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Aufgabenstellung

Thema:

Dimensionsreduktionsverfahren in der computergraphischen Fluidsimulation

Zielstellung:

Ziel dieser Arbeit ist es, verschiedene Verfahren zur Dimensionsreduktion auf die interaktive Animation

von Fluidgrenzflächen anzuwenden und zu bewerten. Die Arbeit von A. Treuille et al. Model Reduction

for Real-time Fluids (2006) bildet dabei das Vorbild. Zur Auswertung stehen Zeitreihen des Lehrstuhl-

fluidsimulators zur Verfügung. Im Einzelnen sind folgende Teilaufgaben zu bearbeiten:

∙ Literaturrecherche über Dimensionsreduktionsverfahren in der Computergraphik mit Ausblicken

in die mathematischen Grundlagen

∙ Anwendung der linearen Hauptkomponentenanalyse auf verschiedene Fluidsimulationszeitreihen

in Form von Level-set-Rohdaten

∙ Anwendung wenigstens einer nichtlinearen Dimensionsreduktionsmethode (z.B. Kern-PCA oder

Diffusionsabbildung)

∙ Erprobung und prototypische Implementierung der interaktiven Simulation in reduzierten Syste-

men per Galerkin-Projektion analog Treuille et al.
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1 Einleitung

Motivation und Zielstellung

In der Computergraphik werden nicht selten komplexe hochdimensionale Beschreibungen von Naturphä-

nomenen hervorgebracht, welche einerseits von anspruchsvollen mathematisch-physikalisch motivierten

Ansätzen und Modellen herrühren, andererseits durch das Abtasten und Diskretisieren der realen Natur

bedingt sind. Durch die Flut an Daten fallen hierbei zum Teil riesige Informationsmengen an. Oft jedoch

liegen der gefundenen hochdimensionalen Datenmenge viel einfachere Strukturen zugrunde, mit welcher

sich dieselben Vorgänge beschreiben lassen.

Die Methoden der Dimensionsreduktionsverfahren finden ebenjene Strukturen, woraufhin eine Verein-

fachung der Daten vorgenommen werden kann. Ein bekanntes mathematisches Verfahren stellt hierbei

die Hauptkomponentenanalyse dar, im englischen Sprachraum als Principal Components Analysis, kurz

PCA, bezeichnet, welche Nebenabhängigkeiten in Datenstrukturen findet. Dieses Verfahren wurde um

1930 entwickelt, das innewohnende Potenzial konnte allerdings erst mit der Verfügbarkeit von geeigne-

ten Großrechnern in vollem Umfang ausgeschöpft werden.

In der Computergrafik findet die Hauptkomponentenanalyse unter anderem in der Fluidsimulation An-

wendung. So ist es mittlerweile möglich, rechenintensive Fluidsimulationen nicht nur echtzeitfähig im

Sinne der graphischen Visualisierung, sondern auch durch Echtzeit-Interaktion für den Nutzer erforsch-

bar zu machen. Dies wird erreicht, indem die notwendigen Berechnungen der Navier-Stokes-Gleichungen

sowie der Nutzereingaben vollständig in einem reduzierten Raum stattfinden (vgl. [TLP06]).

Die vorliegende Arbeit knüpft an diesem Punkt an und untersucht die PCA im Hinblick auf ihre Eigen-

schaften als Dimensionsreduktionsverfahren bei der Anwendung auf Fluidgrenzflächen. Dabei kann sie

einerseits direkt zur Kompression der Daten verwendet werden, andererseits können mit ihr Strukturen in

den Daten gefunden werden, welche erlauben, ein Simulationsmodell zu definieren, das nutzerabhängige

Animationen ermöglicht. Im Gegensatz zu [TLP06] besteht hierbei die Schwierigkeit, dass anstelle eines

Vektorfeldes lediglich ein skalares Feld in Form von level sets als Lösung einer Offline-Fluidsimulation

zur Verfügung steht, um zugrundeliegende Strukturen zu finden; d.h. insbesondere, dass die Vorgänge,

welche zur Ausprägung der entsprechenden Fluidoberfläche führten, unbekannt sind.
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Neben der Anwendung der PCA als lineares Verfahren wird des Weiteren der Fragestellung nachge-

gangen, inwieweit nichtlineare Verfahren zur Daten-Analyse geeignet sind und ob durch sie womöglich

noch bessere Ergebnisse erreicht werden können. Zu diesem Zweck wurde die sogenannte Kern-PCA

untersucht, die das PCA-Verfahren mit den Mitteln der nichtlinearen Kernmethoden kombiniert.

Gliederung der Arbeit

Zunächst werden in Kapitel 2 verwandte Arbeiten thematisiert, welche sich mit Dimensionsreduktions-

verfahren in der computergraphischen Fluidsimulation beschäftigen. Kapitel 3 widmet sich den metho-

dischen Grundlagen der linearen und der nichtlineare Hauptkomponentenanalyse. Dabei wird detailliert

auf die Algorithmen sowie die mathematischen Aspekte eingegangen, ebenso werden Probleme und de-

ren Lösungsansätze diskutiert. Den Abschluss dieses Kapitels bildet die Beschreibung des entwickelten

Simulationsmodelles.

Begleitend zur vorliegenden Arbeit wurde eine Analysesoftware entwickelt, deren Funktionalitäten und

Hilfsstrukturen in Kapitel 4 beschrieben werden. In den darauffolgenden Kapiteln 5 und 6 werden die

Ergebnisse der Untersuchungen an den Testzeitreihen vorgestellt und diskutiert. Kapitel 7 schließt die

Arbeit mit der Zusammenfassung.
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2 Verwandte Arbeiten

Die Hauptkomponentenanalyse ist als Dimensionsreduktionsverfahren in der Fluidsimulation nicht un-

bekannt und findet seit den siebziger Jahren des zwanzigsten Jahrhunderts Anwendung, z.B. durch J.

Lumley [Lum70], L. Sirovich [Sir87] oder P. Holmes [HLB96]. Sie ist auch unter der Bezeichnung Pro-

per Orthogonal Decomposition, kurz POD (vgl. [Row05] und [TLP06]), bekannt. Bei diesen Verfahren

wird u.a. die sogenannte Galerkin-Projektion angewandt, um neben den Datenvektoren auch die Zeit-

entwicklungsgleichungen des Fluidmodells in einen reduzierten Raum zu überführen und folglich mit

weniger Unbekannten zu rechnen. Ein Vorteil der POD-Methode ist u.a. der Wegfall der Behandlung von

Randbedingungen, da sie durch die Vollsimulation a priori vorliegen und damit implizit in das reduzierte

Modell einfließen. Weiterhin sind alle Berechnungen unabhängig von der Größe des Simulationsraumes,

sondern nur von der Größe der Basis, welche durch die Hauptkomponenten gebildet wird.

Zur Reduzierung der Rechenkomplexität bei der Berechnung der Hauptkomponenten, im Duktus der

POD-Methode auch als POD modes bezeichnet (vgl. [Row05]), führte Sirovich die sogenannte Snap

Shot-Methode ein, um ein reduziertes Modell nicht mehr aus der gesamten Fluidsimulation, sondern aus

einer Reihe von Momentanzuständen zu errechnen.

Diesen Ansatz verfolgte A. Treuille [TLP06] in seiner Arbeit und präsentiert ein um eine interaktive

Komponente erweitertes Modell: Es können anwendergesteuerte Hindernisse in Echtzeit im Fluidstrom

simuliert werden. Treuille koppelt das reduzierte Modell des gesamten Fluidstromes mit einem reduzier-

ten Modell, welches aus den Fluidbewegegungen in der unmittelbaren Nähe des interaktiven Objektes

hervorgeht und wiederum mithilfe der PCA und der Snap Shot-Methode gewonnen wurde, so, dass die

No-Slip-Bedingung am Objektrand effizient berechnet werden kann. Dazu führt er Operatoren ein, wel-

che Rotation und Translation der Bezugssysteme ineinander überführen sowie einen Speed-Operator

zur Berechnung der Normalengeschwindigkeiten an allen abgetasteten Oberflächenpunkten. In einem

ersten Schritt, dem feed foward, werden die Bereiche des globalen Fluid-Vektorfeldes in der lokalen

Nähe des interaktiven Objektes in dessen Koordinatensystem umgerechnet und die No-Slip-Bedingung

erzwungen. Im zweiten Schritt, dem feed backward erfolgt die Berechnung der Kräfte, die durch die

Nutzer-Interaktion mit dem Objekt auf das Fluid einwirken, welche anschließend wieder vom lokalen

Objekt-Bezugssytem in das globale Koordinatensystem umgerechnet werden.
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Zur Effizienzsteigerung seines Interaktionsmodells führt Treuille eine Vorberechnung der feed foward-

und feed backward-Matrizen für diskretisierte Orientierungen, d.h. Rotation und Translation, durch, wo-

bei der Speicheraufwand für diese Matrizen quadratisch von der Diskretisierungsschrittweite abhängt.

Durch die Offline-Berechnung kann nunmehr sogar die Kopplung zwischen Fluid und interaktivem Ob-

jekt vollständig im reduzierten Raum berechnet werden.

Ansätze, welche die PCA/POD-Methode mit Algorithmen verbinden, die über lange Simulationszei-

ten eine höhere Stabilität und akkuratere Ergebnisse als die Snap Shot-Methode liefern, sind u.a. durch

C.W. Rowley [Row05] beschrieben. Er kombiniert die Methode der balanced truncation mit der POD-

Methode zur balanced POD. Eine approximierende Variante der PCA sowie der nichtlinearen Kern-PCA

(vgl. Kapitel 3.3) wird von Shawn Martin [Mar06] vorgestellt und auf Taylor-Couette-Flüsse angewandt.
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3 Methodik

3.1 Oberflächen in der Fluidsimulation: Level Sets

Die Repräsention einer Oberfläche als sogenanntes level set ist eine weitverbreitete Darstellungsform

und eng verwandt mit der mathematischen Definition für implizite Flächen1.

Im Folgenden werden diese beiden Darstellungsformen kurz erklärt. Zunächst sei die Darstellung einer

impliziten Fläche beschrieben:

Es wird eine Funktion Φ(x) : RN → R eingeführt, welche an allen Punkten x (x ∈ Rn) des betrachteten

Raumes definiert sei. Sie wird weiterhin so gewählt, dass durch sie, abhängig von ihrem Funktionswert,

drei Regionen Ω+, Ω− und �Ω erklärt werden können (vgl. [OF02]). Für alle Punkte x+, die außerhalb

der impliziten Fläche liegen, soll der Funktionswert von Φ(x+) größer Null sein. Die Menge dieser

Punkte ist Ω+ ≡ {x∣Φ(x) > 0}. Die Menge Ω− der Punkte, welche innerhalb der impliziten Fläche

liegen, ist analog mit Ω− ≡ {x∣Φ(x) < 0} beschrieben. Die implizite Fläche �Ω ist genau dort definiert,

wo der Funktionswert von Φ gleich Null wird, d.h. �Ω ≡ {x∣Φ(x) = 0}.2

Ein level set ist nun die Menge von Punkten, für welche die Funktion Φ(x) ein und denselben konstanten

Funktionswert Δ liefert. Sei diese Menge mit ΓΔ bezeichnet, so gilt (analog �Ω):

ΓΔ ≡ {x∣Φ(x) = Δ} (3.1)

Man sieht, dass sich das level set ΓΔ ebenso als implizite Fläche darstellen lässt. Dazu wird die implizite

Funktion ΦΔ(x) = Φ(x)−Δ gewählt. Sie hat als Nullstellenmenge �ΩΔ genau die Menge der Punkte,

welche durch das level set ΓΔ beschrieben sind.

Weitere Bezeichnungen für level set sind u.a. Isokonturlinien im zweidimensionalen bzw. Isoflächen im

dreidimensionalen Fall.

1Anm.: Beide Darstellungsformen unterscheiden sich semantisch, lassen sich jedoch gegenseitig ineinander überführen.
2Während Φ(x) im n-dimensionalen Raum definiert ist, so hat �Ω die Dimension (n− 1) (vgl. [OF02]).
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3.2 Die Hauptkomponentenanalyse (PCA)

3.2.1 Die historische Entwicklung der Hauptkomponentenanalyse

Die Methode der Hauptkomponentenanalyse ist ein wohlbekanntes Verfahren der multivariaten Statistik,

um komplexe Daten zu vereinfachen und zu restrukturieren (vgl. [Jol02]). Ihre Ursprünge reichen bis

zum Ende des 19. Jahrhunderts zurück, als u.a. durch E. Beltrami und M.E.C. Jordan Methoden zur Sin-

gulärwertzerlegung in einer Form entwickelt wurden, wie sie auch in der heutigen PCA Anwendung fin-

den. Die ersten Beschreibungen des Verfahrens, welches heute als Hauptkomponentenanalyse bezeichnet

wird, geht auf die Arbeiten von Karl Pearson (1901) und Harold Hotelling (1933) zurück, wobei beide

unterschiedliche Ansätze verwendeten – Pearson versuchte Mengen von Punkten in p-dimensionalen

Räume durch Geraden und Ebenen anzunähern, während Hotelling ausgehend von der Faktorenanalyse

zur PCA kam. Pearson erklärte, dass seine Methoden einfach auf entsprechende numerische Probleme

hoher Dimension angewandt werden können, auch wenn die Berechnungen per Hand für vier oder mehr

Unbekannte mühsam würden – dies war lange vor der allgemeinen Verfügbarkeit von elektronischen Re-

chenanlagen. Der Begriff Hauptkomponente geht auf Hotelling zurück: Seine Methode orientierte sich an

der Faktorenanalyse, welche von dem Psychologen Charles Spearman im beginnenden 20. Jahrhundert

entwickelt und durch den der Begriff des Faktors geprägt wurde. Um seine Methode abzugrenzen und

um weiterer Konfusion mit dem mathematischen Begriff Faktor aus dem Weg zu gehen, führte Hotelling

den Begriff Komponente ein. Er wählte sie so, dass sie je einen akkumulativen Anteil an der Summe der

gesamten Varianz aller ursprünglichen Variablen leisteten und nannte die so erhaltenen Vektoren Haupt-

komponenten. Das Verfahren betitelte er mit „method of principal components“ – Methode der Haupt-

komponenten. Hotelling beschrieb weiterhin, wie die Hauptkomponenten mithilfe der Potenzmethode

gefunden werden können sowie deren geometrische Interpretation. In den unmittelbaren Jahren nach

Hotellings Publikation wurden nur wenige verschiedene Anwendungen und Erweiterungen der PCA-

Methode vorgenommen. Mit dem Vormarsch der elektronischen Rechner sollte sich dies ändern: Etwa

25 Jahre nach Hotellings Paper wurden explosionsartig Weiterentwicklungen und differenzierte Anwen-

dungen der PCA vorangetrieben. Nun wurde das Potenzial deutlich, welches sich aus der Anwendung

der PCA auf hochdimensionale Daten ergibt3. Als weitere wichtige Publikationen in den, bezüglich der

PCA, aufblühenden 60-er Jahren des 20. Jahrhunderts seien die Arbeiten von T.W. Anderson [And63],

C.R. Rao [Rao64], J.C. Gower [Gow66] und J.N.R. Jeffers [Jef67] genannt (vgl. [Jol02]).

Die Hauptkomponentenanalyse entwickelte sich zu einem etablierten Verfahren, welches heute in nahe-

zu allen wissenschaftlichen Disziplinen ihre Anwendung findet. In der Computergraphik sind die Auf-

3Anm.: „Hochdimensional“ nicht mehr im Sinne Pearsons, sondern mit weit mehr als vier Unbekannten.
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gabengebiete der PCA weit gestreut: Sie findet Anwendung in einfachen Berechnungsverfahren, z.B.

beim Berechnen optimaler Boundingboxen (vgl. [DKKR07]), wie auch in komplexen Beleuchtungs-

rechnungen, z.B. beim Rendern komplexer Oberflächen mithilfe bidirektionaler Texturfunktionen (vgl.

[MMK04]) oder zur Manipulation sowie Inter- und Extrapolation aufgezeichneter Motion Capture Daten

(vgl. [GBT04]).

Synonym zum Terminus Hauptkomponentenanalyse werden auch die Begriffe Karhunen-Loève-Trans-

formation, Hotelling-Transformation bzw. Proper Orthogonal Decomposition (vgl. Kap. 2) verwendet.

3.2.2 Grundlagen zur PCA

Im Folgenden werden die Ansätze und wesentlichen Schritte des PCA-Algorithmus beschrieben.

Die grundsätzliche Zielstellung der PCA ist die Transformation der Daten in ein geeignetes Koordinaten-

system, in welchem sie im Idealfall redundanzfrei beschrieben werden können. Eine solche Redundanz

ist insbesondere dann gegeben, wenn zwei Variablen eines Datensatzes einen Zusammenhang aufweisen,

d.h. wenn sich der Anteil einer Variablen aus der jeweils anderen ableiten lässt. Die PCA transformiert

die Datensätze so, dass genau diese Zusammenhänge minimiert und die Daten mit weniger Variablen

dargestellt werden können.

Zu einer Menge von T mittelwertbereinigten Datensätzen x⃗t ∈ RN wird eine neue Basis B = {⃗bi∣i =

0..N − 1, N ∈ N} gefunden, deren Basisvektoren b⃗i ∈ RN orthonormal sind – sie werden die Haupt-

komponenten genannt. Ein Datensatz lässt sich sodann als Linearkombination dieser I Basisvektoren

darstellen:

x⃗t =
N−1∑
i=0

ai ⋅ b⃗i (3.2)

Eine Reduktion der Dimension erfolgt durch die Vernachlässigung von Hauptkomponenten. Der Daten-

vektor x⃗t wird durch den Vektor ˜⃗xt approximiert, wobei ˜⃗xt aus einer Linearkombination der ersten M

Basisvektoren hervorgeht:

˜⃗xt =

M−1∑
i=0

ai ⋅ b⃗i (M < I) (3.3)

Das Ziel besteht darin, den mittleren quadratischen Fehler respektive den euklidischen Abstand zwischen

dem Ursprungsdatensatz x⃗t und dem approximierenden Vektor ˜⃗xt zu minimieren, d.h. es erfolgt eine

Optimierung im Sinne der Methode der kleinsten Quadrate.
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min ∣∣˜⃗xt − x⃗t∣∣2 (3.4)

Bei der Hauptkomponentenanalyse wird dies erreicht, indem man die Basis B so wählt, dass die Richtun-

gen der Hauptkomponenten gleich den Richtungen der größten Streuungen in den Datensätzen entspre-

chen. Als Streuungsmaß wird hierbei die Varianz verwendet. Das Minimierungsziel ist erfüllt, wenn die

Hauptkomponenten entsprechend des zugehörigen Streuungsanteils sortiert werden. Genau dann wird

∣∣˜⃗xt − x⃗t∣∣2 minimal.

-10

-5

 0

 5

 10

-10 -5  0  5  10

n1

n0

Abbildung 3.1: Plot von 100 Datensätzen x⃗t = (n0, n1)T (vgl. [Jol02]).
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Abbildung 3.2: Plot der Daten aus Abb. 3.1 bezüglich ihrer Hauptkomponenten b0 und b1.

Die Abbildung 3.1 zeigt beispielhaft eine Menge von Datensätzen bestehend aus zwei stark korrelier-

ten Variablen n0 und n1; beide besitzen ungefähr die gleiche Streuung. Die größte Streuung in den
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Abbildung 3.3: Plot der rekonstruierten Daten aus Abb. 3.1 mithilfe der ersten Hauptkomponente

Daten lässt sich jedoch in einer Richtung finden, welche schräg zu den Richtungen von n0 und n1 ver-

läuft. Sie ist genau die Richtung der ersten Hauptkomponente b0, orthogonal dazu ist die Richtung der

zweiten Hauptkomponente b1, welche einen geringeren Streuungsanteil hat. Abbildung 3.2 zeigt die

Datensätze bezüglich ihrer Hauptkomponenten. Die Dimensionreduktion besteht nun darin, von einer

Datenbeschreibung in Abhängigkeit zweier Variablen n0 und n1 auf eine Darstellung abhängig von ei-

ner Variablen b0 überzugehen und die Richtung b1 mit dem kleinsten Streuungsanteil zu verwerfen. Das

Ergebnis nach der Rücktransformation in den ursprünglichen Raum der Eingabedaten ist eine lineare

Korrelation zwischen n0 und n1 (vgl. Abb. 3.3).

3.2.3 Varianz und Kovarianz in der PCA

Die Varianz �2 ist ein Maß für die Streuung einer Variablen und Grundlage für das Optimierungsziel der

PCA, da sie die Richtungen der Hauptkomponenten festlegt. Sie ist für eindimensionale Datensätze xt

(t = 0..T − 1) definiert als:

�2 ≡ 1

T − 1

T−1∑
t=0

(xt − x̄)2 (3.5)

Die Varianz lässt sich für mehrdimensionale Datenvektoren x⃗t ∈ RN analog definieren als:

�⃗2 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2
0

...

�2
n

...

�2
N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ 1

T − 1

T−1∑
t=0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x⃗t,0 − x̄0)2

...

(x⃗t,n − x̄n)2

...

(x⃗t,N−1 − x̄N−1)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.6)
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Hierbei bezeichnet xt,n die n-te Komponente des t-ten Datenvektors und x̄n den Mittelwert der n-ten

Komponente der Datenvektoren.

Im Folgenden sei v⃗n der Vektor aller Einträge der jeweils n-ten Komponente aus den T Datensätzen, d.h.

v⃗n ≡ (x0,n, x1,n, . . . , xt,n, . . . , xT−1,n) (3.7)

Sofern die Datensätze mittelwertbereinigt sind, lässt sie sich dann die Varianz �2
n der n-ten Komponente

übersichtlich als Skalarprodukt darstellen:

�2
n ≡

1

T − 1
⟨v⃗n, v⃗n⟩ (3.8)

Die Kovarianz ist eine Verallgemeinerung des Varianzbegriffes und beschreibt den linearen Zusammen-

hang zwischen zwei Komponenten n1 und n2. Sie wird analog zur Varianz definiert:

�2
n1,n2 ≡

1

T − 1
⟨v⃗n1, v⃗n2⟩ (3.9)

Der Betrag von �2
n1,n2 ist ein Maß für die Stärke des linearen Zusammenhangs zwischen den Kompo-

nenten n1 und n2. Je höher dieser Betrag ist, desto größer ist der Zusammenhang. Das Vorzeichen von

�2
n1,n2 beschreibt die Richtung des Zusammenhangs. Ein positives Vorzeichen bedeutet einen gleich-

sinnigen Zusammenhang: Hat eine Komponente n1 einen hohen Betrag, so hat die Komponente n2

ebenfalls einen hohen Betrag (vgl. Abb. 3.1). Ein negatives Vorzeichen bedeutet einen gegensätzlichen

Zusammenhang: Hat eine Komponente n1 einen hohen Betrag, so hat die Komponente n2 einen niedri-

gen Betrag. Ist �2
n1,n2 = 0 erfüllt, so besteht kein linearer Zusammenhang zwischen den Komponenten

n1 und n2.

Eine weitere mögliche Notationsform für die Kovarianz ist die Matrixschreibweise. Fasst man die Vek-

toren v⃗n1 und v⃗n2 als (1× T )-Matrizen auf, so lässt sich die Kovarianz als Matrixprodukt aufschreiben:

�2
n1,n2 ≡

1

T − 1
vn1 ⋅ vn2

T (3.10)

Mithilfe dieser Darstellungsform kann nun von der Kovarianz zweier Komponenten auf die Kovarianzen

ganzer Mengen von Komponenten verallgemeinert werden.

Zunächst werden die Datensätze in Matrizenschreibweise notiert. Die Menge der T Datensätze sei durch

die Matrix X repräsentiert. Die Datenvektoren werden hierbei als Spaltenvektoren aufgefasst:
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X ≡ (x⃗0 x⃗1 . . . x⃗t . . . x⃗T−1)

=

⎛⎜⎜⎜⎜⎜⎜⎝
x0,0 x1,0 ⋅ ⋅ ⋅ xT−1,0

x0,1 x1,1 ⋅ ⋅ ⋅ xT−1,1

...
...

. . .
...

x0,N−1 x1,N−1 ⋅ ⋅ ⋅ xT−1,N−1

⎞⎟⎟⎟⎟⎟⎟⎠
(3.11)

Die Menge aller Kovarianzen können ebenfalls kompakt in einer Matrix zusammengefasst werden – der

sog. Kovarianzmatrix. Diese sei mit C bezeichnet. Sie wird wie die Kovarianz �2
n1,n2 als Matrixprodukt

beschrieben:

C ≡ 1

T − 1
X ⋅XT (3.12)

Eine weitere nützliche Darstellung der Kovarianzmatrix ist die Notation als Summe der Dyaden der

Datenvektoren:

C ≡ 1

T − 1

T−1∑
t=0

x⃗t ⋅ x⃗Tt (3.13)

Diese Form entsteht durch die Zerlegung von X in Blockmatrizen, und zwar so, dass ein Block gerade

einem Datenvektor entspricht. Mit der Definition von X aus Gleichung 3.11 gilt (vgl. [Ser02]):

X = (x⃗0, x⃗1, . . . , x⃗t, . . . , x⃗T−1) = (X0 X1 . . . Xt . . . XT−1) (3.14)

sowie

XXT = (X0 . . .XT−1) ⋅
(
X0

T . . .XT−1
T
)

= X0 ⋅X0
T + . . .+ XT−1 ⋅XT−1

T

=

T−1∑
t=0

Xt ⋅Xt
T =

T−1∑
t=0

x⃗t ⋅ x⃗Tt

(3.15)

Die Einträge auf der Hauptdiagonalen von C sind genau die Varianzen der Datenreihe, während auf den

restlichen Einträgen die paarweisen Kovarianzen zu finden sind.

C =
1

T − 1

⎛⎜⎜⎜⎜⎜⎜⎝
�2

0,0 �2
0,1 ⋅ ⋅ ⋅ �2

0,N−1

�2
1,0 �2

1,1 ⋅ ⋅ ⋅ �2
1,N−1

...
...

. . .
...

�2
N−1,0 �2

N−1,1 ⋅ ⋅ ⋅ �2
N−1,N−1

⎞⎟⎟⎟⎟⎟⎟⎠ (3.16)
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Die Kovarianzmatrix ist stets symmetrisch, da das Skalarprodukt zweier Vektoren kommutativ ist:

�2
n1,n2 =

1

T − 1
⟨v⃗n1, v⃗n2⟩

=
1

T − 1
⟨v⃗n2, v⃗n1⟩

= �2
n2,n1

Eine symmetrische Matrix hat die Eigenschaft, in jedem Fall orthogonal diagonalisierbar zu sein; eine Ei-

genwertzerlegung von C liefert orthogonale Eigenvektoren sowie stets reelle Eigenwerte (vgl. [Ser02]).

3.2.4 Der PCA-Algorithmus: Von der Kovarianzmatrix zum Eigenwertproblem

Das Ziel der PCA ist das Finden einer orthonormalen Basis B, welche das Koordinatensystem so trans-

formiert, dass die paarweisen Kovarianzen der Komponenten der Datenreihe X nach dem Basiswechsel

den Wert Null und die Varianzen maximale Werte annehmen, was bedeutet, dass die einzelnen Kompo-

nentenvektoren nunmehr keinen linearen Zusammenhang mehr aufweisen. Die zugehörige Kovarianz-

matrix hat dann die Gestalt einer Diagonalmatrix.

Die Datenmatrix nach der Transformation sei mit Y bezeichnet und es sei Y ≡ B ⋅X. Ist die Kovarianz-

matrix CY = 1
T−1Y ⋅YT eine Diagonalmatrix, so sind die Zeilenvektoren der Basis B die gesuchten

Hauptkomponenten.

Man kann zeigen, dass die Eigenwertzerlegung der Kovarianzmatrix CX = 1
T−1X⋅XT die gewünschten

Basisvektoren b⃗i liefert. Dazu bringt man CY in eine neue Form:

CY =
1

T − 1
Y ⋅YT (3.17)

=
1

T − 1
(BX) ⋅ (BX)T (3.18)

=
1

T − 1
BXXTBT (3.19)

=
1

T − 1
B(XXT)BT (3.20)

Die Matrix XXT ist aufgrund ihrer Definition immer symmetrisch (vgl. Kap. 3.2.3). Daraus folgt, dass

sie stets diagonalisierbar ist. XXT lässt sich demnach formulieren als XXT = EDET . Dabei enthalten

die Spalten der Matrix E die Eigenvektoren von XXT , D ist die Diagonalmatrix der Eigenwerte von

XXT . Wählt man nun B so, dass B ≡ ET gilt, dann enthält B nun die Eigenvektoren von XXT in

Form von Zeilenvektoren. XXT lässt sich nun als XXT = BTDB formulieren. Da die Orthonormalität

eine Bedingung an die Basis B ist, folgt BT = B−1 und es gilt:

XXT = B−1DB (3.21)
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Setzt man 3.21 in 3.20 ein, so erhält man:

CY =
1

T − 1
B(XXT )BT (3.22)

=
1

T − 1
B(B−1DB)BT (3.23)

=
1

T − 1
(BB−1)D(BB−1) (3.24)

=
1

T − 1
D (3.25)

Wie man sieht, ist die Kovarianzmatrix CY diagonalisiert und B erfüllt die ursprüngliche Zielsetzung:

B transformiert einen Datensatz X so, dass die Kovarianzen zwischen den Komponenten verschwinden.

Um also die Hauptkomponenten zu finden, müssen die Eigenvektoren von XXT berechnet werden. Dies

sind dann genau die Zeilenvektoren von B.

In der Praxis kann dies effektiv z.B. über die SVD4-Methode erfolgen:

Zu jeder Matrix Y gibt es eine Zerlegung Y = UΣVT , wobei U und V orthonormal sind. Es gilt

weiterhin:

YT ⋅Y = (UΣVT )T ⋅UΣVT

= VΣTUT ⋅UΣVT

= VΣTΣVT

(3.26)

Somit ist V die Matrix der Eigenvektoren und ΣTΣ die Matrix der Eigenwerte von YTY. Wählt man

Y ≡ 1√
T − 1

XT (3.27)

so erhält man für

YTY =
1

T − 1
XXT (3.28)

die Kovarianzmatrix von X. Die gesuchte Basis B ergibt sich nun wie folgt: Die SVD-Zerlegung von Y

liefert die orthonormale Basis V, welche die gesuchten Eigenvektoren von B in Form von Spaltenvek-

toren enthält, d.h. VT = B.

3.2.5 Die Bedeutung der Eigenwerte

In der Hauptkomponentenanalyse kann der Eigenwert �i der Kovarianzmatrix als ein Maß für die „Rele-

vanz“ des zugehörigen Eigenvektors b⃗i, d.h. der zugehörigen Hauptkomponente, betrachtet werden. Die

Eigenwerte sind gleich den Einträgen auf den Diagonalen der Kovarianzmatrix CY des Datenvektors Y

4Anm.: Die Abkürzung SVD steht für Singular Value Decomposition.
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nach Ausführung der PCA. Sie sind also gleich den Varianzen des transformierten Datensatzes. Werden

sie so normiert, dass sie in der Summe Eins ergeben, dann lässt sich direkt der von ihnen erfasste Anteil

an der Gesamtvarianz angeben. Die normierten Eigenwerte �̃i bestimmen sich wie folgt:

�̃i =
�i∑
i �i

(3.29)

Liegen die Paare von Eigenwerten und Eigenvektoren in einer geordneten Reihenfolge vor, so kann

die Dimensionsreduktion durch das Vernachlässigen aller Eigenvektoren bis auf die ersten M erfolgen,

deren Eigenwerte einen bestimmten Anteil an der Gesamtvarianz erklären. Dieser Anteil sei mit �M

(�M = 0 . . . 1, �M ∈ R) bezeichnet. Er lässt sich wie folgt berechnen:

�M =

M−1∑
i=0

�̃i (3.30)

Der Wert �M kann als der prozentuale Anteil am Informationsgehalt des Datensatzes betrachtet werden,

welcher in den ersten M Hauptkomponenten verbleibt. Um in einem konkreten Anwendungsfall die

Anzahl der verwendeten Hauptkomponenten festzulegen, wird ein Schwellwert �∗ eingeführt, welcher

den prozentualen Mindestanteil an der Gesamtinformation angibt. Gesucht ist dann das kleinste M , für

das �M > �∗ erfüllt ist.

3.2.6 Die Merkmalsvektoren

Das Ergebnis der PCA-Analyse ist die Restrukturierung des Datenvektors x⃗t bezüglich seiner Haupt-

komponenten b⃗i. Durch den Basiswechsel wird ein sog. Merkmalsvektor gewonnen, welcher den Da-

tensatz neu beschreibt. Die Einträge des Merkmalsvektores sind genau die ai der Linearkombination

x⃗t =
∑M−1

i=0 ai ⋅ b⃗i.

Ein Merkmal ai wird ermittelt, indem der Datenvektor auf die Hauptkomponente b⃗i projiziert wird:

ai =
〈
x⃗t, b⃗i

〉
(3.31)

Analog berechnet man den Merkmalsvektor a⃗t eines Datensatzes in Matrixschreibweise:

a⃗t =

⎛⎜⎜⎜⎝
a0

...

aM−1

⎞⎟⎟⎟⎠ = B ⋅ x⃗t (3.32)

Die Matrix A aller Merkmalsvektoren a⃗t kann als Matrixprodukt geschrieben werden5:

A = (⃗a0, a⃗1, . . . , a⃗t, . . . , a⃗T−1) = B ⋅X (3.33)
5Anm.: Die Matrix A entspricht genau der Matrix Y aus Kap. 3.2.4, d.h. die korrespondierende Kovarianzmatrix CA ist

diagonal.
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3.2.7 Rekonstruktion

Die Extraktion der relevanten Merkmale eines Datensatzes stellt in vielen Anwendungsgebieten eine

Grundlage zur weiteren Verarbeitung dar. Durch die Dimensionsreduktion nach der Transformation der

Daten in den Merkmalsraum können erhebliche Rechenkosten eingespart werden (vgl. [TLP06]), da die

Länge der Merkmalsvektoren in der Praxis wesentlich kleiner ist als die der ursprünglichen Datenvek-

toren. Ein klassischer Anwendungsfall der Hauptkomponentenanalyse sind Klassifikationsverfahren wie

die Clusteranalyse. Hier genügen oft wenige Merkmalswerte aus, um eine eindeutige Gruppenzugehö-

rigkeit entscheiden zu können.

In dieser Arbeit wird die Hauptkomponentenanalyse hingegen zur Kompression von Daten-Zeitreihen

und nicht zur Klassifikation eingesetzt. Die Rekonstruktion aus dem reduzierten Raum der Merkma-

le in den Raum der Eingabedaten ist daher zur Beurteilung der visuellen Qualität unumgänglich. Sie

erfolgt durch die Rückprojektion der Merkmalsvektoren mithilfe der ersten M Hauptkomponenten b⃗i

(i = 0..M − 1). Ein rekonstruierter Datenvektor ˜⃗xt berechnet sich aus den Merkmalen ai wie folgt:

˜⃗xt =
M−1∑
i=0

ai ⋅ b⃗i (3.34)

Kompakter lässt sich die Rekonstruktion in Matrixschreibweise formulieren. Sei X̃ die Menge der re-

konstruierten Datenvektoren mit X̃ = (˜⃗x0 . . . ˜⃗xT−1) und A die Menge der Merkmalsvektoren mit

A = (⃗a0 . . . a⃗T−1) sowie die Basis B = (⃗b0 . . . b⃗M−1) gegeben, so gilt:

X̃ = BT ⋅A (3.35)

3.2.8 Datenkompression mithilfe der PCA

Das folgende Kapitel beschäftigt sich mit den Kompressionseigenschaften der Hauptkomponentenana-

lyse und gibt Aufschluss über den Grad der Kompression, welcher in der Praxis zu erwarten ist. Dieser

ist stark abhängig vom Inhalt der analysierten Zeitreihe; bei Datensätzen mit starkem linearem Zusam-

menhang zwischen den einzelnen Komponenten ist von einer hohen Kompression auszugehen, ist dieser

hingegen nicht gegeben, so kann nur von einer schwachen Kompression ausgegangen werden.

Die Speicherkosten Sx eines Datenvektors x⃗t sind proportional zu seiner Länge N :

Sx ∝ N (3.36)

Der Speicherverbrauch SX der gesamten unkomprimierten Zeitreihe X lässt sich demnach angeben als
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Produkt der Länge N des Datenvektors multipliziert mit der Anzahl der Zeitschritte T :

SX ∝ N ⋅ T (3.37)

Die Speicherkosten eines Merkmalsvektors a⃗t der Länge M ergeben sich analog Gleichung 3.36:

Sa ∝M (3.38)

Analog zu SX können die Speicherkosten SA der T Merkmalsvektoren der gesamten Zeitreihe bestimmt

werden:

SA ∝M ⋅ T (3.39)

Wird im entsprechenden Anwendungsfall allein die Matrix A aller Merkmalsvektoren für weitere Be-

rechnungen benötigt, so ergibt sich der KompressionsgradKA aus SX und SA mit den Proportionalitäts-

faktoren c1 und c2:

KA ≡
SX
SA

=
c1 ⋅N ⋅ T
c2 ⋅M ⋅ T

=
c1

c2
⋅ N
M

= c ⋅ N
M

(3.40)

Geht man davon aus, dass die N Komponenten eines Datenvektors im gleichen Format wie die M Kom-

ponenten eines Merkmalvektors gespeichert werden, so gilt c = 1 und 3.40 vereinfacht sich zu:

KA =
N

M
(3.41)

Der Kompressionsgrad ist demnach allein durch das Verhältnis der Längen von Daten- und Merkmals-

vektor beschrieben. Generell kann ein Speichervorteil nur dann erreicht werden, wenn die Länge der

Merkmalsvektoren kleiner als die der Datenvekoren ist.

Da in dieser Arbeit neben der Darstellung der Datenvektoren in Form ihrer Merkmalsvektoren auch

die Rekonstruktion ebenjener erforderlich ist, müssen neben den Merkmalsvektoren auch die Haupt-

komponenten gespeichert werden. Dies bedeutet einen zusätzlichen Speicheraufwand. Die Länge einer

Hauptkomponente b⃗i ist gleich der Länge eines Datenvektors und benötigt demzufolge den gleichen

Speicheraufwand: Sb = Sx. Die Speicherkosten SB aller M Basisvektoren sind unabhängig von der

Anzahl T der Zeitschritte:

SB ∝ N ⋅M (3.42)

Der kumulative Speicheraufwand SR der komprimierten Zeitreihe ergibt sich, unter der Annahme glei-

cher Speicherformate für die Einträge in den Vektoren b⃗i und a⃗t, d.h. gleicher Proportionalitätsfaktoren

für SB und SA, wie folgt:
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SR = SB + SA (3.43)

= c ⋅N ⋅M + c ⋅M ⋅ T (3.44)

= c ⋅M ⋅ (N + T ) (3.45)

SR ∝M ⋅ (N + T ) (3.46)

Die Anzahl M der verwendeten Hauptkomponenten legt zugleich die Länge der Merkmalsvektoren fest.

Gesucht ist nun die obere Schranke M∗, bei der S∗R = SX gilt. Es ergibt sich genau dann ein Speicher-

vorteil, d.h. SR < SX , wenn M kleiner M∗ gewählt wird. Dabei werden wiederum die Speicherformate

für die Einträge in den Vektoren als identisch angenommen. M∗ lässt sie wie folgt bestimmen:

S∗R = SX

M∗ ⋅ (N + T ) = N ⋅ T

M∗ =
N ⋅ T
N + T

(3.47)

Es wird eine Hilfsvariable ℎ eingeführt mit

ℎ ≡ N

T
≡ const. (3.48)

Sie beschreibt das Verhältnis von räumlicher zu zeitlicher Auflösung der Zeitreihe, mit N als Anzahl der

Gitterpunkte und T als Anzahl der Zeitschritte. Im Folgenden wird angenommen, dass N ≫ T . Setzt

man Gleichung 3.48 in 3.47 ein, so erhält man für M∗:

M∗ =
N ⋅ T
N + T

=
ℎ ⋅ T 2

ℎ ⋅ T + T

=
ℎ ⋅ T 2

(ℎ+ 1) ⋅ T

M∗ =
ℎ

ℎ+ 1
⋅ T

(3.49)

Unter der Bedingung N ≫ T gilt ℎ
ℎ+1 ≈ 1 und

M∗ ≈ T (3.50)

Die PCA kann also nur dann zur Speicherkompression eingesetzt werden, wenn die AnzahlM der Haupt-

komponenten kleiner ist als die Anzahl der Zeitschritte T . Der Kompressionsgrad KR lässt sich hierbei
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als Verhältnis von T und M darstellen:

KR =
N ⋅ T

(N + T ) ⋅M
(3.51)

=
ℎ

ℎ+ 1
⋅ T
M

(3.52)

KR ≈
T

M
(3.53)

3.2.9 Ein Beispiel

Den Abschluss über die Kapitel zur PCA soll eine Beispielrechnung bilden. Gegeben ist eine hypotheti-

sche Zeitreihe X = (x⃗t∣x⃗t ∈ R4, t = 0 . . . 5) mit x⃗t = (n0,t, n1,t, n2,t, n3,t)
T :

X = (x⃗0 . . . x⃗5) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 2 3 4 5 6

−6 −5 −4 −3 −2 −1

3/2 3 9/2 6 15/2 9

0 5 3 5 1 2

⎞⎟⎟⎟⎟⎟⎟⎠
Die linearen Zusammenhänge unter den ersten drei Komponenten sind leicht erkennbar, während bei

der letzten kein solcher offensichtlicher Zusammenhang mit einer jeweils anderen Komponente besteht.

Abbildung 3.4 illustriert die Abhängigkeiten, dargestellt sind die Werte der einzelnen Komponenten

über der Zeit. Man sieht deutlich den gleichsinnigen Zusammenhang zwischen der ersten und zweiten

Komponente (vgl. Kap. 3.2.3) sowie den proportionalen Zusammenhang zwischen der ersten und dritten.

Es ist zu erwarten, dass die Hauptkomponentenanalyse zwei starke Hauptkomponenten extrahiert.
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Abbildung 3.4: Plot der vier Komponenten n0 . . . n3 der Datenvektoren x⃗t der Beispiel-Zeitreihe X ent-

lang t.
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Die erste beschreibt die Information, welche sich aus den drei untereinander abhängigen Komponenten

n0, n1 und n2 ergibt und die zweite beschreibt die Information, welche sich in der letzten Komponente

n3 verbirgt.

Zunächst wird die Datenreihe mittelwertbereinigt, sodass sich die Berechnung der Kovarianzen auf die

Berechnung der Skalarprodukte reduziert:

X̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
−5/2 −3/2 −1/2 1/2 3/2 5/2

−5/2 −3/2 −1/2 1/2 3/2 5/2

−15/4 −9/4 −3/4 3/4 9/4 15/4

−8/3 7/3 1/3 7/3 −5/3 −2/3

⎞⎟⎟⎟⎟⎟⎟⎠
Die Kovarianzmatrix C errechnet sich wie folgt:

C =
1

5
⋅ X̃X̃T =

⎛⎜⎜⎜⎜⎜⎜⎝
7/2 7/2 21/4 0

7/2 7/2 21/4 0

21/4 21/4 63/8 0

0 0 0 64/15

⎞⎟⎟⎟⎟⎟⎟⎠
Nach der Eigenwertzerlegung ergeben sich folgende, bereits normierte, Eigenwerte �̃i:

�̃i = (0.777, 0.223, 0, 0)

Die Vermutung wird bestätigt: Ein kumulativer Varianzanteil von 100% wird durch die ersten zwei Ei-

genwerte abgedeckt, die gesamte Information eines Datenvektors lässt sich demnach durch zwei anstelle

von vier Variablen ausdrücken. Die den Eigenwerten zugehörigen Eigenvektoren e⃗i sind die Spaltenvek-

toren der Matrix E:

E = (e⃗0 . . . x⃗3) =

⎛⎜⎜⎜⎜⎜⎜⎝
2/3 0 −3/2 −1

2/3 0 0 1

1 0 1 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
Die beiden ersten – normierten – Spaltenvektoren ˜⃗e0 und ˜⃗e1 bilden die ersten beiden Hauptkomponenten

b⃗0 und b⃗1:

b⃗0 ≡ ˜⃗e0 =
e⃗0

∥e⃗0∥
=

1√
17
⋅ (2, 2, 3, 0)T

b⃗1 ≡ ˜⃗e1 =
e⃗1

∥e⃗1∥
= (0, 0, 0, 1)T

Die Basis B ergibt sich aus den Hauptkomponenten als Zeilenvektoren:

B ≡

⎛⎝ b⃗0

b⃗1

⎞⎠ =
1√
17
⋅

⎛⎝ 2 2 3 0

0 0 0
√

17

⎞⎠
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Die Merkmalsvektoren a⃗t werden durch die Projektion von X auf B gewonnen; dies entspricht ihrem

Matrixprodukt:

A ≡ (⃗a0 . . . a⃗5) = B ⋅X =

⎛⎝ −5
√

17/4 −3
√

17/4 −
√

17/4
√

17/4 3
√

17/4 5
√

17/4

−8/3 7/3 1/3 7/3 −5/3 −2/3

⎞⎠
Die Abbildung 3.5 veranschaulicht die Daten nach der Projektion in die Basis B. Die Datensätze x⃗t ∈ R4

sind durch die Merkmale a⃗t ∈ R2 vollständig beschrieben: Die Komponenten n0, n1 und n2 werden

gemeinsam durch das lineare Merkmal a0 beschrieben6, die Komponente n3 durch das Merkmal a1

(man vergleiche den Verlauf des Graphen für n3 in Abb. 3.4 mit dem für a1 in Abb. 3.5).
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Abbildung 3.5: Plot der berechneten Merkmale a0 und a1 der Datenreihe X entlang t.

Im Folgenden werden die Kompressionsgrade KA und KR berechnet (vgl. Kap. 3.2.8). Zunächst wird

von einer reinen Merkmalsextraktion ausgegangen, bei der sich der Kompressionsgrad KA aus dem

Verhältnis SX/SA ergibt:

KA =
SX
SA

=
N ⋅ T
M ⋅ T

=
4 ⋅ 6
2 ⋅ 6

=
2

1

Die Datensätze werden in diesem Fall um den Faktor 2 komprimiert. Soll später eine Rekonstruktion der

ursprünglichen Zeitreihe erfolgen, so müssen zusätzlich die Hauptkomponenten gespeichert werden. Es

ergibt sich folgender Kompressionsgrad KR:

KR =
SX
SR

=
N ⋅ T

M ⋅ (N + T )
=

4 ⋅ 6
2 ⋅ (4 + 6)

=
6

5

Die Zeitreihe kann um den Faktor 1,2 komprimiert werden. Ein höherer Wert würde sich im Falle der

Rekonstruktion dann ergeben, wenn, unter sonst gleichen Abhängigkeiten, entweder die Anzahl der Zeit-

schritte höher wäre oder das Verhältnis zwischen der Anzahl der Komponenten ni und der Anzahl der
6Anm.: Die Linearität, durch welche sich der Graph von a0 auszeichnet, ist jedoch allein der Wahl der Ursprungsdaten

geschuldet.
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Hauptkomponenten bi größer wäre. Eine weitere Option zur Erhöhung des Kompressionsgrades bestün-

de in der Vernachlässigung der zweiten Hauptkomponente. Dann wären immerhin noch ca. 77% der Ge-

samtvarianz durch die verbleibende erste Hauptkomponente erklärt, der Kompressionsfaktor KA würde

auf 4 und KR auf 2, 4 steigen, jedoch kann dann die vierte Komponente n3 der Beispiel-Datenvektoren

nicht wieder rekonstruiert werden.

3.2.10 Lineare Interpolation der Datenvektoren im Merkmalsraum

Ber der Hauptkomponentenanalyse wird ein Datenvektor durch einen Basiswechsel in einen Merkmals-

vektor überführt. Es handelt sich dabei um eine lineare Abbildung mit der Abbildungsmatrix B. Eine

Abbildung u : E → F, wobei E und F Vektorräume über einem Körper K sind, heißt linear, wenn sie

folgende Bedingungen erfüllt (vgl. [Ser02]):

u(x+ y) = u(x) + u(y)

u(tx) = tu(x)

mit x, y ∈ E und t ∈ K.

Die Linearität der PCA lässt sich daher nutzen, um zwei Datenvektoren im Merkmalsraum linear zu

interpolieren. Dazu seien x⃗1, x⃗2 ∈ RN mit ihren zugehörigen Merkmalen a⃗1, a⃗2 sowie der Basis BT

gegeben. Es gelte:

x⃗1 = BT ⋅ a⃗1

x⃗2 = BT ⋅ a⃗2

Sei x⃗int das Ergebnis der linearen Interpolation von x⃗1 und x⃗2 mithilfe des Parameters t, so gilt:

x⃗int = (1− t) ⋅ x⃗1 + t ⋅ x⃗2

= (1− t) ⋅BT ⋅ a⃗1 + t ⋅BT ⋅ a⃗2

= BT ⋅ (1− t) ⋅ a⃗1 + BT ⋅ t ⋅ a⃗2

= BT ⋅ [(1− t) ⋅ a⃗1 + t ⋅ a⃗2]

= BT ⋅ a⃗int

Man sieht, dass x⃗int durch die lineare Interpolation von a⃗1 und a⃗2 im Merkmalsraum mit anschließender

Rückabbildung ausgedrückt werden kann.
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3.3 Die nichtlineare Kern-PCA

Die Kern-PCA ist eine Verallgemeinerung der PCA und stellt die Verknüpfung von Kernmethoden mit

den Werkzeugen der Hauptkomponentenanalyse dar. Grundlage dafür sind sogenannte Kernfunktionen,

kurz Kerne, welche an späterer Stelle noch detaillierter beschrieben werden. Sie ermöglichen die Extrak-

tion von Merkmalsvektoren, welche mit der klassischen PCA nicht gefunden werden können. Durch ihre

Effizienz, die leichte Anwendbarkeit sowie der Kombinierbarkeit auf vielen Anwendungsgebieten, wie

z.B. der Muster-Erkennung, Cluster-Analyse oder der Support Vektor Maschinen (vgl. [SS01], [KPK01],

[YZZL08]), sind die Kernmethoden in den letzten Jahren zu einem Standardwerkzeug geworden. Dabei

wird die rechentechnische Effizienz eines linearen Verfahrens, in der vorliegenden Arbeit ist dies die

PCA, mit der Flexibilität eines nichtlinearen Systems kombiniert (vgl. [CST03]).

Während bei der Hauptkomponentenanalyse lineare Zusammenhänge aufgezeigt werden, können bei der

Anwendung der Kern-PCA auch relevante nichtlineare Abhängigkeiten aus den Daten extrahiert werden.

Im Folgenden wird die Idee hinter den Kernmethoden erläutert.

3.3.1 Die Idee der Kerne

Die Grundlage der Kernmethoden bildet die nichtlineare Abbildung Φ(x⃗), welche einen Datenvektor x⃗

in einen hochdimensionalen Merkmalsraumℋ abbildet:

Φ : RN → ℋ

x⃗ 7→ Φ(x⃗)

Abbildung 3.6 zeigt die Transformation der Daten aus dem ursprünglichen Raum in den hochdimensio-

nalen Raum ℋ mithilfe von Φ. Durch die nichtlineare „Entzerrung“ werden die Richtungen der größten

Varianzen inℋ linear, sodass eine Hauptkomponentenanalyse hier optimal, d.h. im Sinne des Auffindens

hoher Varianzanteile in den ersten Hauptkomponenten, ansetzen kann.

Die Dimension vonℋ ist dabei nicht beschränkt, was zunächst vermuten lässt, dass das Problem, welches

es zu lösen gilt, rechentechnisch schwieriger wird, da durch die, gegenüber dem ursprünglichen Raum,

höhere Dimension des Merkmalsraumes ℋ wesentlich mehr Datensätze benötigt würden, um selbigen

abzudecken. Dieses Problem ist auch bekannt unter dem Schlagwort „curse of dimensionality“, geprägt

durch Richard Bellman. Es lässt sich jedoch zeigen, dass ebendies bei der Verwendung von Kernalgorith-

men nicht zutreffend ist (vgl. [SS01]). So können im Merkmalsraum ℋ meist einfache Klassen linearer

Algorithmen verwendet werden, da die Reichhaltigkeit der Transformation allein in der Abbildung Φ

steckt.



3. METHODIK 25

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

RN

Φ:⇒

X

X

X

X

X

X

X

X

X

X

X

X

X

X

H

Abbildung 3.6: Die nichtlineare Transformation Φ : RN → ℋ (vgl. [SS01] S.432).

Hier setzen die Kernfunktionen an: Mit ihrer Hilfe kann das Ergebnis des Skalarproduktes zweier Vek-

toren Φ⃗(x⃗) und Φ⃗(y⃗) im Merkmalsraumℋ effektiv berechnet werden, jedoch ohne die komplexe Abbil-

dung von RN auf ℋ explizit ausführen zu müssen. Durch die geschickte Definition von Φ können die

Skalarprodukte im ursprünglichen niederdimensionalen Raum berechnet werden.

Die Kernfunktion k wird wie folgt definiert:

k(x⃗, y⃗) ≡
〈

Φ⃗(x⃗), Φ⃗(y⃗)
〉

(3.54)

Dazu ein kleines Beispiel (vgl. [SS01]):

Φ : R2 → ℋ

(x0, x1) 7→ (x2
0, x

2
1,
√

2x0x1)

Für dieses Beispiel kann nun ein „passender“ Kern k(x⃗, y⃗) gefunden werden:

k(x⃗, y⃗) =
〈

Φ⃗(x⃗), Φ⃗(y⃗)
〉

= (x2
0, x

2
1,
√

2x0x1) ⋅ (y2
0, y

2
1,
√

2y0y1)T

= ((x0, x1) ⋅ (y0, y1)T )2

= ⟨x⃗, y⃗⟩2

Der Kern berechnet im Eingaberaum das Skalarprodukt zweier Vektoren des „hochdimensionalen“ Merk-

malsraumes rechen-extensiv, indem das euklidische Skalarprodukt gebildet und dessen Ergebnis an-

schließend quadriert wird. Der Beispiel-Kern k = ⟨⋅, ⋅⟩2 gehört zur Klasse der polynomiellen Kerne.

Er kann verallgemeinert werden zu:

k(x⃗, y⃗) = ⟨x⃗, y⃗⟩d (x⃗, y⃗ ∈ RN und N, d ∈ N)
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Die Klasse der polynomiellen Kerne berechnen die Skalarprodukte im Raum aller Produkte von d Ein-

trägen der Vektoren x⃗ bzw. y⃗ ([SS01]).

Neben den polynomiellen Kernen gibt es zahlreiche weitere Kernfunktionen (vgl. [SMS99], [YZZL08])

wie z.B.:

∙ Sigmoid-Kerne: k(x⃗, y⃗) = tanh(� ⟨x⃗, y⃗⟩+ �)

∙ Kerne für Gauß’sche Radiale-Basis-Funktionen: k(x⃗, y⃗) = exp(−∥x⃗− y⃗∥2 /(2�2))

∙ Inverse Multiquadratische Kerne: k(x⃗, y⃗) = 1√
∥x−y∥2+c2

Es lässt sich zeigen, dass jeder Algorithmus, welcher sich allein auf Basis von Skalarprodukten formu-

lieren lässt, durch die Anwendung der Kernmethoden implizit in ℋ ausgeführt und somit nichtlinear

verallgemeinert werden kann (vgl. [SMS99]). Die vorliegende Arbeit zeigt dies im Folgenden für die

Verknüpfung von Kernmethoden mit der Hauptkomponentenanalyse zur sog. Kern-PCA.

3.3.2 Die Kernmatrix

Mithilfe der Kernfunktion k(x⃗i, x⃗j) kann für eine Zeitreihe eine spezielle Form einer Gram’schen Matrix

(vgl. [SA94]) aufgestellt werden, die sogenannte Kernmatrix (vgl. [SS01]). Eine Gram’sche Matrix M

ist die Matrix aller paarweisen Skalarprodukte der T Datenvektoren x⃗t :

M ≡

⎛⎜⎜⎜⎝
< x⃗0, x⃗0 > ⋅ ⋅ ⋅ < x⃗0, x⃗T−1 >

...
. . .

...

< x⃗T−1, x⃗T−1 > ⋅ ⋅ ⋅ < x⃗T−1, x⃗T−1 >

⎞⎟⎟⎟⎠
Die Kernfunktionen k(x⃗i, x⃗j) = ⟨Φ(x⃗i),Φ(x⃗j)⟩ substituieren die Skalarprodukte in M und die Kernma-

trix K wird wie folgt definiert:

K ≡

⎛⎜⎜⎜⎝
⟨Φ(x⃗0),Φ(x⃗0)⟩ ⋅ ⋅ ⋅ ⟨Φ(x⃗0),Φ(x⃗T−1)⟩

...
. . .

...

⟨Φ(x⃗T−1),Φ(x⃗0)⟩ ⋅ ⋅ ⋅ ⟨Φ(x⃗T−1),Φ(x⃗T−1)⟩

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
k(x⃗0, x⃗0) ⋅ ⋅ ⋅ k(x⃗0, x⃗T−1)

...
. . .

...

k(x⃗T−1, x⃗0) ⋅ ⋅ ⋅ k(x⃗T−1, x⃗T−1)

⎞⎟⎟⎟⎠
(3.55)

Die Kernmatrix ist demzufolge die Gram’sche Matrix der Zeitreihe im Merkmalsraumℋ, deren Einträge

im Ursprungsraum berechnet werden können.
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3.3.3 Die Anwendung der Kernfunktionen auf die PCA

Gegeben sei die nichtlineare Abbildung Φ, welche die Zeitreihe X = (x⃗0 . . . x⃗T−1) in den Merkmals-

raumℋ transformiert:

Φ : RN → ℋ

X 7→ X̂ = (Φ(x⃗0) . . .Φ(x⃗T−1))

Im Folgenden wird davon ausgegangen, dass die transformierte Zeitreihe X̂ bereits zentriert, d.h. mit-

telwertbereinigt, wurde. Wie dies effizient ohne die explizite Berechnung von Φ bewerkstelligt werden

kann, wird an späterer Stelle im Detail erläutert.

Zunächst wird die Kovarianzmatrix Ĉ analog Gleichung 3.13 aus Kapitel 3.2.3 definiert (vgl. [SS01]):

Ĉ ≡ 1

T

T−1∑
t=0

Φ(x⃗t) ⋅ Φ(x⃗t)
T (3.56)

Wie in der klassischen PCA gilt es nun, die Paare von Eigenwerten � und Eigenvektoren b⃗ der Kovari-

anzmatrix zu finden mit � > 0 und b⃗ ∈ ℋ ∕= 0⃗. Dazu muss folgendes Eigenwertproblem gelöst:

�⃗b = Ĉb⃗ (3.57)

Alle Lösungen b⃗ mit � > 0 liegen in der linearen Hülle von (Φ(x⃗0) . . .Φ(x⃗T−1)). Gleichung 3.57 kann

somit umformuliert werden zu:

∀t = 0 . . . T − 1 : �
〈

Φ(x⃗t), b⃗
〉

=
〈

Φ(x⃗t), Ĉb⃗
〉

(3.58)

Zudem existieren die Koeffizienten �i (i = 0 . . . T − 1), mit denen sich die Eigenvektoren b⃗ als Linear-

kombinationen der Φ(x⃗i) darstellen lassen:

b⃗ =

T−1∑
i=0

�iΦ(x⃗i) (3.59)

Kombiniert man 3.58 und 3.59, so erhält man (vgl. [SS01]):

∀t = 0 . . . T − 1 : �

T−1∑
i=0

�i ⟨Φ(x⃗t),Φ(x⃗i)⟩ =
1

T

T−1∑
i=0

�i

〈
Φ(x⃗t),

T−1∑
j=0

Φ(x⃗j) ⟨Φ(x⃗j),Φ(x⃗i)⟩

〉
(3.60)

Unter Zuhilfenahme der Definition der Kernmatrix K aus Gleichung 3.55 und der dyadischen Schreib-

weise nach Gleichung 3.13 lässt sich 3.60 formulieren als:

T�K�⃗ = K2�⃗ (�⃗ = (�0 . . . �T−1)T ) (3.61)
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Es kann gezeigt werden, dass genau die Lösungen des Eigenwertproblems T��⃗ = K�⃗ zu den Lösungen

für � �⃗ aus 3.61 führen (vgl. [SS01]). Dazu seien die ersten M Eigenwerte von K, die größer Null sind,

mit �̃m bezeichnet und es gilt:

�̃m = T�m (3.62)

Anschließend müssen die Eigenvektoren �⃗i normalisiert werden, und zwar dergestalt, dass die korre-

spondierenden Hauptkomponenten b⃗i wie in der Standard-PCA die Länge Eins haben, d.h. insbesondere

< b⃗i, b⃗i >= 1. Es ergibt sich eine Normalisierungsvorschrift für die ersten M Eigenvektoren �⃗m:

1 ≡< �⃗m,K�⃗m >= �̃m < �⃗m, �⃗m > (3.63)

Die Lösungen obiger Gleichung sind die normalisierten Eigenvektoren ˜⃗�m mit:

˜⃗�m =
�⃗m√
�̃m

(mit �̃m > 0) (3.64)

Die Extraktion der Merkmalsvektoren, im Folgenden mit a⃗t bezeichnet, gestaltet sich in der Kern-PCA

analog zur klassischen Hauptkomponentenanalyse (vgl. Kap. 3.2.6), d.h. es erfolgt eine Projektion der

Datenvektoren auf die Hauptkomponenten b⃗i. Im Gegensatz zur PCA entsprechen die Datenvektoren

dabei den bereits transformierten Ursprungsdaten, d.h. den Φ(x⃗t).

Die i-te Komponente des Merkmalsvektors a⃗t, welcher mit dem t-ten Datenvektor verknüpft ist, sei mit

a⃗t,i bezeichnet und berechnet sich wie folgt:

a⃗t,i ≡< Φ(x⃗t), b⃗i >=
M−1∑
m=0

�̃i,m < Φ(x⃗m),Φ(x⃗t) > (3.65)

Das Skalarprodukt < Φ(x⃗m),Φ(x⃗t) > wird unter Zuhilfenahme der Kernfunktion k(x⃗i, x⃗j) berechnet

und es ergibt sich:

a⃗t,i =
M−1∑
m=0

�̃i,mk(x⃗m, x⃗t) =
M−1∑
m=0

�̃i,mKmt =< ˜⃗�i, k⃗t > (3.66)

Hierbei ist k⃗t der t-te Spaltenvektor der Kernmatrix K.

Die Menge aller Merkmalsvektoren lässt sich in einer kompakten Form als Matrix A darstellen:

A = (⃗a0 . . . a⃗T−1) =

⎛⎜⎜⎜⎝
˜⃗�0

...

˜⃗�M−1

⎞⎟⎟⎟⎠ ⋅K (3.67)

Eine Dimensionsreduktion erfolgt bei der Kern-PCA analog zur herkömmlichen PCA durch das Vernach-

lässigen von Hauptkomponenten sowie den zugehörigen Einträgen in den Merkmalsvektoren. Dabei gibt
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der i-te Eigenwert wiederum den durch die zugehörige i-te Hauptkomponente erklärten Varianzanteil an

der Gesamtvarianz an (vgl. Kap. 3.2.5).

Durch die Mächtigkeit der gewählten nichtlinearen Abbildung Φ, respektive der Kernfunktion k(x⃗, y⃗),

können die Datensätze jedoch, bei gleicher ursprünglicher Varianzverteilung, mit weniger Hauptkom-

ponenten bzw. Merkmalen beschrieben werden als in der Standard-PCA, d.h. im Allgemeinen gilt:

∣⃗at,KPCA∣ < ∣⃗at,PCA∣. Die Wahl der verwendeten Kernfunktion hängt dabei vom konkreten Anwen-

dungsfall ab (vgl. [SMS99] und [SS01]).

3.3.4 Ein Beispiel

Gegeben seien die Daten X = (x⃗t∣x⃗t ∈ R2) als Punktwolke einer gleichverteilt abgestasteten Kreis-

scheibe mit dem Radius Eins um den Mittelpunkt c = (1, 1)T (vgl. Abb 3.7). Es ist leicht zu erkennen,

dass keine signifikante Richtung der größten Varianz existiert. Eine herkömmliche Hauptkomponenten-

analyse liefert für die normalisierten Eigenwerte folgende Ergebnisse:

�̃0 = 0.53

�̃1 = 0.47

Nach der Interpretation des prozentualen Anteils an der Gesamtinformation eines Datensatzes (vgl. Kap.

3.2.5), sieht man, dass die beiden den Eigenwerten �̃0 und �̃1 zugehörigen Hauptkomponenten annä-

hernd den gleichen Informationsgehalt aufweisen und somit eine Dimensionsreduktion im Sinne des

Vernachlässigens einer dieser beiden Vektoren nicht zielführend ist.

Im Folgenden wird geprüft, ob die Kern-PCA ebendieses leisten kann. Die Wahl des Kerns fällt auf den

weiter oben bereits erwähnten polynomiellen:

k(x, y) =< x, y >2

Die dazugehörige Abbildung ist Φ : (x0, x1) 7→ (x2
0, x

2
1,
√

2x0x1). Sie bildet den zweidimensionalen

Datenvektor x⃗t auf den dreidimensionalen Bildvektor ˆ⃗xt ab. Abbildung 3.8 zeigt die Daten nach ihrer

Transformation.

Die Kern-PCA liefert folgende (bereits normalisierten) Eigenwerte:

˜̂
�0 = 0.67

˜̂
�1 = 0.31

˜̂
�2 = 0.02
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Abbildung 3.7: Die Punktwolke einer gleichverteilt abgetasteten Kreisscheibe.7

Hier werden aufgrund der höheren Dimensionalität des Bildraumes drei Eigenwerte ermittelt. Deren

Werte weisen jedoch eine andere Verteilung als jene der klassischen PCA auf: Augenscheinlich ist der

Betrag des ersten Eigenwertes bei der Kern-PCA höher als der bei der PCA, d.h. es wird ein größerer

Anteil an der Gesamtinformationen durch die erste Hauptkomponente beschrieben. Dies bezieht sich

jedoch auf den Informationsgehalt im Bildraum: Die Bilder der Daten können bei der Kern-PCA besser

approximiert werden, als es die PCA im Raum der ursprünglichen Daten vermag.

Zur Vergleichbarkeit der Approximationsfehler e beider Verfahren wird die relative mittlere quadratische

Abweichung als Fehlermaß verwendet8:

e ≡

∑
t

∥∥∥x⃗t − ˜⃗xt

∥∥∥2

∑
t

∥x⃗t∥2

Es ergibt sich für die PCA ein Fehler ePCA = 0.471 und für die Kern-PCA ein Fehler eKPCA = 0.328.

Zu beachten ist, dass der Fehler im Falle der Kern-PCA für die Rekonstruktion im Bildraum berechnet

wurde. Die Approximation nach der Rücktransformation in den ursprünglichen Raum muss deswegen

nicht zwangsläufig besser sein als die der PCA.

7Anm.: Der eingezeichnete Umkreis der Punktwolke dient lediglich der Illustration und ist nicht Teil der Daten.
8Anm.: Die hier verwendete Definition der relativen mittleren quadratischen Abweichung setzt die Mittelwertfreiheit der

Daten voraus, welche im Falle der PCA resp. Kern-PCA durch den Zentrierungsschritt zunächst gegeben ist. Ergo sollte die

Fehlerrechnung während des Rekonstruktionsschrittes vor der Rückrechnung der Mittelwerte erfolgen.
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Abbildung 3.8: Die Daten aus Abb. 3.7 nach der nichtlinearen Transformation Φ in der xy-Ebene (links)

und der yz-Ebene (rechts).

3.3.5 Herausforderungen im Hochdimensionalen

3.3.5.1 Indirekte Mittelwertbereinigung

Bisher erfolgte die Anwendung der Kern-PCA stets unter der Annahme, dass die Vektoren Φ(x⃗t) bereits

in einer mittelwertbereinigten Form vorliegen. In der Praxis kann hiervon allerdings nicht ausgegangen

werden – es stellt sich demnach die Frage, wie eine solche Zentrierung erreicht werden soll.

Eine Mittelwertbereinigung der Datenreihe im Ursprungsraum, d.h. vor der Transformation in den hoch-

dimensionalen Raumℋ, ließe sich effizient bewerkstelligen, jedoch kann sie die Zentriertheit der Daten

inℋ nicht erzielen, da diese im Allgemeinen durch die Abbildung Φ verloren geht. Die explizite Mittel-

wertbereinigung im Merkmalsraumℋ ist unter Umständen zu rechenintensiv, da die Komplexität von Φ

nicht beschränkt ist (vgl. Kap. 3.3.1).9

Eine Mittelwertbereinigung kann jedoch indirekt über eine Modifikation der Kernmatrix K erfolgen. Es

wird eine Matrix K̃ wie folgt gebildet (vgl. [SS01]):

K̃ij = (K− 1TK−K1T + 1TK1T )ij (3.68)

Hierbei steht die Kurzschreibweise 1T für die komponentenweise durch T geteilte Einheitsmatrix, d.h.

(1T )ij = 1
T ⋅ 1ij .

Wird anstelle von K die modifizierte Kernmatrix K̃ verwendet und die Eigenvektoren ˜⃗�m von K̃ be-

rechnet, so entspricht dies einer Kern-PCA mit K unter Verwendung bereits zentrierter Φ(x⃗t).

9Anm.: Genau diesem Umstand ist schließlich die Anwendung des sog. Kerntricks geschuldet: Der KPCA-Algorithmus um-

geht die explizite Berechnung der Φ(x⃗t) durch die Ausnutzung der Kernfunktionen.
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3.3.5.2 Das Urbild-Problem

Der Merkmalsraumℋ ist die lineare Hülle aller Bilder der Transformation Φ(x⃗t):

ℋ ≡ span(Φ(x⃗t)) (3.69)

Die Menge aller Abbildungen Φ ist dabei eine Untermenge von ℋ (vgl. Abb. 3.9), was bedeutet, dass

nicht für alle Linearkombinationen von Φ(x⃗t) ein Urbild existieren kann.

Sei Ψ ein Vektor inℋ, welcher aus der Linearkombination von Φ(x⃗t) entsteht:

Ψ =
T−1∑
i=0

�̃iΦ(x⃗i) (3.70)

Man sieht, dass Ψ nicht notwendigerweise das Bild Φ(x⃗i) eines zugehörigen Datenvektors x⃗i des Ein-

gaberaums sein muss. Dies trifft insbesondere auf die Hauptkomponenten zu (vgl. Gl. 3.59), d.h. es gibt

im Allgemeinen im Eingaberaum keine entsprechende Darstellung der korrespondierenden Hauptkom-

ponente aus dem Bildraum.10

H = span Φ(RN)RN Φ

Φ(RN)
Ψ

Abbildung 3.9: Das Urbildproblem: Ein Vektor Ψ ∈ ℋ, welcher aus Linearkombinationen von Φ(x⃗i)

gebildet wird, muss keine Entsprechung z⃗ = Φ−1(Ψ) im Urbildraum RN haben (vgl.

[SS01] S.545).

10Anm.: Außer für den trivialen Fall, bei dem für alle Hauptkomponenten gilt, dass der Merkmalswert zur zugehörigen Haupt-

komponente gleich Eins und alle restlichen Merkmalswerte gleich Null sind. Dann allerdings wäre Ψt = Φ(x⃗t).
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3.3.6 Rekonstruktion

Viele Disziplinen, in denen die Kern-PCA Anwendung findet – wie z.B. die Mustererkennung – bedienen

sich ihrer allein zur Berechnung der Merkmalsvektoren im Bildraum. Dass dies effizient über die Kern-

funktionen erfolgen kann, wurde in Kap. 3.3.3 beschrieben. Sollen die Daten jedoch zu einem späteren

Zeitpunkt rekonstruiert werden, so benötigt man neben den Merkmalen zusätzlich die Hauptkomponen-

ten, welche jedoch aufgrund der unbeschränkten Komplexität von ℋ nicht explizit berechnet werden

können und für die es unter Umständen keine Entsprechung im Urbildraum gibt (vgl. Kap. 3.3.5.2). Das

folgende Kapitel zeigt, wie es für ausgewählte Kernfunktionen dennoch möglich ist, eine Rekonstruktion

durchzuführen.

Die Rekonstruktion der Daten im Bildraum erfolgt analog zur Standard-PCA: Die Merkmalsvektoren

werden auf die Hauptkomponenten projiziert und man erhält das Bild Φ(x⃗t) des rekonstruierten Daten-

vektors:

Φ(x⃗t) =

M−1∑
i=0

at,i ⋅ b⃗i (3.71)

Den rekonstruierten Datenvektor im Eingaberaum erhält man schließlich durch die Anwendung der Um-

kehrabbildung Φ−1. Durch die unbeschränkte Komplexität von Φ ist dies nicht in jedem Fall direkt

möglich, durchaus jedoch für bestimmte Gruppen von Kernfunktionen.

Im Folgenden wird davon ausgegangen, dass die Rekonstruktionen der durch die Kern-PCA kompri-

mierten Daten im Eingaberaum dargestellt werden können und es wird ein Verfahren zur exakten Rekon-

struktion der Urbilder vorgestellt. Im anderen Falle können darüber hinaus approximierende Techniken

angewendet werden.

3.3.6.1 Exakte Rekonstruktion

Sei Ψ eine Linearkombination von Bildern Φ(x⃗i) inℋ:

Ψ =

T−1∑
j=0

�̂jΦ(x⃗j) (3.72)

Existert zudem ein Vektor z⃗ (z⃗ ∈ RN ), so dass Φ(z⃗) = Ψ gilt, und eine invertierbare Funktion fk mit
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fk(< x⃗, x⃗′ >) = k(x⃗, x⃗′), dann gibt es eine Zerlegung von z⃗ wie folgt (vgl. [SS01]):

z⃗ =
N−1∑
i=0

< z⃗, e⃗i > e⃗i

=

N−1∑
i=0

f−1
k (k(z⃗, e⃗i))e⃗i

=

N−1∑
i=0

f−1
k

⎛⎝T−1∑
j=0

�̂jk(x⃗j , e⃗i)

⎞⎠ e⃗i

(3.73)

Die e⃗i (mit e⃗i ∈ RN und i = 0 . . . N − 1) werden hierbei so gewählt, dass sie im Eingaberaum eine

orthonormale Basis der Dimension N bilden.

Die Wahl von fk ist entscheidend für das Gelingen des Verfahrens, da die Invertierbarkeit sichergestellt

sein muss.

Kerne, welche eine solche Umkehrabbildung f−1
k besitzen, sind unter anderem:

∙ Polynomielle Kerne: k(x⃗, x⃗′) = (< x⃗, x⃗′ > +c)d mit c ≥ 0 und d ungerade

∙ Sigmoid-Kerne: k(x⃗, x⃗′) = tanh(� < x⃗, x⃗′ > +�) mit �, � ∈ R

Nun müssen noch die �̂i gefunden, so dass Φ(z⃗) = Ψ =
∑T−1

j=0 �̂iΦ(x⃗i) und die Zerlegung nach

Gleichung 3.73 erfolgen kann. Dazu sei zunächst noch einmal die Definition eines Datenvektors im

Bildraum mithilfe der Hauptkomponenten betrachtet. Dieser ist laut Gleichung 3.71:

Φ(x⃗t) =
M−1∑
i=0

at,i ⋅ b⃗i (3.74)

Weiterhin kann die Hauptkomponente b⃗i selbst wiederum als Linearkombination der (normalisierten)

Eigenvektoren der Kernmatrix dargestellt werden (vgl. Gl. 3.59):

b⃗i =

T−1∑
j=0

�̃i,j ⋅ Φ(x⃗j) (3.75)

Setzt man nun Gl. 3.75 in Gl. 3.74 ein, so erhält man eine neue Formulierung für die Φ(x⃗t):

Φ(x⃗t) =
M−1∑
i=0

at,i

T−1∑
j=0

�̃i,jΦ(x⃗j)

=

T−1∑
j=0

(
M−1∑
i=0

at,i�̃i,j

)
︸ ︷︷ ︸

�̂j

Φ(x⃗j)
(3.76)
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Setzt man �̂j =
∑M−1

i=0 at,i�̃i,j und Ψ = Φ(z⃗) = Φ(x⃗t), so erhält man für Ψ die Form aus Gleichung

3.72 und es kann nun eine Rekonstruktion nach Gl. 3.73 erfolgen:

z⃗ =
N−1∑
i=0

f−1
k

⎛⎝T−1∑
j=0

�̂jk(x⃗j , e⃗i)

⎞⎠ e⃗i

=
N−1∑
i=0

f−1
k

⎛⎝T−1∑
j=0

M−1∑
l=0

at,l�̃l,jk(x⃗j , e⃗i)

⎞⎠ e⃗i

(3.77)

Die Methode der exakten Rekonstruktion hat jedoch einen entscheidenden praktischen Nachteil. Es muss

davon ausgegangen werden, dass die Daten im Bildraum schon mittelwertbereinigt wurden. Dieses Pro-

blem wurde bereits in Kap. 3.3.5.1 thematisiert. Die Zentrierung kann indirekt ausgeführt werden, jedoch

liegen die Mittelwerte dann nicht in einer nutzbaren expliziten Form vor, um vor der Anwendung der

Umkehrfunktion f−1
k die Bilder Φ(x⃗t) wieder in ihre ursprüngliche Lage im Raumℋ zu bringen.

3.3.6.2 Urbild-Approximation

Da im Allgemeinen nicht davon ausgegangen werden kann, dass die Linearkombination Ψ von Datenvek-

toren im Bildraum auf einen Datenvektor z⃗ im Urraum zurückgeführt kann, ist die exakte Rekonstruktion

hinsichtlich der praktischen Anwendbarkeit ein eher unbefriedigender Ansatz.

Eine Antwort hierauf liegt im Auffinden eines Vektors z⃗ im Eingaberaum, dessen Bild Φ(z⃗) die Line-

arkombination Ψ im Sinne der kleinsten Fehlerquadrate approximiert, ergo die Minimierung des Terms

∥Ψ− Φ(z⃗)∥2. Allgemeiner kann man formulieren, dass nicht der quadratische Abstand zwischen Ψ und

Φ(z⃗), sondern ∥Ψ− �Φ(z⃗)∥2 minimiert werde, d.h. dass eine zusätzliche lineare Skalierung von Φ(z⃗)

zulässig ist (vgl. [SS01]). Die Lösung letzteren Minimierungszieles ist die orthogonale Projektion von Ψ

auf die lineare Hülle von Φ(z⃗) (vgl. Abb. 3.10). Der Abstand sei dabei mit � bezeichnet und es gilt:

� ≡
∥∥∥∥ < Ψ,Φ(z⃗) >

< Φ(z⃗),Φ(z⃗) >
⋅ Φ(z⃗)−Ψ

∥∥∥∥2

= ∥Ψ∣2 − < Ψ,Φ(z⃗) >2

< Φ(z⃗),Φ(z⃗) >

(3.78)

Die Minimierung von � geht mit der Maximierung des Terms <Ψ,Φ(z⃗)>2

<Φ(z⃗),Φ(z⃗)> einher, welcher jedoch mittels

Kernfunktionen dargestellt werden kann, da er ausschließlich Skalarprodukte enthält.

Schölkopf [SS01] stellt iterative Algorithmen vor, welche approximierende Urbilder in diesem Sinne

finden, z.B. einen Fixpunktiterationsansatz für Kerne radialer Basisfunktionen. Ein weiterer Ansatz wird

durch Shawn Martin [Mar06] beschrieben. Er entwickelt eine approximierende Variante der Kern-PCA,

bei welcher der Basiswechsel durch eine Umformulierung des Gram-Schmidt-Orthonormalisierungs-

verfahrens gewonnen wird. Eine weitere Transformation ermöglicht, dass die Vektoren des Bildraumes
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durch Linearkombinationen von Ortsvektoren des Eingaberaumes ausgedrückt werden können. Durch

diese Verfahrensweise kann eine Darstellung der Hauptkomponenten in ℋ sowie die Rekonstruktion

erreicht werden.

H

Φ(RN)

Ψ

Φ(z)

Abbildung 3.10: Auffinden von approximierenden Urbildern durch das Minimieren der Distanz zwischen

Ψ und der Projektion von Ψ auf span(Φ(z⃗)) (vgl. [SS01] S.547).

3.4 Interaktive Simulation

Im folgenden Kapitel wird ein einfaches Modell zur parametrisierten Manipulation von level set-Ani-

mationen entwickelt. Als Zielstellung soll hierbei, anstelle der physikalisch korrekten Simulation, die

überzeugende visuelle Anmutung der Fluidoberflächenbewegung in den Vordergrund treten; die An-

forderungen des Anwendungsgebietes sind Interaktion und Echtzeitfähigkeit. Die ursprüngliche Aufga-

benstellung dieser Arbeit war, die Ansätze und Methoden A. Treuilles [TLP06] auf Fluidoberflächen

anzuwenden, insbesondere alle notwendigen Simulationsberechnungen im reduzierten Raum effizient

mit wenigen Unbekannten durchzuführen. In solchen reduzierten Fluidmodellen (vgl. Kap. 2) wird dazu

häufig die sogenannte Galerkin-Projektion angewendet:

Die Galerkin-Projektion

Neben der Dimensionsreduktion der Datenvektoren einer Zeitreihe ermöglicht die Methode der Galerkin-

Projektion eine Modell-Reduktion, sodass die Zeitentwicklungsfunktion der Simulation im reduzierten

Merkmalsraum berechnet werden kann. Es sei durch ein Dimensionsreduktionsverfahren eine Projektion

B : x⃗ → ˜⃗x in den reduzierten Raum gegeben sowie die Rückprojektion B−1 : ˜⃗x → x⃗ des reduzierten
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Vektors in den Raum der Datenvektoren11. Die Zeitentwicklung der Simulation lässt sich als gewöhnli-

ches Differentialgleichungssystem beschreiben:

ẋ = F(x⃗) (3.79)

Es soll nun ein Analogon im reduzierten Raum gefunden werden:

˙̃x = F̃(˜⃗x) (3.80)

F̃ entsteht durch die Anwendung der Galerkin-Projektion von F in den reduzierten Raum mithilfe von

B (vgl. [TLP06]):

F̃ = B ∘ F ∘B−1 (3.81)

Somit kann die Zeitentwicklung der Simulation effizient im reduzierten Raum berechnet werden.

3.4.1 Finden eines Modells

Osher und Fedkiw [OF02] stellen Methoden vor, wie die Evolution einer Oberfläche berechnet werden

kann, solange die Geschwindigkeitsvektoren des Fluidvektorfeldes in der unmittelbaren lokalen Um-

gebung, wenigsten jedoch die Geschwindigkeitsvektoren an der Oberfläche selbst, gegeben sind. Im

Rahmen dieser Arbeit liegen die Simulationszeitreihen nur in Form von level sets vor; das die Fluid-

Bewegung beschreibende Vektorfeld ist nicht gegeben. Die Frage ist nun, ob sich dennoch eine Zeit-

entwicklung mithilfe von Differentialgleichungen formulieren lässt. Bislang konnte diese jedoch nicht

gefunden werden.

Ein einfaches heuristisches Modell

Zur Gewinnung eines einfachen parametrisierbaren Modells soll die Interpretation der Hauptkompo-

nenten und Merkmalsvektoren herangezogen werden. Durch die Anwendung der Hauptkomponenten-

analyse wird die Zeitreihe in ein Koordinatensystem transformiert, in welchem die Basisvektoren – die

Hauptkomponenten – entlang der größten Varianzen liegen. Eine plausible visuelle Interpretation dieser

Hauptkomponenten: Sie repräsentieren die Schwingungsmoden des Fluids (vgl. Abb. 3.11). Diese Inter-

pretation wird zusätzlich durch die korrespondierenden Merkmale gestützt, deren zeitliche Verläufe als

Schwingungen aufgefasst werden können (vgl. Abb. 3.13). Dabei weisen die den ersten Hauptkompo-

nenten zugeordneten Merkmale Schwingungen mit niedriger Frequenz und hoher Amplitude auf, was

11Anm.: Im Falle der PCA ist B die Matrix, deren Spalten die Hauptkomponenten und es gilt: B−1 = BT .
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Abbildung 3.11: Visualisierung der Hauptkomponenten einer Testzeitreihe. Interpretation als Schwin-

gungsmoden: Die n-te Hauptkomponente beschreibt für kleine n die Orte der Dynamik

niederfrequenter Moden, für große n beschreibt sie die Orte der Dynamik hochfrequen-

ter Moden.
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genau dem Optimierungsziel der PCA entspricht12, vice versa weisen die zeitlichen Verläufe der Merk-

male, welche den höheren Hauptkomponenten zugeordnet sind, höhere Frequenzen und kleinere Am-

plituden auf. Abbildung 3.12 illustriert diesen Sachverhalt und stellt für alle n Merkmalsvektoren einer

Testzeitreihe die maximale, minimale und mittlere Amplitude dar. Abbildung 3.13 zeigt für ausgewählte

Basisvektoren b⃗n die Zeitentwicklungen der zugehörigen Merkmale, d.h. die n-ten Einträge über allen

Merkmalsvektoren entlang der Zeit. Zu erkennen sind die schwingungsähnlichen Amplitudenverläufe

mit steigender Frequenz sowie immer kleiner werdender Amplituden für wachsende n.
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Abbildung 3.12: Maximale, minimale und mittlere Amplitude der Zeitentwicklung des n-ten Merkmals

einer Testzeitreihe.

Der Modellansatz besteht darin, die Zeitentwicklungen der Merkmale durch analytische Funktionen zu

substituieren. Dabei werden die Schwingungsverläufe durch die Summe von Harmonischen angenähert,

d.h. die Zeitenwicklung der Amplitude eines Merkmals wird durch akkumulierte Sinusschwingungen

beschrieben, deren Frequenzen ganzzahlige Vielfache einer Grundfrequenz sind13. Die Gesamtheit aller

Teilschwingungen bildet dann eine Approximation der Zeitentwicklung der Fluidoberfläche, wobei sich

die Teilschwingungen nach dem Superpositionsprinzip in ihrer Überlagerung nicht beeinflussen. Dieses

Modell lässt sich aufgrund der Darstellung der Datenvektoren, wie sie nach der Hauptkomponentenana-

lyse vorliegen, leicht anwenden. Ein Datenvektor ist nach der Ausführung der PCA in folgender Form

12Anm.: Die Amplitude des Merkmals beschreibt die Stärke der korrespondierenden Hauptkomponente bezüglich des re-

konstruierten Datensatzes (vgl. Gl. 3.2). Hohe Amplituden in den ersten Merkmalen spiegeln den Fakt wider, dass hohe

Varianzen durch die ersten Hauptkomponenten repräsentiert werden.
13Anm.: Dieses Approximationsmodell ist u.a. in der Akustik bekannt (vgl. [Kut04]).
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Abbildung 3.13: Zeitlicher Verlauf der Amplitude des n-ten Merkmals einer Testzeitreihe.
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gegeben (vgl. Gl. 3.3):

˜⃗xj =

M−1∑
i=0

ai ⋅ b⃗i (3.82)

Die Merkmale ai werden nun durch die stetigen Funktionen yi(t) angenähert:

ai ≈ yi(t = j) (3.83)

Dabei werden die Funktionen yi(t) wie folgt definiert:

yi(t) ≡ oi + ŷi ⋅
ni∑
n=0

sin(2�nfit+ 'i) (3.84)

Hierbei definiert ni die Anzahl der Harmonischen, ŷi die Amplitude der Grundschwingung, fi die Grund-

frequenz, 'i die Phase und oi einen Offset-Wert.

Um das Modell flexibler zu gestalten, wird im Folgenden die Amplitudenfunktion yi(t) um zusätzliche

Terme erweitert. Der Schwingungsvorgang der Fluidoberfläche wird als Relaxationsprozess aufgefasst –

ein Prozess, welcher nach Anregung mit fortschreitender Zeit in einen Gleichgewichtszustand übergeht.

Zunächst wird die Amplitudenfunktion yi(t) mit einem Exponentialterm erweitert:

yi(t) = oi + e−t�i ⋅ ŷi ⋅
ni∑
n=0

sin(2�nfit+ 'i) (3.85)

Der Term e−t�i mit �i als Dämpfungskonstante erzielt das Abklingen des Schwingungsvorgangs, yi(t)

wird zur gedämpften Schwingung. Im nächsten Schritt wird ein Exponentialterm mit der Konstanten �i

zur Bedämpfung der relativen Spektralanteile der Harmonischen eingeführt. Die Funktion yi(t) wird

dann zur Summe von gedämpften Partialschwingungen:

yi(t) = oi + e−t�i ⋅ ŷi ⋅
ni∑
n=0

e−(n−1)�i sin(2�nfit+ 'i) (3.86)

Abbildung 3.14 zeigt beispielhaft die Zeitentwicklung einer Oszillation yi(t) aus überlagerten Harmo-

nischen mit ni = 9, ŷi = 1, fi = 1/100, �i = 0.004, �i = 0.2, 'i = 0 und oi = 0 sowie deren

Linienspektrum.

Der Datenvektor x⃗j kann nun mithilfe von M Paaren von Funktionen yi(t) und Hauptkomponenten bi

approximiert werden:

˜⃗xj ≈
M−1∑
i=0

yi(t = j) ⋅ b⃗i (3.87)

˜⃗xj ≈
M−1∑
i=0

(
oi + e−t�i ⋅ ŷi ⋅

ni∑
n=0

e−(n−1)�i sin(2�nfij + 'i)

)
⋅ b⃗i (3.88)
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Abbildung 3.14: Links: Amplitudenfunktion yi(t) als Überlagerung von Harmonischen. Rechts: Relative

spektrale Anteile der Partialschwingungen von yi(t) bezogen auf die Grundfrequenz f0.
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4 Prototypische Umsetzung

Um die die PCA in der Praxis anwenden und ihre Eigenschaften studieren zu können, wurde ein wis-

senschaftlicher Prototyp auf OpenGL-Basis entwickelt. Die Implementierung der Analysesoftware er-

folgte in C++ und setzt auf dem GLUT-Framework1 [KR01], welches die Anbindung an das Fenster-

system mitsamt OpenGL-Kontext bereitstellt und das Eventhandling von Tastatur- und Mausereignissen

verwaltet sowie der GLUI 2 [RSB06], zur Bereitstellung der graphischen Benutzeroberfläche mit ei-

ner Reihe vordefinierter Steuerelemente, auf. Beide Frameworks stellen für kleine bis mittlere Projekte

einen guten Kompromiss aus Funktionalität und einfacher Einbindung dar. Die Emulation der nativen

Betriebssystem-Steuerelemente durch OpenGL-Pendants macht sie zudem plattformunabhängig.

Für die notwendigen mathematischen Berechnungen, insbesondere für die Matrizenoperationen sowie

die SVD-Dekomposition, wurde auf die Bibliotheken des lehrstuhleigenen CGV-Frameworks zurückge-

griffen.

4.1 Layout

Der Prototyp ist aufgrund der Restriktionen des GLUI-Frameworks als Mehr-Fenster-Anwendung rea-

lisiert3, wodurch dem Nutzer eine freie Anordnung der einzelnen Unterfenster auf dem Bildschirm er-

möglicht wird. Die Applikation ist in zwei primäre Ansichten gegliedert: In einem Menüfenster werden

alle Programmfunktionalitäten verwaltet, während in einem OpenGL-Fenster die Zeitreihen visualisiert

werden.

4.1.1 Menüfunktionen

Vom Menüfenster lassen sich sämtliche Funktionen des Prototyps erreichen und alle relevanten Unter-

fenster aufrufen. Zur platzsparenden Gestaltung der Bedienelemente wurden bei der Implementierung
1Anm.: Die Abkürzung GLUT steht für OpenGL Utility Toolkit.
2Anm.: Die Abkürzung GLUI steht für OpenGL User Interface Library.
3Anm.: GLUT bietet neben dem standardmäßigen OpenGL-Viewport lediglich ein Kontextmenü als Steuerelement an, wäh-

rend sich in durch GLUI erzeugten Fenstern neben den vorgefertigten Steuertypen keine weiteren OpenGL-Inhalte darstel-

len lassen
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Abbildung 4.1: Die Hauptansicht der Anwendung.

sogenannte Rollouts verwendet, welche durch das GLUI-Framework als Alternative zu den bekannteren

Tabs bereitgestellt werden. Die Zuordnung der einzelnen Steuerelemente zu den Rollouts erfolgt nach

funktionaler Aufgabe, es lassen sich dabei fünf Hauptbereiche festlegen:

∙ Dateifunktionen

∙ Analyse-Informationen

∙ Rekonstruktion

∙ Rendering

∙ Simulation

Dateifunktionen

Der PCA-Algorithmus mit sämtlichen zugehörigen Hilfsstrukturen wird durch eine selbstverwaltende

Klasse gekapselt, welche u.a. ein Interface zum Laden und Speichern bereitstellt. Neben allen relevanten

Variablen können insbesondere die Hauptkomponenten und Merkmalsvektoren in eine Datei gesichert

werden. Dies erfolgt zustandsbasiert, sodass bei erneutem Laden alle Nutzereingaben, wie z.B. die An-

zahl der zur Rekonstruktion verwendeten Hauptkomponenten, wiederhergestellt werden können.

Das Importieren von Zeitreihen wird über das Hauptmenü verwaltet und erfolgt über ein separates Me-

nü; hier können die einzulesenden Datensätze ausgewählt und angepasste Import-Optionen angewendet



4. PROTOTYPISCHE UMSETZUNG 45

werden:

∙ Anzahl der Dimensionen: Die Anwendung kann 2D- und 3D-Datensätze verarbeiten und darstel-

len (vgl. Abschnitt Rendering). Hier kann festgelegt werden, welcher der beiden Modi aktiv sein

soll.

∙ Transponieren der Datensätze: Die Datenvektoren der Zeitreihe können vor Anwendung der

PCA transponiert werden. Dies ist gerade bei hochauflösenden Datensätzen bezüglich des Speicher-

und Rechenaufwandes günstiger, da die zu berechnenden Matrizen kleiner als im nicht transpo-

nierten Fall sind.

∙ Normalisieren der Datensätze: Die Werte der Zeitreihe können vor der Anwendung der PCA-

Analyse auf das Intervall [−1, 1] normalisiert werden. Diese Funktion schafft eine Basis zur Ver-

gleichbarkeit der Analyse-Ergebnisse verschiedener Zeitreihen, z.B. bezüglich der Fehlerbetrach-

tung.

∙ Vorfilterung: Die Daten können vor Anwendung der PCA einer Schwellwertfilterung unterzogen

werden. Hierbei kann der Nutzer einen Abstandswert definieren: Ist der Betrag des skalaren Wertes

an einem Gitterpunkt des Datensatzes kleiner als dieser Abstandswert, so wird der Gitterpunkt der

Fluidoberfläche zugeordnet (vgl. Kap. 4.3).

Analyse-Informationen

Über den Menüpunkt „Analyse-Informationen“ können verschiedenste Informationen zur analysierten

Zeitreihe abgefragt werden, u.a.:

∙ Rekonstruktionsfehler: Bei der Fehlerbetrachtung werden minimale, maximale und mittlere Feh-

ler ermittelt, als Fehlermaß dient die mittlere quadratische Abweichung (vgl. Kap. 5).

∙ Varianzanteile: Es werden die durch die ersten n Eigenwerte erklärten absoluten sowie kumula-

tiven Anteile der Gesamtvarianz einer Zeitreihe aufgelistet.

∙ Zeitentwicklung der Merkmale: Über ein Unterfenster kann die Amplitude eines jeden Merk-

mals über der Zeit visualisiert werden. Die Skalierung der Amplitudenachse erfolgt dabei automa-

tisch auf das optimale Werte-Intervall.
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Rekonstruktion

In dieser Sektion wird die Anzahl der zur Analyse und Rekonstruktion verwendeten Hauptkomponenten

festgelegt. Die Rekonstruktion kann einerseits mithilfe der ersten M Eigenvektoren b⃗i ( i = 0 . . .M −1)

erfolgen, andererseits lässt sich durch den Nutzer ein Intervall [is, ie] angeben, welches die Eigenvek-

toren b⃗j ( j ∈ [is, ie]) definiert, die zur Rekonstruktion verwendet werden sollen. Diese Funktionalität

leistet z.B. die Darstellung von Bereichen geringer Energie, d.h. geringem Varianzanteil des korrespon-

dierenden Eigenvektors. Bezüglich der Fluidzeitreihen sind dies die Gebiete hoher räumlicher Frequenz

(vgl. Abb. 3.11).

Als weitere Option lassen sich die ermittelten Hauptkomponenten selbst visualisieren. Erfolgte die Ana-

lyse ohne eine Transposition der Daten, so zeigen sie die Gebiete hoher und niedriger Dynamik.

Rendering

Über diesen Menüpunkt kann die Art der Visualisierung eingestellt werden: Zweidimensionalen Zeitrei-

hen können entweder über Texturen, welche die level sets als Graustufenbild repräsentieren, bzw. über ein

Marching Squares-Verfahren mit justierbarem Isowert visualisiert werden. Bei der Texturendarstellung

erfolgt ein automatisches Mapping des Werteintervalls der Daten auf den normierten Grauwertbereich:

[max(x⃗t),min(x⃗t)]→ [0, 1]. Als weitere Option ist vor dem Anwenden des Mappings ein Begrenzen –

sogenanntes clamping – der Daten auf das Intervall [−1, 1] möglich4. Dies ermöglicht in vielen Fällen

ein ausgeglichenes Helligkeitsverhältnis zwischen den Frames einer Animation.

Für die Visualisierung dreidimensionaler Zeitreihen ist ein Marching Cubes-Algorithmus mit frei ein-

stellbarem Isowert implementiert.

Neben der Animation der Zeitreihe kann ein Interpolationsmodus mit regelbarer Zeitschrittweite t ak-

tiviert werden. Hierbei wird die Variable t gleichzeitig als Parameter zur linearen Interpolation zwi-

schen zwei Datenvektoren x⃗i und x⃗i+1 genutzt: Für t ∈ [i, i + 1) wird der interpolierte Datenvektor

x⃗t = (1− [i+ 1− t]) ⋅ x⃗i + [i+ 1− t] ⋅ x⃗i+1 berechnet. Die Interpolation komprimierter Zeitreihen ist

dabei im Raum der Merkmale möglich (vgl. Kap. 3.2.10).

Simulation

Für die Anwendung wurde die Simulation nach dem Oszillatormodell aus Kapitel 3.4.1 implementiert,

welche aus diesem Untermenü heraus gesteuert werden kann. Der Nutzer kann eine beliebige Anzahl
4Anm.: Das Intervall [−1, 1] für die Isowerte hat sich in der Praxis als zufriedenstellend gezeigt; das Augenmerk liegt ohnehin

auf der Kontur mit dem Wert Null.
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von Oszillator-Modulen generieren, welche jeweils mit einer Hauptkomponente verknüpft werden. Für

jedes Modul können folgende Parameter eingestellt werden (vgl. Kap. 3.4.1):

∙ Grundfrequenz

∙ Anzahl der Harmonischen

∙ Spektrale Dämpfung

∙ Phase

∙ Amplitude

∙ Amplitudendämpfung

∙ Bias

4.1.2 Visualisierung der Zeitreihen

Neben dem Hauptmenü existiert ein OpenGL-Fenster zur Visualisierung der Zeitreihen. Hier werden

Ursprungs- und rekonstruierte Zeitreihen in einer Doppelansicht dargestellt, um dem Nutzer ein unmit-

telbares visuelles Feedback über die Qualität der Rekonstruktion zu geben. Die Navigation durch die

einzelnen Frames des Datensatzes kann, insofern nicht der Animationsmodus aktiv ist, über Mausrad

und Cursortasten erfolgen.

Für die Darstellung von dreidimensionalen Daten wird eine Trackball-Kamerasteuerung genutzt, sodass

ein freies Drehen und Zoomen der Daten-Objekte möglich ist.

Eine Anzeige-Überlagerung gibt Aufschluss über diverse Informationen wie den aktuellen Datensatz,

das Kompressionsverhältnis oder die Anzahl der verwendeten Hauptkomponenten.

4.2 Beschreibung des Datensatzformates

Zum Testen der Analysesoftware wurden mit dem Fluid-Simulator des Lehrstuhls verschiedene zwei-

und dreidimensionale Testdatensätze generiert. Die Datensätze definieren die Fluidoberfläche mithilfe

einer Distanzfunktion, d.h. die implizite Funktion Φ(x) = Δ, deren Funktionswert den vorzeichenbe-

hafteten Abstand zur Oberfläche beschreibt (vgl. Kap. 3.1). Dabei ist das relevante level set Γ0 ebenjene

Region, bei der Δ gleich Null ist. Abbildung 4.2 verdeutlicht beispielhaft die Struktur der Datensätze:

Die Distanzen liegen in einem rectilinearen Gitter mit konstanter Gitterweite vor. Dabei wird für jede

Zelle der minimale Abstand des Zellmittelpunktes zur Oberfläche gespeichert, wobei Werte außerhalb
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des Fluids ein positives und Werte innerhalb des Fluids ein negatives Vorzeichen besitzen.

Die Distanzwerte der Datensätze werden in einem Binärformat gespeichert. Am Anfang einer solchen

Binärdatei werden die Gitter-Dimensionen sowie die Zellgröße definiert, danach folgen sequentiell die

Werte des Gitters. In einer Datei wird genau ein Datenvektor abgelegt.

-0,5-0,5

0,50,5

-0,5-0,5

0,50,5

-0,5-0,5

0,50,5

-0,7 -0,7

0,7 0,7

0,0 0,0

1,4 1,4

-1,4 -1,4 -1,5-1,5

1,5 1,5 1,5 1,5

-2,1 -2,1

2,12,1

-1,6-1,6

1,6 1,6

-1,5 -1,5 -2,5-2,5

2,52,5 2,5 2,52,52,5 2,92,9

-3,5 -3,5-2,9-2,9 -2,5 -2,5-2,5-2,5

-3,5-3,5 -3,5-3,5-3,8 -3,8 -4,3-4,3

Abbildung 4.2: Schematische Repräsentation eines level set-Datenvektors. Eingezeichnet ist der errech-

nete Fluidrand.

4.3 Vorfilterung

Die implementierte Analysesoftware bietet eine Option zur Filterung der Datensätze während des Im-

ports an. Bei dieser Treshold-Filterung werden die skalaren Distanzwerte xi eines Datenvektors über

einen vom Nutzer einstellbaren Schwellwert � modifiziert. Es gilt:

filt(xi, �) ≡

⎧⎨⎩
1 , wenn x⃗i > �

−1 , wenn − x⃗i > �

0 sonst

(4.1)

Werte, welche betragsmäßig größer als der von außen eingestellte Wert � sind, werden demnach unter

Beibehaltung des Vorzeichens auf 1 respektive −1 gesetzt. Werte, die betragsmäßig kleiner als � sind,

werden auf den Wert null abgebildet. Abbildung 4.3 zeigt beispielhaft die Werte des Datensatzes aus

Kapitel 4.2 und den Verlauf der Fluidoberfläche nach einer solchen Schwellwertfilterung.
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Abbildung 4.3: Schematische Repräsentation eines level set-Datenvektors nach der Schwellwert-

Vorfilterung. Eingezeichnet ist der errechnete Fluidrand.
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5 Ergebnisse

5.1 Ergebnisse der PCA

Die Anwendung des entwickelten Software-Prototypen zeigt die Fähigkeit der Dimensionsreduktion

durch die Hauptkomponentenanalyse. Abbildung 5.1 verdeutlicht beispielhaft die Rekonstruktionsqua-

lität eines durch die PCA komprimierten dreidimensionalen Datensatzes unter verschiedenmächtigen

Hauptkomponentenbasen. Je größer die Dimension ebendieser ist, desto genauer können feine Details

rekonstruiert werden.

Es bestätigt sich der in Kapitel 3.2.5 eingeführte Parameter �∗ als Gütekriterium für die Rekonstruktion,

d.h. der errechenbare Residual-Fehler fällt umgekehrt proportional zur ansteigenden akkumulierten Va-

rianz der den ersten Hauptkomponenten zugehörigen Eigenwerte. Bei Denis Serre (vgl. [Ser02]) findet

sich ein Wert für �∗ von ca. 70 Prozent als ausreichend für eine visuell ansprechende Rekonstruktion.

Nimmt man diesen Wert als Grundlage, kann für die untersuchten Testzeitreihen ein mittlerer Wert von

ca. 3:1 als Kompressionsrate ermittelt werden. Bei einer günstigeren Varianzverteilung der Eigenwerte

könnten entsprechend höhere Kompressionsraten erreicht werden.

Bezogen auf Fluidoberflächensimulationen kann in diesem Sinne auch formuliert werden: Zeitreihen mit

niedriger (zeitlicher) Dynamik in hohen räumlichen Frequenzen lassen sich im Allgemeinen mit weni-

ger Hauptkomponenten darstellen als Zeitreihen mit hoher Dynamik in hohen Frequenzen. Ebenjenen

Gebieten hoher räumlicher Frequenz sind die Hauptkomponenten zugeordnet, deren korrespondierende

Eigenwerte nur noch einen geringen Anteil an der akumulierten Varianz ausmachen.

Die Abbildungen 5.2 und 5.3 zeigen die Rekonstruktion von Zeitreihenausschnitten unterschiedlicher

Dynamik in hohen Frequenzen, d.h. kleinen räumlichen Strukturen.

Wird als Kriterium zur Einschätzung der Rekonstruktionsqualität anstelle der 70 Prozent-Schwelle aus

[Ser02] lediglich die visuell überzeugende und plausible Anmutung herangezogen, so lassen sich für

Zeitreihen mit durchschnittlicher1 Verteilung der Varianzen über die Eigenwerte mitunter Kompressi-

onsraten von 6:1 und mehr ausmachen. Tabelle 5.1 verdeutlicht diesen Sachverhalt und zeigt die Kom-
1Anm.: Die Durchschnittlichkeit ist in diesem Falle die durchschnittliche Verteilung der Eigenwerte, welche aus der Untersu-

chung der Gesamtheit der Testzeitreihen mithilfe der Analysesoftware hervorgeht.
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Abbildung 5.1: Rekonstruktionen einer 3D-Zeitreihe bestehend aus 136 Datensätzen in Abhängigkeit der

Anzahl n der Hauptkomponenten.
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pressionsraten der untersuchten 2D-Zeitreihen bezogen auf den von Serre vorgeschlagenen statischen

Wert für �∗ sowie für einen vorgeschlagenen individuellen Wert, bei dem die visuelle Qualität als Re-

ferenz herangezogen wurde. Die 3D-Zeitreihe konnte aufgrund der Speicherproblematik großer Daten-

mengen (vgl. Kap. 6.2) nur transponiert analysiert werden, somit ist hier keine Vergleichbarkeit zu den

zweidimensionalen Zeitreihen gegeben.

Zeitreihe T N (� ≥ 70%) K� N (visuell) Kv

1 200 64 3,06 39 5,02

2 (sh. Abb. 5.2) 300 81 3,59 60 4,85

3 200 70 2,8 60 3,26

4 133 39 3,36 22 5,96

5 (sh. Abb. 5.3) 151 48 3,09 20 7,43

∅ 196.8 60,4 3,18 40,2 5,30

Tabelle 5.1: Vergleich der Kompressionsraten auf Grundlage der 70-Prozent-Schwelle nach [Ser02] so-

wie einer visuellen Beurteilung. (Mit T ..Anzahl der Zeitschritte,N ..Anzahl der verwendeten

Hauptkomponenten, K�..Kompressionsrate bei � ≥ 70%, Kv..Kompressionsrate bei visuel-

ler Beurteilung.)

Fehlerbetrachtung

Fehlermaße

Als Fehlermaß wird die mittlere quadratische Abweichung (kurz MSE für mean square error) herangezo-

gen, da sie einerseits dem Minimierungsziel der Hauptkomponentenanalyse entspricht und andererseits

keine statistischen Ausreißer in den vorliegenden Testzeitreihen zu erwarten sind. Dabei beschreibt der

MSE den Mittelwert der quadrierten Einträge des Differenzvektors von Ursprungsdaten x⃗t ∈ RN und

rekonstruierten Daten ˜⃗xt ∈ RN . Er lässt sich wie folgt berechnen:

MSE(t) ≡ 1

N
⋅
N−1∑
n=0

(x⃗t,n − ˜⃗xt,n)2 =
< x⃗t − ˜⃗xt, x⃗t − ˜⃗xt >

N
(5.1)

Man sieht, dass der MSE hier den mittleren Fehler eines Datenvektors x⃗t der ZeitreiheX = {x⃗t∣t = 0..T − 1}

definiert. Um die Fehleranalyse zu verfeinern und weitere Aussagen über die Qualität der Rekonstruktion

zu treffen, werden folgende weitere Fehlermaße definiert:
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Abbildung 5.2: Rekonstruktionen einer 2D-Zeitreihe mit großer Dynamik in hohen Frequenzen.



5. ERGEBNISSE 54

Abbildung 5.3: Rekonstruktionen einer 2D-Zeitreihe mit niedriger Dynamik in hohen Frequenzen.
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Minimaler MSE

Dieser Wert stellt den kleinsten aller MSE der einzelnen Datenvektoren einer Zeitreihe dar:

MSEmin ≡ min({MSE(0),MSE(1), . . . ,MSE(T − 1)})

Mittlerer MSE

Dieser Wert geht aus der Mittelung aller MSE der Datenvektoren der Zeitreihe hervor:

MSEmean ≡
1

T
⋅
T−1∑
t=0

MSE(t)

Maximaler MSE

Dieser Wert ist gegensätzlich zum minimalen MSE als der größte auftretende MSE einer Zeitreihe defi-

niert:

MSEmax ≡ max({MSE(0),MSE(1), . . . ,MSE(T − 1)})

Auswertung

Abbildung 5.4 zeigt die Auswertung der rekonstruierten Testzeitreihen bezüglich ihrer MSE. Zur Ver-

gleichbarkeit wurden die Zeitreihen zunächst normiert (vgl. Kap. 4.1.1), anschließend wurden minimaler,

mittlerer und maximaler MSE ermittelt. Man erkennt, dass maximaler und mittlerer MSE dabei nah bei-

einander liegen.

Weiterhin zeigt die Verwendung der in Kapitel 4.3 vorgestellten Schwellwertfilterung deutlich kleinere

Fehler bei einer Rekonstruktion mit wenigen Hauptkomponenten als bei der Rekonstruktion ohne Filte-

rung. Abbildung 5.5 sowie Tabelle 5.2 verdeutlichen diesen Sachverhalt genauer.

Auch beeinflusst die Schwellwertfilterung die Verteilung der Varianzanteile der Eigenwerte (vgl. Abb.

5.6). Durch sie ergibt sich ein größerer Anstieg der kumulativen Varianz für die ersten Hauptkomponen-

ten.

5.2 Ergebnisse der Kern-PCA

Die Kern-PCA zeigt für Beispielrechnungen (vgl. Kap. 3.3.4), dass eine für die Kompression günstigere

Verteilung der Eigenwerte als bei der klassischen PCA erreicht werden kann. Daraus wird geschlossen,
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die Gesamtheit der Zeitreihen) in Abhängigkeit der Anzahl n der verwendeten

Hauptkomponenten.
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Anzahl der Haupkomponenten MSE ohne Vorfilterung MSE mit Vorfilterung

1 147.8754 0.143877

2 42.30488 0.10443192

4 8.547068 0.07195824

8 2.516271 0.04950984

16 0.64514574 0.0330747

32 0.14343882 0.019445538

64 0.021833214 0.007504626

128 0.000161377 0.000232265

Tabelle 5.2: Vergleich des mittleren MSE der Testzeitreihen (gemittelt über die Gesamtheit der Zeitrei-

hen) in Abhängigkeit der Anzahl der verwendeten Hauptkomponenten mit und ohne

Vorfilterung.

dass sie, unter der Annahme der Wahl des optimalen Kerns, zumindest im Bildraumℋ bessere Ergebnisse

als die PCA im Ursprungsraum liefern kann und somit die Beschreibung der Daten mit noch weniger

Hauptkomponenten auskommt.

5.3 Ergebnisse der interaktiven Simulation

Die Anwendung des vorgestellten heuristischen Simulations-Modells (vgl. Kap. 3.4.1) auf die Testda-

tenreihen des Lehrstuhlfluidsimulators zeigt, dass plausible und visuell überzeugende Animationen von

Fluidoberflächen auf der Grundlage ausgewählter Zeitreihen extrapoliert werden können. Hierzu sind

verschiedenste Parameter durch den Anwender zur Laufzeit manipulierbar (vgl. Kap. 4). Da die Simu-

lation jedoch auf der Analyse von Trainingsdatensätzen beruht und die Zeitentwicklungsfunktionen der

Merkmalsvektoren durch das Modell approximiert werden, sind nur solche Schwingungsvorgänge simu-

lierbar, welche auf den Ausprägungen der gefundenen Hauptkomponenten beruhen. Dabei ähneln die

Zeitentwicklungen der Merkmale von gleichmäßigen Schwingungsvorgängen eher überlagerten Sinus-

schwingungen, als die von chaotischen Vorgängen, und sind somit besser approximierbar. Die Praxis

zeigt, dass für solche Schwingungen meist wenige Paare von Harmonischen und Hauptkomponenten

genügen, um visuell ansprechende Animationen zu erzeugen.
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6 Diskussion

6.1 Einschätzung der Ergebnisse

6.1.1 PCA

Die Ergebnisse der PCA zeigen, dass trotz der Dimensionsreduktion wichtige Merkmale der Fluidbewe-

gung wie Turbulenzen erhalten bleiben, in Abhängigkeit der Dimension der reduzierten Basis.

Sie stellt ein stabiles Verfahren dar, was sich im nahen Beieinanderliegen von mittlerem und maximalem

MSE widerspiegelt. Es sollten folglich keine einzelnen Datenvektoren einer Zeitreihe signifikant größere

Fehler aufweisen, als durch den mittleren vorgegeben. Somit bleibt die Rekonstruktionsqualität in ihrer

Gesamtheit auf einem gleichmäßigen Niveau. Für einzelne Datenvektoren kann jedoch eine wesentlich

höhere Rekonstruktionsqualität erreicht werden, da ein relativ großer Abstand zwischen mittlerem und

minimalem MSE vorliegt, wenn eine durchschnittliche Anzahl von Hauptkomponenten zur Rekonstruk-

tion verwendet wurde (vgl. Abb. 5.4).

6.1.2 Kern-PCA

Aufgrund des Urbildproblems und der damit verbundenen Schwierigkeiten bei der Rekonstruktion (vgl.

Kap. 3.3.6) erfolgte keine Implementierung der Kern-PCA. Folglich kann noch keine Aussage darüber

getroffen werden, ob die Qualität der Rekonstruktion durch die Kern-PCA nach der Rückabbildung in

den Ursprungsraum besser als die Rekonstruktionsqualität der PCA ist.

6.1.3 Simulation

Das implementierte Modell leistet eine einfache Beschreibung der Schwingungsvorgänge und kann Pseu-

dosimulationen aus trainierten Fluidbewegungen generieren. Es können aus beschränkten Animations-

zeitrahmen unbeschränkte Simulationszeitrahmen erzeugt werden. Dabei erfolgt die Berechnung der

Zeitentwicklungskoeffizienten vollständig im reduzierten Raum und ist in ihrer Komplexität unabhän-

gig von der Größe des simulierten Raumes. Im Gegensatz zu Treuille (vgl. [TLP06]) ist keine direkte
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Interaktion mit der Fluidoberfäche durch den Nutzer möglich, jedoch lassen sich die Modellvariablen

zur Laufzeit anpassen und verändern. Das Modell vermag, bedingt durch das zugrundeliegende Konzept

der superpositionierten Partialschwingungen, lediglich periodische Ausschwingvorgänge zu simulieren

und eignet sich nicht für die physikalisch exakte Simulation. Wie auch in [TLP06] ist der Simulati-

onsinhalt stets abhängig vom zugrundeliegenden Trainingsdatensatz, da er einzig auf den gewonnenen

Hauptkomponenten beruht.

6.2 Bestehende Probleme und Lösungsansätze

Der aktuelle Prototyp lädt die Datensätze zur Analyse komplett in den Hauptspeicher, ebenso werden

die Matrizen, welche zur SVD-Zerlegung benötigt werden, im Hauptspeicher verwaltet. Wie in Kapitel

3.2.3 ersichtlich, wächst die Kovarianzmatrix quadratisch zur Größe der Datenvektoren. Somit verursa-

chen die Speicherkosten, gerade bei sehr großen Datensätzen, einen Flaschenhalseffekt und es kann zu

Speicheradressierungsproblemen kommen, insbesondere bei dreidimensionalen Datensätzen. Für einen

3D-Datensatz über einem 1283-Gitter müssten für die Kovarianzmatrix nach naivem Ansatz 17.59 TB

an Speicher reserviert werden, wenn die skalaren Distanzwerte als floats mit 32 Bit angenommen seien.

Die Implementierung des Prototypen nutzt deshalb die SVD-Methode auf die Matrix aller Datenvektoren

an, um die Eigenwerte und Eigenvektoren der Kovarianzmatrix zu ermitteln, ohne diese jedoch explizit

aufzustellen (vgl. Kap. 3.2.4). So kann einer Speicherknappheit in Maßen zuvorgekommen werden. Eine

weitere mögliche Lösung besteht darin, die PCA auf die transponierte Matrix der mittelwertbefreiten

Datenvektoren anzuwenden (vgl. Kap. 4.1.1). Bei der Rekonstruktion müssen die Daten entsprechend

wieder zurücktransponiert werden. Dies bringt eine Speicherersparnis, insofern die zeitliche Auflösung

kleiner als die räumliche ist1 und wurde auf die 3D-Testzeitreihe angewendet.

Ebenfalls hohe Speicherkosten werden durch die Berechnung der Kernmatrix erzeugt, hier jedoch mit

quadratischer Abhängigkeit zur Anzahl der Zeitschritte. Dies kann zu Problemen bei Simulationen füh-

ren, welche einen sehr langen Simulationszeitraum aufweisen.

Ein grundsätzlicher Nachteil der PCA-Methode besteht in ihrem Optimierungsziel; der Strukturierung

nach größter Varianz. Nicht immer muss die Richtung der größten Bedeutsamkeit in einem Datensatz

auf die Richtung der größten Varianz fallen; dann schlägt die PCA fehl. Auch müssen, abhängig von

den Daten, die Achsen der gefunden Basis nicht zwangsläufig orthogonal zueinander stehen, obgleich

1Anm.: Dann allerdings wird die Semantik der Hauptkomponenten zweifelhaft: Sie bildet nun keine entlang der Zeit konstante

Basis mit wechselnden Koeffizienten (Merkmalen) mehr, sondern eine entlang der Zeit variable Basis mit lokal konstanten

Koeffizienten. Man könnte folglich die wechselnden Basen als Merkmale und die Menge der konstanten Koeffizienten als

Hauptkomponenten auffassen.
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es die Anwendbarkeit der PCA durch diese Konstruktionsweise einfach macht, da hier das Hin- und

Rückabbilden in bzw. aus der reduzierten Basis allein das Transponieren der Abbildungsmatrix bedeu-

tet. Hier können nichtlineare Verfahren wie z.B. die Independent Component Analysis, kurz ICA, unter

Umständen bessere Ergebnisse liefern (vgl. [HO00]).

Im konkreten Anwendungsfall, der Nutzung der PCA zur Kompression von level sets, fällt die Pro-

blematik des Optimierungszieles derart ins Gewicht, dass eine Rekonstruktion ohne die in Kap. 4.3

beschriebene Vorfilterung beinahe unpraktikabel wird. Das Problem hierbei ist, dass mithilfe der PCA

versucht wird, das gesamte Distanzfeld hinsichtlich des MSE zu optimieren, einschließlich der Berei-

che abseits der Fluidgrenze, welche gegenüber der level-set-Kontur einen viel größeren Anteil an der

Gesamtvarianz ausmachen. Somit werden unnötig viele Hauptkomponenten benötigt, um die Isolinie

der Fluidoberfläche exakt zu rekonstruieren. Durch die Anwendung der Schwellwertfilterung werden die

Bereiche außerhalb dieser Konturlinie auf einen konstanten Wert gesetzt und können dann mithilfe einer

einzigen Hauptkomponente repräsentiert werden. Abbildung 6.1 zeigt den Vergleich der Rekonstruktion

einer Zeitreihe mit und ohne vorangegangener Schwellwertfilterung.

Ein entscheidender Nachteil der Kern-PCA bei der Rekonstruktion ist der Umgang mit der Mittelwert-

befreiung. Bisher wurde in den theoretischen Überlegungen stets von einer Zentriertheit der Daten aus-

gegangen bzw. konnte diese bei der Berechnung der Kernmatrix implizit erreicht werden (vgl. Kap.

3.3.5.1). In der Praxis jedoch muss die Mittelwertbefreiung während des Rekonstruktionsschrittes wieder

rückgängig gemacht werden. Dazu müssen allerdings die Mittelwerte der einzelnen Datenkomponenten

explizit bekannt sein. Dies ist durch das Verfahren aus Kapitel 3.3.6.1 nicht zu erreichen. Lösungen für

diese Problematik findet man z.B. in approximierenden Verfahren, wie sie in Kapitel 3.3.6.2 beschrieben

sind.

Auch ist die Wahl des „richtigen“ Kernes von entscheidender Bedeutung, d.h. es ist a-priori-Wissen über

die Art der Daten notwendig oder es muss einen geeigneten Schätzer geben.

6.3 Ausblick

Die Untersuchungen an den Testdaten haben gezeigt, dass die PCA ein stabiles und einfaches Verfah-

ren darstellt, um die Fluidoberflächenbewegungen mithilfe der Hauptkomponenten aus den Zeitreihen

zu extrahieren. Dabei konnte das Verfahren durch den Einsatz einer einfachen Schwellwertfilterung ent-

scheidend verbessert werden, wenngleich sie durch den festen Threshold die Fluidgrenzen stark auf das

zugrundeliegende Abtastgitter quantisiert. Von diesem Punkt ausgehend sollten weitere Filter entwickelt

und getestet werden, welche in der Nähe der Konturlinie eine feinere, womöglich adaptive Zuordnung



6. DISKUSSION 62

Abbildung 6.1: Rekonstruktionen einer 2D-Zeitreihe bestehend aus 200 Datenvektoren in Abhängigkeit

der Anzahl n der Hauptkomponenten ohne (links) und mit Vorfilterung (rechts).
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ermöglichen, um so die Fluidoberfläche glatter zu extrahieren. Auch sind Weiterentwicklungen der Vi-

sualisierungsalgorithmen denkbar, z.B. zur Aufbereitung von Mikrostrukturen auf der Fluidoberfläche.

Zum aktuellen Zeitpunkt liefert ein rudimentäres Marching-Cubes-Verfahren die Visualisierung der Iso-

flächen dreidimensionaler Datensätze; für die Visualisierung von zweidimensionalen Zeitreihen ist ein

Marching-Squares-Algorithmus sowie eine texturbasierte Darstellung implementiert.

Des Weiteren steht noch die Implementierung des Kern-PCA-Verfahrens aus. Trotz der bestehenden

Problematik der Rückabbildung aus dem Hochdimsenionalen während der Rekonstruktion, ist die reine

Darstellung der Hauptkomponenten und Merkmalsvektoren nicht minder uninteressant, wenngleich auch

hier die Herausforderung besteht, in welcher Form die Hauptkomponenten mit potentiell unendlicher

Dimension dargestellt werden sollten.

Einen weiteren Schritt, ausgehend vom aktuellen Stand der Arbeit, stellt die Weiterentwicklung des

Simulationsmoduls dar. Zur Zeit lässt sich die Simulation lediglich durch die Justierung der technischen

Parameter zur Laufzeit manipulieren. Eine direkte Nutzerinteraktion sei anzustreben, man vergleiche die

interaktive Einflussnahme durch den Anwender in [TLP06].



7. ZUSAMMENFASSUNG 64

7 Zusammenfassung

In der vorliegenden Arbeit wurde die wohlbekannte mathematische Methode der Hauptkomponenten-

analyse in den Kontext der Computergraphik gebracht, um mit ihrer Hilfe Fluidgrenzflächensimulationen

zu analysieren und zu komprimieren. Dabei wurden die theoretischen Grundlagen sowie der Algorith-

mus selbst detailliert vorgestellt und praktisch in einer prototypischen Anwendung umgesetzt. Durch die

Analyse der Testzeitreihen und der Extraktion der Merkmalsvektoren konnten Eigenschaften gefunden

werden, welche es erlaubten, ein Simulationsmodell basierend auf der Überlagerung harmonischer Par-

tialschwingungen zu definieren. Es lassen sich damit eigenständige Simulationen generieren, welche die

Merkmale der analysierten Testzeitreihen aufweisen, und deren Parameter sich zur Laufzeit durch den

Nutzer einstellen lassen. Weiterhin wurde die Kernmethode in Verbindung mit der PCA als nichtlineares

Verfahren untersucht. Dabei wurde der unter dem Namen Kern-PCA bekannte Algorithmus in der Theo-

rie vorgestellt und bestehende Probleme sowie Lösungen aufgezeigt. Auf eine prototypische Umsetzung

wurde aufgrund der Schwierigkeiten bei der Rekonstruktion verzichtet.
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