert, die zur Rekonstruktion verwendet werden sollen. Diese Funktionalitit
leistet z.B. die Darstellung von Bereichen geringer Energie, d.h. geringem Varianzanteil des korrespon-
dierenden Eigenvektors. Beziiglich der Fluidzeitreihen sind dies die Gebiete hoher rdumlicher Frequenz

(vgl. Abb. 3.11).

Als weitere Option lassen sich die ermittelten Hauptkomponenten selbst visualisieren. Erfolgte die Ana-

lyse ohne eine Transposition der Daten, so zeigen sie die Gebiete hoher und niedriger Dynamik.

Rendering

Uber diesen Meniipunkt kann die Art der Visualisierung eingestellt werden: Zweidimensionalen Zeitrei-
hen konnen entweder iiber Texturen, welche die level sets als Graustufenbild reprisentieren, bzw. iiber ein
Marching Squares-Verfahren mit justierbarem Isowert visualisiert werden. Bei der Texturendarstellung
erfolgt ein automatisches Mapping des Werteintervalls der Daten auf den normierten Grauwertbereich:
[max (%), min(#;)] — [0, 1]. Als weitere Option ist vor dem Anwenden des Mappings ein Begrenzen —
sogenanntes clamping — der Daten auf das Intervall [—1, 1] moglich*. Dies ermoglicht in vielen Fillen

ein ausgeglichenes Helligkeitsverhiltnis zwischen den Frames einer Animation.

Fiir die Visualisierung dreidimensionaler Zeitreihen ist ein Marching Cubes-Algorithmus mit frei ein-

stellbarem Isowert implementiert.

Neben der Animation der Zeitreihe kann ein Interpolationsmodus mit regelbarer Zeitschrittweite ¢ ak-
tiviert werden. Hierbei wird die Variable ¢ gleichzeitig als Parameter zur linearen Interpolation zwi-
schen zwei Datenvektoren #; und Z;11 genutzt: Fiir ¢ € [i,i + 1) wird der interpolierte Datenvektor
Tr=(1—[i+1—t]) &+ [t +1—t]- Zis1 berechnet. Die Interpolation komprimierter Zeitreihen ist

dabei im Raum der Merkmale moglich (vgl. Kap. 3.2.10).

Simulation

Fiir die Anwendung wurde die Simulation nach dem Oszillatormodell aus Kapitel 3.4.1 implementiert,

welche aus diesem Untermenii heraus gesteuert werden kann. Der Nutzer kann eine beliebige Anzahl

* Anm.: Das Intervall [—1, 1] fiir die Isowerte hat sich in der Praxis als zufriedenstellend gezeigt; das Augenmerk liegt ohnehin

auf der Kontur mit dem Wert Null.
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von Oszillator-Modulen generieren, welche jeweils mit einer Hauptkomponente verkniipft werden. Fiir

jedes Modul konnen folgende Parameter eingestellt werden (vgl. Kap. 3.4.1):

e Grundfrequenz

e Anzahl der Harmonischen
e Spektrale Ddmpfung

e Phase

e Amplitude

e Amplitudendampfung

e Bias

4.1.2 Visualisierung der Zeitreihen

Neben dem Hauptmenii existiert ein OpenGL-Fenster zur Visualisierung der Zeitreihen. Hier werden
Ursprungs- und rekonstruierte Zeitreihen in einer Doppelansicht dargestellt, um dem Nutzer ein unmit-
telbares visuelles Feedback iiber die Qualitdt der Rekonstruktion zu geben. Die Navigation durch die
einzelnen Frames des Datensatzes kann, insofern nicht der Animationsmodus aktiv ist, iiber Mausrad

und Cursortasten erfolgen.

Fiir die Darstellung von dreidimensionalen Daten wird eine Trackball-Kamerasteuerung genutzt, sodass

ein freies Drehen und Zoomen der Daten-Objekte moglich ist.

Eine Anzeige-Uberlagerung gibt Aufschluss iiber diverse Informationen wie den aktuellen Datensatz,

das Kompressionsverhiltnis oder die Anzahl der verwendeten Hauptkomponenten.

4.2 Beschreibung des Datensatzformates

Zum Testen der Analysesoftware wurden mit dem Fluid-Simulator des Lehrstuhls verschiedene zwei-
und dreidimensionale Testdatensitze generiert. Die Datensédtze definieren die Fluidoberflache mithilfe
einer Distanzfunktion, d.h. die implizite Funktion ®(z) = A, deren Funktionswert den vorzeichenbe-
hafteten Abstand zur Oberflache beschreibt (vgl. Kap. 3.1). Dabei ist das relevante level set I'g ebenjene
Region, bei der A gleich Null ist. Abbildung 4.2 verdeutlicht beispielhaft die Struktur der Datensitze:
Die Distanzen liegen in einem rectilinearen Gitter mit konstanter Gitterweite vor. Dabei wird fiir jede

Zelle der minimale Abstand des Zellmittelpunktes zur Oberfliche gespeichert, wobei Werte auflerhalb
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des Fluids ein positives und Werte innerhalb des Fluids ein negatives Vorzeichen besitzen.

Die Distanzwerte der Datensitze werden in einem Binédrformat gespeichert. Am Anfang einer solchen
Binirdatei werden die Gitter-Dimensionen sowie die Zellgroe definiert, danach folgen sequentiell die

Werte des Gitters. In einer Datei wird genau ein Datenvektor abgelegt.

25125125129129 25125125
1L,5/1,5(1,612,1|2,1/1,6 1,5 1,5
05105/0,7/1,4(1,410,7/0,510,5
-0,5/-0,5/00Q 10,5 /0,5 -0,51-0,5
-1,5|-1,41-0,7}-0,5{-0,5|-0,7{-1,4|-1,5
-2,5|-2,1}-1,6|-1,5}-1,5 |-1,6|-2,1|-2,5
-3,5(-2,91-2,5{-2,5|-2,5/-2,5{-2,9|-3,5
-4,31-3,81-3,5|-3,5|-3,5|-3,5|-3.8|-4,3

Abbildung 4.2: Schematische Reprisentation eines /evel set-Datenvektors. Eingezeichnet ist der errech-
nete Fluidrand.

4.3 Vorfilterung

Die implementierte Analysesoftware bietet eine Option zur Filterung der Datensitze wihrend des Im-

ports an. Bei dieser Treshold-Filterung werden die skalaren Distanzwerte x; eines Datenvektors iiber

einen vom Nutzer einstellbaren Schwellwert £ modifiziert. Es gilt:

1 ,wenn; > ¢
filt(z;,§) = -1 ,wenn — 7 > ¢ 4.1)
0 sonst

Werte, welche betragsméBig groer als der von aullen eingestellte Wert & sind, werden demnach unter
Beibehaltung des Vorzeichens auf 1 respektive —1 gesetzt. Werte, die betragsmifig kleiner als £ sind,
werden auf den Wert null abgebildet. Abbildung 4.3 zeigt beispielhaft die Werte des Datensatzes aus

Kapitel 4.2 und den Verlauf der Fluidoberfliche nach einer solchen Schwellwertfilterung.
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Abbildung 4.3: Schematische Reprisentation eines level set-Datenvektors nach der Schwellwert-

Vorfilterung. Eingezeichnet ist der errechnete Fluidrand.
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5 Ergebnisse

5.1 Ergebnisse der PCA

Die Anwendung des entwickelten Software-Prototypen zeigt die Fihigkeit der Dimensionsreduktion
durch die Hauptkomponentenanalyse. Abbildung 5.1 verdeutlicht beispielhaft die Rekonstruktionsqua-
litat eines durch die PCA komprimierten dreidimensionalen Datensatzes unter verschiedenméchtigen
Hauptkomponentenbasen. Je grofler die Dimension ebendieser ist, desto genauer konnen feine Details

rekonstruiert werden.

Es bestitigt sich der in Kapitel 3.2.5 eingefiihrte Parameter ¢* als Giitekriterium fiir die Rekonstruktion,
d.h. der errechenbare Residual-Fehler fillt umgekehrt proportional zur ansteigenden akkumulierten Va-
rianz der den ersten Hauptkomponenten zugehorigen Eigenwerte. Bei Denis Serre (vgl. [Ser02]) findet
sich ein Wert fiir ¢ von ca. 70 Prozent als ausreichend fiir eine visuell ansprechende Rekonstruktion.
Nimmt man diesen Wert als Grundlage, kann fiir die untersuchten Testzeitreihen ein mittlerer Wert von
ca. 3:1 als Kompressionsrate ermittelt werden. Bei einer giinstigeren Varianzverteilung der Eigenwerte

konnten entsprechend hohere Kompressionsraten erreicht werden.

Bezogen auf Fluidoberflichensimulationen kann in diesem Sinne auch formuliert werden: Zeitreihen mit
niedriger (zeitlicher) Dynamik in hohen rdumlichen Frequenzen lassen sich im Allgemeinen mit weni-
ger Hauptkomponenten darstellen als Zeitreihen mit hoher Dynamik in hohen Frequenzen. Ebenjenen
Gebieten hoher rdumlicher Frequenz sind die Hauptkomponenten zugeordnet, deren korrespondierende

Eigenwerte nur noch einen geringen Anteil an der akumulierten Varianz ausmachen.

Die Abbildungen 5.2 und 5.3 zeigen die Rekonstruktion von Zeitreihenausschnitten unterschiedlicher

Dynamik in hohen Frequenzen, d.h. kleinen rdumlichen Strukturen.

Wird als Kriterium zur Einschitzung der Rekonstruktionsqualitét anstelle der 70 Prozent-Schwelle aus
[Ser02] lediglich die visuell iiberzeugende und plausible Anmutung herangezogen, so lassen sich fiir
Zeitreihen mit durchschnittlicher! Verteilung der Varianzen iiber die Eigenwerte mitunter Kompressi-

onsraten von 6:1 und mehr ausmachen. Tabelle 5.1 verdeutlicht diesen Sachverhalt und zeigt die Kom-

! Anm.: Die Durchschnittlichkeit ist in diesem Falle die durchschnittliche Verteilung der Eigenwerte, welche aus der Untersu-

chung der Gesamtheit der Testzeitreihen mithilfe der Analysesoftware hervorgeht.
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> n
-

Original

n=64

Abbildung 5.1: Rekonstruktionen einer 3D-Zeitreihe bestehend aus 136 Datensétzen in Abhéngigkeit der

Anzahl n der Hauptkomponenten.
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pressionsraten der untersuchten 2D-Zeitreihen bezogen auf den von Serre vorgeschlagenen statischen
Wert fiir €* sowie fiir einen vorgeschlagenen individuellen Wert, bei dem die visuelle Qualitit als Re-
ferenz herangezogen wurde. Die 3D-Zeitreihe konnte aufgrund der Speicherproblematik grofer Daten-
mengen (vgl. Kap. 6.2) nur transponiert analysiert werden, somit ist hier keine Vergleichbarkeit zu den

zweidimensionalen Zeitreihen gegeben.

Zeitreihe T N (€e>70%) | K. || N (visuell) | K,
1 200 64 3,06 39 5,02
2 (sh. Abb. 5.2) | 300 81 3,59 60 4,85
3 200 70 2,8 60 3,26
4 133 39 3,36 22 5,96
5 (sh. Abb. 5.3) | 151 48 3,09 20 7,43
1%} 196.8 60,4 3,18 40,2 5,30

Tabelle 5.1: Vergleich der Kompressionsraten auf Grundlage der 70-Prozent-Schwelle nach [Ser02] so-
wie einer visuellen Beurteilung. (Mit 7T'..Anzahl der Zeitschritte, N..Anzahl der verwendeten
Hauptkomponenten, K...Kompressionsrate bei ¢ > 70%, K,..Kompressionsrate bei visuel-

ler Beurteilung.)

Fehlerbetrachtung
FehlermaBe

Als FehlermaB wird die mittlere quadratische Abweichung (kurz MSE fiir mean square error) herangezo-
gen, da sie einerseits dem Minimierungsziel der Hauptkomponentenanalyse entspricht und andererseits
keine statistischen Ausreifier in den vorliegenden Testzeitreihen zu erwarten sind. Dabei beschreibt der
MSE den Mittelwert der quadrierten Eintriige des Differenzvektors von Ursprungsdaten Z; € R und
rekonstruierten Daten Z; € R, Er Lisst sich wie folgt berechnen:

<E BT — T >

N S.D

N—
MSE(t) = — thn—xtn =

Man sieht, dass der MSE hier den mittleren Fehler eines Datenvektors &; der Zeitreihe X = {Z;|t = 0.7 — 1}
definiert. Um die Fehleranalyse zu verfeinern und weitere Aussagen iiber die Qualitit der Rekonstruktion

zu treffen, werden folgende weitere Fehlermalle definiert:
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1 =8 | ’ ] n=16| | 1 n=32|

Abbildung 5.2: Rekonstruktionen einer 2D-Zeitreihe mit groer Dynamik in hohen Frequenzen.
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n=] n=2
n=4 n=8
n=16 n=32
n=64 Original

| Y _—

Abbildung 5.3: Rekonstruktionen einer 2D-Zeitreihe mit niedriger Dynamik in hohen Frequenzen.
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Minimaler MSE

Dieser Wert stellt den kleinsten aller MSE der einzelnen Datenvektoren einer Zeitreihe dar:

MSE i, = min({MSE(0), MSE(1), ..., MSE(T — 1)})

Mittlerer MSE

Dieser Wert geht aus der Mittelung aller MSE der Datenvektoren der Zeitreihe hervor:

1

MSE,.can = T

Maximaler MSE

Dieser Wert ist gegensitzlich zum minimalen MSE als der grofite auftretende MSE einer Zeitreihe defi-
niert:

MSE, ... = max({MSE(0), MSE(1),...,MSE(T — 1)})

Auswertung

Abbildung 5.4 zeigt die Auswertung der rekonstruierten Testzeitreihen beziiglich ihrer MSE. Zur Ver-
gleichbarkeit wurden die Zeitreihen zunichst normiert (vgl. Kap. 4.1.1), anschlieBend wurden minimaler,
mittlerer und maximaler MSE ermittelt. Man erkennt, dass maximaler und mittlerer MSE dabei nah bei-

einander liegen.

Weiterhin zeigt die Verwendung der in Kapitel 4.3 vorgestellten Schwellwertfilterung deutlich kleinere
Fehler bei einer Rekonstruktion mit wenigen Hauptkomponenten als bei der Rekonstruktion ohne Filte-

rung. Abbildung 5.5 sowie Tabelle 5.2 verdeutlichen diesen Sachverhalt genauer.

Auch beeinflusst die Schwellwertfilterung die Verteilung der Varianzanteile der Eigenwerte (vgl. Abb.
5.6). Durch sie ergibt sich ein groflerer Anstieg der kumulativen Varianz fiir die ersten Hauptkomponen-

ten.

5.2 Ergebnisse der Kern-PCA

Die Kern-PCA zeigt fiir Beispielrechnungen (vgl. Kap. 3.3.4), dass eine fiir die Kompression giinstigere

Verteilung der Eigenwerte als bei der klassischen PCA erreicht werden kann. Daraus wird geschlossen,
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Abbildung 5.4: Maximaler, minimaler und gemittelter MSE der Testzeitreihen (gemittelt iiber
die Gesamtheit der Zeitreihen) in Abhingigkeit der Anzahl n der verwendeten

Hauptkomponenten.
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Abbildung 5.5: Mittlerer MSE der Testzeitreihen (gemittelt iiber die Gesamtheit aller Zeitreihen) in Ab-

Anteil an der Gesamtvarianz
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Abbildung 5.6: Anteile der Eigenwerte an der Gesamtvarianz in Abhéngigkeit der Vorfilterung.



5. ERGEBNISSE 58

Anzahl der Haupkomponenten | MSE ohne Vorfilterung | MSE mit Vorfilterung

1 147.8754 0.143877

2 42.30488 0.10443192

4 8.547068 0.07195824
8 2.516271 0.04950984

16 0.64514574 0.0330747

32 0.14343882 0.019445538

64 0.021833214 0.007504626

128 0.000161377 0.000232265

Tabelle 5.2: Vergleich des mittleren MSE der Testzeitreihen (gemittelt tiber die Gesamtheit der Zeitrei-
hen) in Abhingigkeit der Anzahl der verwendeten Hauptkomponenten mit und ohne

Vorfilterung.

dass sie, unter der Annahme der Wahl des optimalen Kerns, zumindest im Bildraum 7 bessere Ergebnisse
als die PCA im Ursprungsraum liefern kann und somit die Beschreibung der Daten mit noch weniger

Hauptkomponenten auskommt.

5.3 Ergebnisse der interaktiven Simulation

Die Anwendung des vorgestellten heuristischen Simulations-Modells (vgl. Kap. 3.4.1) auf die Testda-
tenreihen des Lehrstuhlfluidsimulators zeigt, dass plausible und visuell iiberzeugende Animationen von
Fluidoberflichen auf der Grundlage ausgewihlter Zeitreihen extrapoliert werden konnen. Hierzu sind
verschiedenste Parameter durch den Anwender zur Laufzeit manipulierbar (vgl. Kap. 4). Da die Simu-
lation jedoch auf der Analyse von Trainingsdatensitzen beruht und die Zeitentwicklungsfunktionen der
Merkmalsvektoren durch das Modell approximiert werden, sind nur solche Schwingungsvorginge simu-
lierbar, welche auf den Ausprigungen der gefundenen Hauptkomponenten beruhen. Dabei dhneln die
Zeitentwicklungen der Merkmale von gleichmifBigen Schwingungsvorgingen eher iiberlagerten Sinus-
schwingungen, als die von chaotischen Vorgéngen, und sind somit besser approximierbar. Die Praxis
zeigt, dass fiir solche Schwingungen meist wenige Paare von Harmonischen und Hauptkomponenten

geniigen, um visuell ansprechende Animationen zu erzeugen.
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6 Diskussion

6.1 Einschatzung der Ergebnisse

6.1.1 PCA

Die Ergebnisse der PCA zeigen, dass trotz der Dimensionsreduktion wichtige Merkmale der Fluidbewe-

gung wie Turbulenzen erhalten bleiben, in Abhéngigkeit der Dimension der reduzierten Basis.

Sie stellt ein stabiles Verfahren dar, was sich im nahen Beieinanderliegen von mittlerem und maximalem
MSE widerspiegelt. Es sollten folglich keine einzelnen Datenvektoren einer Zeitreihe signifikant groBere
Fehler aufweisen, als durch den mittleren vorgegeben. Somit bleibt die Rekonstruktionsqualitét in ihrer
Gesamtheit auf einem gleichméBigen Niveau. Fiir einzelne Datenvektoren kann jedoch eine wesentlich
hohere Rekonstruktionsqualitit erreicht werden, da ein relativ groer Abstand zwischen mittlerem und
minimalem MSE vorliegt, wenn eine durchschnittliche Anzahl von Hauptkomponenten zur Rekonstruk-

tion verwendet wurde (vgl. Abb. 5.4).

6.1.2 Kern-PCA

Aufgrund des Urbildproblems und der damit verbundenen Schwierigkeiten bei der Rekonstruktion (vgl.
Kap. 3.3.6) erfolgte keine Implementierung der Kern-PCA. Folglich kann noch keine Aussage dariiber
getroffen werden, ob die Qualitit der Rekonstruktion durch die Kern-PCA nach der Riickabbildung in

den Ursprungsraum besser als die Rekonstruktionsqualitdt der PCA ist.

6.1.3 Simulation

Das implementierte Modell leistet eine einfache Beschreibung der Schwingungsvorgénge und kann Pseu-
dosimulationen aus trainierten Fluidbewegungen generieren. Es konnen aus beschrinkten Animations-
zeitrahmen unbeschrinkte Simulationszeitrahmen erzeugt werden. Dabei erfolgt die Berechnung der
Zeitentwicklungskoeffizienten vollstindig im reduzierten Raum und ist in ihrer Komplexitit unabhin-

gig von der Grofle des simulierten Raumes. Im Gegensatz zu Treuille (vgl. [TLP06]) ist keine direkte
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Interaktion mit der Fluidoberfiache durch den Nutzer moglich, jedoch lassen sich die Modellvariablen
zur Laufzeit anpassen und verdndern. Das Modell vermag, bedingt durch das zugrundeliegende Konzept
der superpositionierten Partialschwingungen, lediglich periodische Ausschwingvorginge zu simulieren
und eignet sich nicht fiir die physikalisch exakte Simulation. Wie auch in [TLP06] ist der Simulati-
onsinhalt stets abhiingig vom zugrundeliegenden Trainingsdatensatz, da er einzig auf den gewonnenen

Hauptkomponenten beruht.

6.2 Bestehende Probleme und Losungsansatze

Der aktuelle Prototyp lddt die Datensitze zur Analyse komplett in den Hauptspeicher, ebenso werden
die Matrizen, welche zur SVD-Zerlegung benétigt werden, im Hauptspeicher verwaltet. Wie in Kapitel
3.2.3 ersichtlich, wichst die Kovarianzmatrix quadratisch zur Groe der Datenvektoren. Somit verursa-
chen die Speicherkosten, gerade bei sehr groflen Datensitzen, einen Flaschenhalseffekt und es kann zu
Speicheradressierungsproblemen kommen, insbesondere bei dreidimensionalen Datensétzen. Fiir einen
3D-Datensatz iiber einem 1283-Gitter miissten fiir die Kovarianzmatrix nach naivem Ansatz 17.59 TB
an Speicher reserviert werden, wenn die skalaren Distanzwerte als floats mit 32 Bit angenommen seien.
Die Implementierung des Prototypen nutzt deshalb die SVD-Methode auf die Matrix aller Datenvektoren
an, um die Eigenwerte und Eigenvektoren der Kovarianzmatrix zu ermitteln, ohne diese jedoch explizit
aufzustellen (vgl. Kap. 3.2.4). So kann einer Speicherknappheit in MaBlen zuvorgekommen werden. Eine
weitere mogliche Losung besteht darin, die PCA auf die transponierte Matrix der mittelwertbefreiten
Datenvektoren anzuwenden (vgl. Kap. 4.1.1). Bei der Rekonstruktion miissen die Daten entsprechend
wieder zuriicktransponiert werden. Dies bringt eine Speicherersparnis, insofern die zeitliche Auflésung

kleiner als die raumliche ist! und wurde auf die 3D-Testzeitreihe angewendet.

Ebenfalls hohe Speicherkosten werden durch die Berechnung der Kernmatrix erzeugt, hier jedoch mit
quadratischer Abhéngigkeit zur Anzahl der Zeitschritte. Dies kann zu Problemen bei Simulationen fiih-

ren, welche einen sehr langen Simulationszeitraum aufweisen.

Ein grundsitzlicher Nachteil der PCA-Methode besteht in ihrem Optimierungsziel; der Strukturierung
nach groBter Varianz. Nicht immer muss die Richtung der grofiten Bedeutsamkeit in einem Datensatz
auf die Richtung der grofiten Varianz fallen; dann schldgt die PCA fehl. Auch miissen, abhingig von

den Daten, die Achsen der gefunden Basis nicht zwangsldufig orthogonal zueinander stehen, obgleich

' Anm.: Dann allerdings wird die Semantik der Hauptkomponenten zweifelhaft: Sie bildet nun keine entlang der Zeit konstante
Basis mit wechselnden Koeffizienten (Merkmalen) mehr, sondern eine entlang der Zeit variable Basis mit lokal konstanten
Koeffizienten. Man konnte folglich die wechselnden Basen als Merkmale und die Menge der konstanten Koeffizienten als

Hauptkomponenten auffassen.
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es die Anwendbarkeit der PCA durch diese Konstruktionsweise einfach macht, da hier das Hin- und
Riickabbilden in bzw. aus der reduzierten Basis allein das Transponieren der Abbildungsmatrix bedeu-
tet. Hier konnen nichtlineare Verfahren wie z.B. die Independent Component Analysis, kurz ICA, unter

Umstédnden bessere Ergebnisse liefern (vgl. [HOO0O0]).

Im konkreten Anwendungsfall, der Nutzung der PCA zur Kompression von level sets, féllt die Pro-
blematik des Optimierungszieles derart ins Gewicht, dass eine Rekonstruktion ohne die in Kap. 4.3
beschriebene Vorfilterung beinahe unpraktikabel wird. Das Problem hierbei ist, dass mithilfe der PCA
versucht wird, das gesamte Distanzfeld hinsichtlich des MSE zu optimieren, einschlieBlich der Berei-
che abseits der Fluidgrenze, welche gegeniiber der level-set-Kontur einen viel groleren Anteil an der
Gesamtvarianz ausmachen. Somit werden unnotig viele Hauptkomponenten bendtigt, um die Isolinie
der Fluidoberfliche exakt zu rekonstruieren. Durch die Anwendung der Schwellwertfilterung werden die
Bereiche auBerhalb dieser Konturlinie auf einen konstanten Wert gesetzt und konnen dann mithilfe einer
einzigen Hauptkomponente représentiert werden. Abbildung 6.1 zeigt den Vergleich der Rekonstruktion

einer Zeitreihe mit und ohne vorangegangener Schwellwertfilterung.

Ein entscheidender Nachteil der Kern-PCA bei der Rekonstruktion ist der Umgang mit der Mittelwert-
befreiung. Bisher wurde in den theoretischen Uberlegungen stets von einer Zentriertheit der Daten aus-
gegangen bzw. konnte diese bei der Berechnung der Kernmatrix implizit erreicht werden (vgl. Kap.
3.3.5.1). In der Praxis jedoch muss die Mittelwertbefreiung wéihrend des Rekonstruktionsschrittes wieder
riickgiingig gemacht werden. Dazu miissen allerdings die Mittelwerte der einzelnen Datenkomponenten
explizit bekannt sein. Dies ist durch das Verfahren aus Kapitel 3.3.6.1 nicht zu erreichen. Losungen fiir
diese Problematik findet man z.B. in approximierenden Verfahren, wie sie in Kapitel 3.3.6.2 beschrieben

sind.

Auch ist die Wahl des ,richtigen* Kernes von entscheidender Bedeutung, d.h. es ist a-priori-Wissen iiber

die Art der Daten notwendig oder es muss einen geeigneten Schitzer geben.

6.3 Ausblick

Die Untersuchungen an den Testdaten haben gezeigt, dass die PCA ein stabiles und einfaches Verfah-
ren darstellt, um die Fluidoberflaichenbewegungen mithilfe der Hauptkomponenten aus den Zeitreihen
zu extrahieren. Dabei konnte das Verfahren durch den Einsatz einer einfachen Schwellwertfilterung ent-
scheidend verbessert werden, wenngleich sie durch den festen Threshold die Fluidgrenzen stark auf das
zugrundeliegende Abtastgitter quantisiert. Von diesem Punkt ausgehend sollten weitere Filter entwickelt

und getestet werden, welche in der Nihe der Konturlinie eine feinere, woméglich adaptive Zuordnung
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Abbildung 6.1: Rekonstruktionen einer 2D-Zeitreihe bestehend aus 200 Datenvektoren in Abhédngigkeit

der Anzahl n der Hauptkomponenten ohne (links) und mit Vorfilterung (rechts).
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ermoglichen, um so die Fluidoberfliche glatter zu extrahieren. Auch sind Weiterentwicklungen der Vi-
sualisierungsalgorithmen denkbar, z.B. zur Aufbereitung von Mikrostrukturen auf der Fluidoberflidche.
Zum aktuellen Zeitpunkt liefert ein rudimentires Marching-Cubes- Verfahren die Visualisierung der Iso-
flachen dreidimensionaler Datensitze; fiir die Visualisierung von zweidimensionalen Zeitreihen ist ein

Marching-Squares-Algorithmus sowie eine texturbasierte Darstellung implementiert.

Des Weiteren steht noch die Implementierung des Kern-PCA-Verfahrens aus. Trotz der bestehenden
Problematik der Riickabbildung aus dem Hochdimsenionalen wihrend der Rekonstruktion, ist die reine
Darstellung der Hauptkomponenten und Merkmalsvektoren nicht minder uninteressant, wenngleich auch
hier die Herausforderung besteht, in welcher Form die Hauptkomponenten mit potentiell unendlicher

Dimension dargestellt werden sollten.

Einen weiteren Schritt, ausgehend vom aktuellen Stand der Arbeit, stellt die Weiterentwicklung des
Simulationsmoduls dar. Zur Zeit lésst sich die Simulation lediglich durch die Justierung der technischen
Parameter zur Laufzeit manipulieren. Eine direkte Nutzerinteraktion sei anzustreben, man vergleiche die

interaktive Einflussnahme durch den Anwender in [TLPO06].
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7 Zusammenfassung

In der vorliegenden Arbeit wurde die wohlbekannte mathematische Methode der Hauptkomponenten-
analyse in den Kontext der Computergraphik gebracht, um mit ihrer Hilfe Fluidgrenzflichensimulationen
zu analysieren und zu komprimieren. Dabei wurden die theoretischen Grundlagen sowie der Algorith-
mus selbst detailliert vorgestellt und praktisch in einer prototypischen Anwendung umgesetzt. Durch die
Analyse der Testzeitreihen und der Extraktion der Merkmalsvektoren konnten Eigenschaften gefunden
werden, welche es erlaubten, ein Simulationsmodell basierend auf der Uberlagerung harmonischer Par-
tialschwingungen zu definieren. Es lassen sich damit eigenstindige Simulationen generieren, welche die
Merkmale der analysierten Testzeitreihen aufweisen, und deren Parameter sich zur Laufzeit durch den
Nutzer einstellen lassen. Weiterhin wurde die Kernmethode in Verbindung mit der PCA als nichtlineares
Verfahren untersucht. Dabei wurde der unter dem Namen Kern-PCA bekannte Algorithmus in der Theo-
rie vorgestellt und bestehende Probleme sowie Losungen aufgezeigt. Auf eine prototypische Umsetzung

wurde aufgrund der Schwierigkeiten bei der Rekonstruktion verzichtet.
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