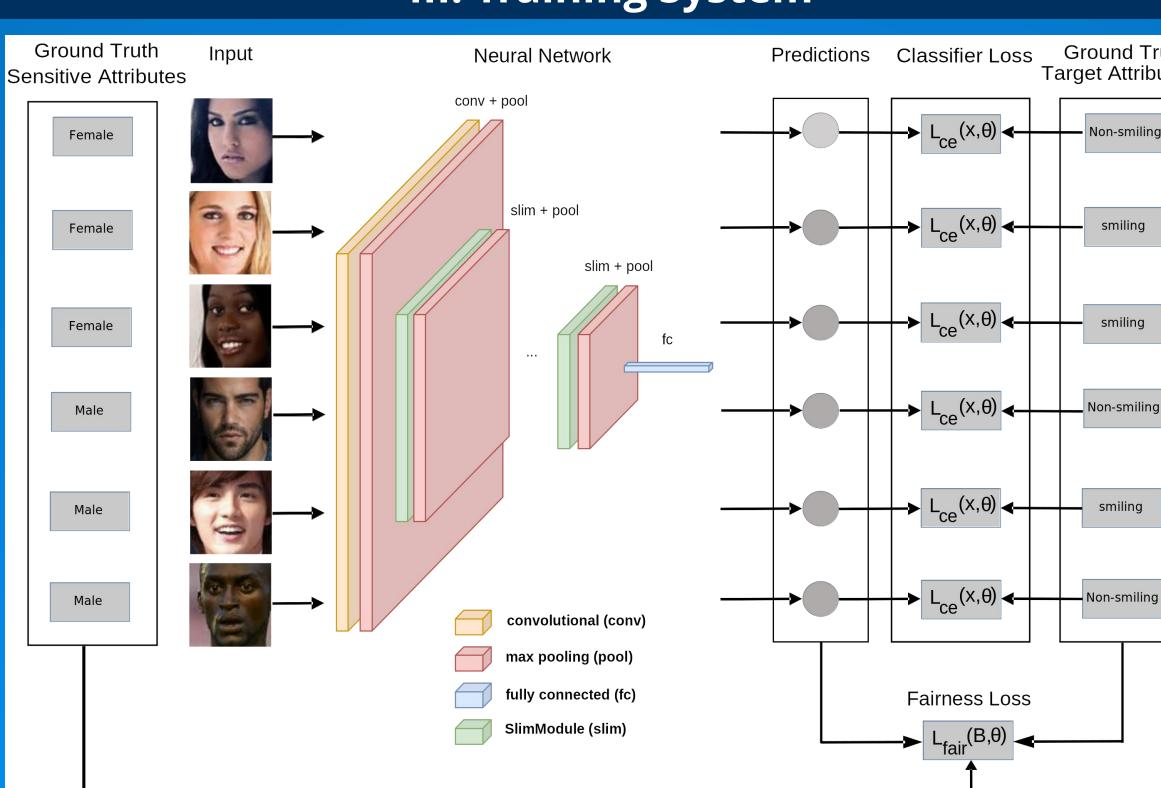
ENHANCING FAIRNESS OF VISUAL ATTRIBUTE PREDICTORS

I. Motivation

- *Problem*: Bias is present in our society (e.g. credit limits for women, criminal justice for PoC)
- *Reason*: Human decisions are influenced by existing prejudices
- Observation: Recent machine learning (ML) algorithms can aid impartial decision making (e.g. unbiased recruitment automation)
- New Problem: ML algorithms are prone to biases dependency on data quality • Idea:
- Achieve *algorithmic fairness* with existing biased data sets
- Learn fairness during training to reduce bias w.r.t. *sensitive attributes* (e.g. age, gender, ethnicity)

II. Contributions

- Implementation of *Demographic Parity* (DP) and *Equalized Odds* (EO) fairness notations as differentiable loss functions for categorical variables
- Development of a novel performance based *Intersection-over-Union* (IoU) loss
- Verifying experiments on publicly available data sets:
- Facial attribute prediction on *CelebA*
- Age group estimation on *UTKFace*
- Disease classification on *SIIM-ISIC Melanoma*



Proposed fairness aware training system

- Training data $T = (x_1, x_2, \dots, x_{\{|T|\}})$ consisting of |T| images $x \in \mathcal{X}$
- Ground-truth sensitive attribute labels $y_s^*(x) \in \{1 \dots K_s\}$ (e.g. male or female)
- Ground-truth target attribute labels $y_t^*(x) \in \{1 \dots K_t\}$ (e.g. smiling or non-smiling)
- *Predicted target attribute labels* $y_t(x) \in \{1 \dots K_t\}$ (e.g. smiling or non-smiling)
- Trainable classifier $p_{\theta}(y_t|x)$ conditional probability distribution • *Learnable parameter* θ (e.g. CNN network weights)
- Loss function $L(\theta)$
 - Cross-entropy loss L_{ce}
 - Weighting coefficient λ
 - Fairness loss L_{fair}
- *Image batches* $B \subset T \rightarrow$ Fairness estimation and mini-batch gradient descent

III. Training System

Tobias Hänel¹, Nishant Kumar¹, Dmitrij Schlesinger¹, Mengze Li², Erdem Ünal, Abouzar Eslami², Stefan Gumhold¹ Chair for Computer Graphics and Visualization, TU Dresden, Germany¹; Carl Zeiss Meditec AG, Munich, Germany²

IV. a) Fairness Losses – Demographic Parity

- *Requirements*: Predictions shouldn't depend on sensitive attribute $(y_t \perp y_s^*)$ $p(y_t = a | y_s^* = b) = p(y_t = a) \ \forall a \in \{1 \dots K_t\}, b \in \{1 \dots K_s\}$
- $L_{dp}^{l^2}$ loss: Sum of squared probability differences

$$d_{dp}^{l^{2}}(\theta) = \sum_{a,b} [p_{\theta}(y_{t} = a | y_{s}^{*} = b) - q_{s}^{l^{2}}]$$

• L_{dp}^{mi} loss: $D_{KL}(p_{\theta}(y_t, y_s^*) \parallel p_{\theta}(y_t) \cdot p_{\theta}(y_s^*)) = Mutual information (MI) between$ target attribute predictions and sensitive attribute ground-truth $I(y_t; y_s^*)$

$$\int_{dp}^{m}(\theta) = \sum_{t} p_{\theta}(y_t = a, y_s^* = b) \cdot \log \frac{10 \text{ (y} t - y_s)}{p_{\theta}(y_t = a) \cdot p_{\theta}(y_s^*)}$$

IV. b) Fairness Losses – Equalized Odds

- *Requirements*: Predictions shouldn't depend on sensitive attribute for a fixed value of the ground-truth target attribute $((y_t \perp y_s^*)|y_t^*)$ $p(y_t = a | y_t^* = b, y_s^* = c) = p(y_t = a | y_t^* = b) \forall a, b \in \{1 \dots K_t\}, c \in \{1 \dots K_s\}$
- $L_{eo}^{l^2}$ loss: Sum of squared probability differences

$$L_{eo}^{l^2}(\theta) = \sum_{a,b,c} [p_{\theta}(y_t = a | y_t^* = b, y_s^* = c) - dt]$$

• L^{mi} loss: Sum of MI scores between target attribute predictions and sensitive attribute ground-truth conditioned on ground truth target attribute labels

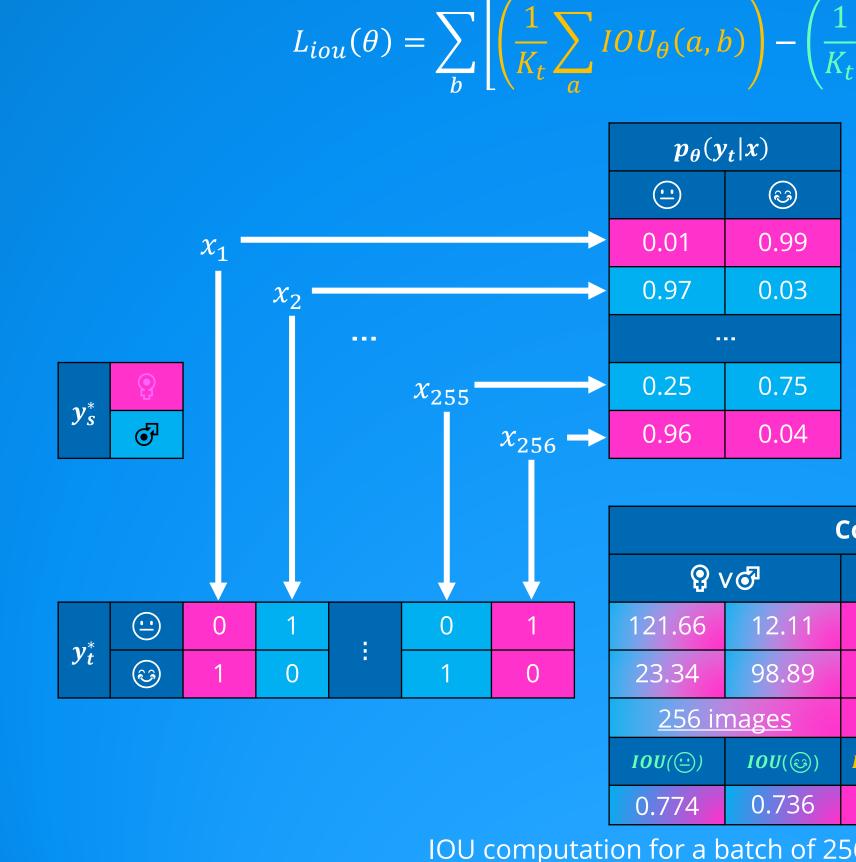
$$L_{eo}^{mi}(\theta) = \sum_{a} [H(y_t|y_t^* = a) + H(y_s^*|y_t^* = a)]$$

IV. c) Fairness Losses – Intersection over Union

- *Goal*: Similar prediction performances for each sensitive attribute class
- *Performance measure*: Ratio of correct predictions to all occurrences of a target attribute label (predictions or ground truth)

$$IOU_{\theta}(a) = \frac{p_{\theta}(y_t = a \land y_t)}{p_{\theta}(y_t = a \land y_t)}$$

- *Conditioning*: Consider only samples of a specific sensitive attribute class $IOU_{\theta}(a,b) = \frac{p_{\theta}((y_t = a \land y_t^* = a) \land y_s^* = b)}{p_{\theta}((y_t = a \lor y_t^* = a) \land y_s^* = b)}$
- *Reduction*: Average over target attribute labels \rightarrow overall and sensitive IOUs
- *L_{IOU} loss*: Sum of squared differences between overall and sensitive IOUs



 $L(\theta) = \mathbb{E}_{B \subset T} \left[\sum_{ce} (x, \theta) + \lambda \cdot L_{fair}(B, \theta) \right]$

$p_{\theta}(y_t = a)]^2$

 $\frac{p_{\theta}(y_t = a, y_s^* = b)}{(x_s) - p_s(y_s^* = b)} = H(y_t) + H(y_s^*) - H(y_t, y_s^*)$

 $p_{\theta}(y_t = a | y_t^* = b)]^2$

 $-H(y_t, y_s^*|y_t^* = a)]$

$$\left|\sum_{a} IOU_{\theta}(a)\right|^2$$

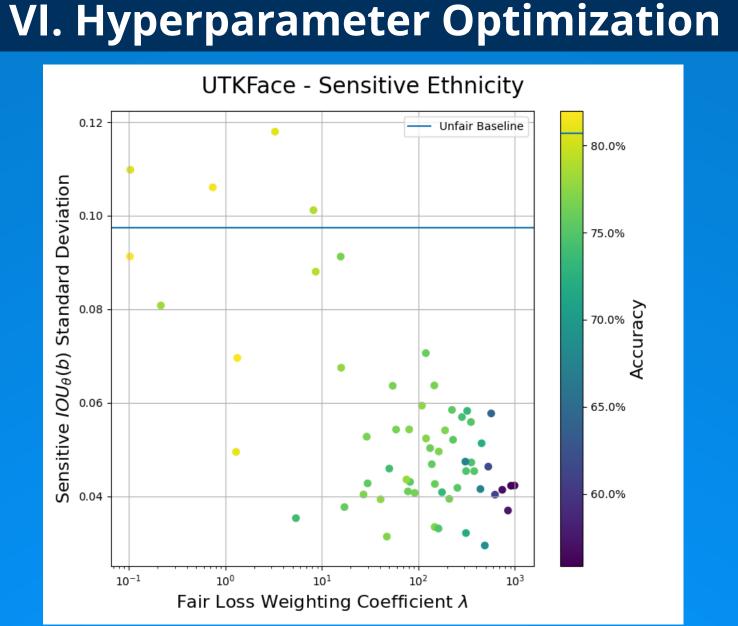
Confusion Matrices								
Ş		Q						
72.50	7.90	49.16	4.20					
15.50	68.10	7.84	30.80					
<u>164 ir</u>	nages	<u>92 images</u>						
10U(🙂, 😲)	10U(©, <mark>9</mark>)	10U(🙂,🗗)	10 U(ⓒ,♂)					
0.756	0.744	0.803	0.719					
56 images								

ZEISS

V. Experimental Results									
CelebA – Sensitive Male									
Loss	Accuracy	L _{iou}	$L_{eo}^{\ell^2}$	L_{eo}^{mi}	$L_{dp}^{\ell^2}$	L^{mi}_{dp}			
L _{ce}	0.902	8.73e-4	4.89e-3	5.12e-3	1.77e-2	8.46e-3			
L _{iou}	0.903	7.32e-5	8.59e-4	4.26e-4	2.51e-3	1.20e-3			
$L_{eo}^{\ell^2}$	0.902	1.35e-5	1.78e-4	7.71e-5	1.36e-4	6.45e-5			
L_{eo}^{mi}	0.899	2.37e-5	2.24e-4	1.03e-4	8.40e-4	4.00e-4			
$L_{dp}^{\ell^2}$	0.899	4.28e-5	3.75e-3	1.87e-3	1.57e-4	7.43e-5			
L_{dp}^{mi}	0.901	5.28e-5	7.73e-3	3.96e-3	7.15e-4	3.40e-4			

CelebA data set:

- >200K celebrity images
- 40 binary attributes (e.g. Wearing Hat, Smiling)
- Network: SlimCNN (memory-efficient CNN)
- Attributes: $y_t^* =$ Smiling and $y_s^* =$ Male
- Training:
- *Baseline model*: *L_{ce}* for 100 epochs
- *Fair models*: Baseline $\rightarrow L_{ce} + \lambda \cdot L_{fair}$ for 25 epochs



Results for the HPO of the weighting coefficient λ *Motivation*: Investigate relationship between weighting coefficient λ ,

prediction performance and fairness

HPO Objective: Fairness \triangleq standard deviation of sensitive IOU scores for different sensitive attribute labels

$$\sigma_{IOU}(\lambda) = \sqrt{\frac{1}{K_s - 1} \sum_{i=1}^{K_s} \left(\left(\frac{1}{K_s} \right)^{K_s} \right)^{K_s}} \sum_{i=1}^{K_s} \left(\left(\frac{1}{K_s} \right)^{K_s} \right)^{K_s} \sum_{i=1}^{K_s} \left(\frac{1}{K_s} \right)^{K_s} \sum_{i=1}^{K_s} \sum_{i=1}^{K_s$$

UTKFace data set:

- >20k facial images
- 3 attributes (age, gender and ethnicity)
- *Network*: EfficientNet (scalable CNN)
- Attributes: $y_t^* = Age$ Group and $y_s^* = Ethnicity$

Computergraphik und Visualisierung

 $\frac{1}{K_t} \sum_{i}^{K_t} IOU_{\theta}(a_i, b_i) - \left(\frac{1}{K_s K_t} \sum_{i}^{K_t} IOU_{\theta}(a_i, b_k)\right)$

github.com/nish03/FVAP (MIT License)