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Abstract

The development of intraoperative imaging-guided neurosurgery represents a substantial improve-
ment in the microsurgical treatment of malignant tissues in the human brain. The changes in
regional cerebral blood flow dramatically alter the emitted heat radiation of the cortex leading to
non-linear random behavior. In this work, semiparametric regression model has been developed
to combat this non-linearity. This model adds the deterministic or parametric components of
the state of the art Generalized Linear Models (GLM) with non-parametric components such as
P-splines. To model spatial-temporal interactions in the thermographic brain imaging data, the
semiparametric regression framework has been extended by Markov random field (MRF) compon-
ents. The MRF requires fast inference schemes such as Tree-reweighted message passing (TRWS)
to fulfill intra-operative performance requirements. The advancements proposed in this work
should aid the neurosurgeons to achieve accurate detection of intraoperative neuronal activity in
the somatosensory cortex with the removal of background noise from the surroundings.
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Chapter 1

Introduction

1.1 Motivation

The human brain is one of the most intricate and vital organs in the human body consisting of
nerve cells known as neurons. Neurons receive a stimulus and carry electrochemical pulses called
action potentials to various regions of the brain or body. It is this mechanism that controls most
of the activities in the human body. Action potentials get generated by voltage-gated ion channels
embedded in a cell’s plasma membrane. These channels are closed when the action potential is
below the threshold voltage, but they are opened if the potential increases to a precisely defined
threshold voltage [BL07]. Hence, neuronal activity occurs when the action potential in neurons
is above this threshold voltage [BL07]. However, it is quite challenging to image the neuronal
activity as the action potentials cause only small electrical signals.

There is an extensive variety of brain disorders that dramatically affects the memory, sensation,
and even the personality of the concerned person. The brain tumor is one such disorder which
is caused by the unrestricted growth of cells in the brain. Glioblastoma is one of the categories
of brain tumor which originates from the uncontrolled growth of Glial cells [PH06]. This growth
generates pathophysiological symptoms like edema [PH06]. World Health Organisation (WHO)
[LPR+16] classifies malignancy grade of tumors based on mean survival times [PH06]. Malignant
tumors are one of the most dangerous types of tumors with fast growth rate and survival time
between 6 to 15 months only. Ionizing radiation is one of the major causes of brain tumors. In
Germany alone, approximately 6,920 residents develop brain tumor every year [KSH+13].

Typically, the medical treatment of such tumor involves neurosurgery supported by neuroima-
ging and brain mapping. Neuroimaging consists of two different type of procedures namely Struc-
tural and Functional Imaging. Structural imaging techniques such as Computed Tomography
(CT) and Ultrasonography helps in visualization of disorders such as tumors. Functional imaging
techniques such as Optical imaging, Functional magnetic resonance imaging (fMRI) and Electro-
encephalography (EEG) aids in visualization of neuronal activity. However, each neuroimaging
technique cannot achieve both the functions together. Intraoperative thermal neuroimaging is one
such method which provides means to analyze both the structural and functional information. It
assesses the emitted heat radiation from the exposed human brain and transforms them into tem-
perature values [GHK+03] [STG+93]. Figure.1.1(b) shows a thermographic image of the exposed
human cortex of a 33-year-old patient [JH14].

The intraoperative thermal neuroimaging experiment involves exposing the human brain to a
temporal sequence of stimulus conditions while repeated scans of the brain’s region of interest are
taken [Glo11]. This process alternates between equal length periods of stimulus and rest for many
cycles. In our case, the patient’s central nerve receives electrical stimulations based on a fixed
protocol. This procedure gets repeated for a set time period. The local neurovascular coupling
results in detectable changes in blood flow [HKP+17]. The recently activated sites are replenished
with the blood flow allowing the identification of the neuronal activity in specific regions of human
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brain[Glo11].

Figure 1.1: (a) White light image of the exposed human cortex (b) Thermographic image of the
cortex [JH14]

1.2 Intraoperative Thermal Neuroimaging

Thermal imaging is readily influenced by environmental noise which makes it challenging to detect
neuronal activity in the exposed human cortex. Hysteresis effects in the detector hardware elevate
the noise effects [HKP+17]. The infrared thermographic camera consists of a focal-plane array of
microbolometer detectors that convert the emitted electromagnetic radiation of infrared range into
small changes in the electrical resistance [HKP+17]. These changes result in temperature values.
It leads to heating up of the camera and its body until it reaches a convergence temperature.
The resultant behavior induces non-linear temperature drifts into the data recordings that are
compensated by a periodic gain and offset correction also known as non-uniformity correction
(NUC) [doi10]. The data from the microbolometer is normalized by the non-uniformity correction
and gives temperature and drift normalized image just after the NUC [HKP+17].

The data we are considering in this thesis consists of sequences or time series of the intraoper-
ative thermal imaging. Let n ∈ [0, 1, ..., n−1] indicates the number of time points in the sequence,
m ∈ [0, 1, ...,m− 1] conveys the number of pixels at each time point, then Y ∈ IRn∗m denotes the
response variable consisting of temperature values. In this thesis, each image has m = 480× 640
pixels. The rows of the response variable Y represents pixels at a particular time point, and each
column represents the time series of responses at individual pixels.

Figure 1.2 shows a time series of a single pixel (say 25th) with n = 1024 time points. The
response variable, i.e., the temperature recordings in the vertical axis of the figure has been
normalized to zero mean. We discussed that the experimental subject is scanned while being
exposed to alternating periods of rest and stimuli. So, we use Gaussian distribution N (µ, σ2)
as our synthetic activation pattern to evoke neuronal activity with predefined mean µ ∈ IR and
variance σ2 ∈ IR. Figure 1.3 shows the Gaussian activation pattern which is superimposed with
the raw intraoperative thermal imaging data acting as our baseline raw dataset.
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Figure 1.2: The time series of the 25th pixel in the raw intraoperative data with n = 1024 time
points.

Figure 1.3: The Gaussian activation pattern with µ = 30 and σ =10. An alternate cycles of rest
and stimuli is visible. Higher levels of response indicate stimulus while the lower levels indicate
rest.

1.3 Applications and Summary

Intraoperative thermal neuroimaging identifies neuronal activity as neurovascular coupling helps
to correlate local changes in cortical perfusion with neuronal activity. Figure 1.4 shows a typical
neuronal activation followed by cerebral blood flow (CBF) response. The imaging technique also
provides information about the tissue composition and cell metabolism [HKP+17]. However,
there are other applications of thermal imaging as well which are equally engrossing. The study of
temperature is widely used in medical and non-medical fields. We focus on its medical applications.
Work by [CC70] showed that the surface temperature of an arthritic joint was related to the intra-
articular joint, and to other biochemical markers of inflammation obtained from the exudate.
This experiment ultimately helped in diagnosing inflammatory arthritis. [VPRK04] compared
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thermograms with radiographs from patients with hand osteoarthritis. They reported increased
temperatures associated with even slight degenerative changes and low temperatures in more
severe disease. [STG+93] successfully measured neuronal activity in rat brains with the help of
thermal imaging. [GHK+03] showed the visualization of neuronal activity in thermal imaging with
a statistical approach ranging from speech mapping to sensory activations. Thermal imaging is
also widely used in dentistry[GGRS+96] as well as tumor segmentation [GHKO04]. More detailed
applications of thermal imaging are provided in [RA12].

Figure 1.4: Schematic of a typical CBF response to brief neuronal activation [PF08]

There are broad categories of statistical methodologies that have been proposed in the past
for the analysis of such data. The thesis includes an extensive literature review of techniques
applied in the study of imaging experiments. The literature review in the next chapter considers
statistical methodologies for analysis, estimation, and modeling of spatial-temporal data. The
chapter also describes the literature on state of the art statistical inference approaches. After
the literature review, the thesis aims to present a profound semiparametric regression model to
accurately detect somatosensory neuronal activity by increasing the signal to noise ratio (SNR)
in the target regions. As already discussed, the data is multidimensional containing thousands of
pixels with time series of a thousand or more scans. Also, the data is correlated both in space
and time. However, it is noisy with high environmental interference, and the magnitude of the
signal increase due to activation is very low [Glo11]. Additionally, the non-uniformity correction
induces a jump discontinuity into the time-series of each pixel and alters the low-frequency time-
behavior [HHS+14]. All these effects contribute to the background noise in the signal and make
it challenging to detect neuronal activity accurately. Therefore, it becomes vital to compensate
these non-linear background noise. Furthermore, the data exhibits stochastic or random process
[Pit79]. In its purest form, a stochastic process is a description of the movement of a random
process over time. At every new unit of time, the random process assumes one of many possible
values, and each value has a probability associated with it [Pit79]. While we do not know the
exact path that the random process takes, we make inferences about the path it might take
based on those probabilities. The thesis proposes the extension of the semiparametric regression
model with spatial regularization using Markov random fields (MRF). The proposed framework is
described in the subsequent chapters,and an extensive performance evaluation has been done. The
proposed MRF model should help in the efficient modeling of pixel time courses by minimizing
the background noise and catching the linear as well as non-linear behavior present in the data.
Finally, the results have been visualized to decipher the neuronal activity in the human brain
accurately.
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Chapter 2

Related Work

This chapter discusses popular works conducted in the past to handle noisy multidimensional data.
[NW72] proposed Generalized Linear model by stating linear relationships between response and
independent variables. [FHW+94] used this model for the analysis of the functional imaging data.
They stated that if Y ∈ IRn∗m is the response variable and X ∈ IRn∗p is the independent variable
with n,m, p being positive integers, then the relationship between these variables according to
GLM is given by Y = Xβ where β ∈ IRp∗m are the coefficients of the independent variable X.
The GLM model for such sequences is of the form:

Y = Xβ + ε (2.1)

For our use case, the coefficient matrix β represent regression coefficient values at each pixel loca-
tion. ε ∈ IRn∗m is the error term which are modeled using probability distributions such as normal,
binomial, Poisson, Bernoulli, gamma distributions, among others. Extending the GLM model
with non-parametric components is necessary to catch non-linear and random effects. [RWC03]
proposed a semiparametric regression framework that combines parametric components with non-
parametric components such as a spline polynomial functions. [DB01] defines spline function of a
particular order as a piecewise polynomial function that passes through many points called knots
and generated fitted curves. Splines enable the creation and control of complex shapes using an
ideal number of knots. Spline are categorized into open and closed curves. When the first knot
coincides with the last knot, then a closed spline curve is formed. These type of spline curves,
therefore, has no endpoints. However, when the first and the last knots are distinct from each
other, an open spline curve is formed. [DB01] uses cubic B-splines which are third order poly-
nomials and they possess a high level of smoothness. However, choosing an optimal number and
position of the knots is a tricky task. Too many knots lead to overfitting of the data while too few
leads to underfitting [EM96].

[OYJ86] presented penalized B-splines or P-splines as a solution to the challenge of ideal fit of
splines. They used the integral of a squared higher derivative of the fitted curve as the penalty.
[EM96] generalized this approach by proposing a relatively large number of knots and a higher
order finite difference penalty on coefficients of adjacent B-Splines. This method reduced the di-
mensionality of the problem to the number of knots instead of the number of time points. [WTH09]
presented a penalized matrix decomposition (PMD), for computing a rank-K approximation for a
matrix using l1-penalties, which yielded a decomposition of X using sparse vectors. They showed
that when the PMD is applied using a l1-penalty on coefficients, it points to a method for sparse
principal components. [Ng04] studied two different regularization methods l1 and l2 for preventing
overfitting. Focusing on logistic regression, they showed that the sample complexity grows only
logarithmically after performing l1 regularization of the parameters. However, there is no closed
form solution to l1 regularization which make inference computationally demanding.

[HT90] developed a generalized additive model (GAM) approach to enhance the properties of
generalized linear model with a linear predictor depending linearly on unknown smooth functions
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of some predictor variables. They stated:

g(E(Y)) = X0β + f1(X1) + f2(X2) + · · ·+ fn−1(Xn−1) (2.2)

where X0β is strictly parametric, fi are the functions which may be specified parametrically, or
non-parametrically, index i ∈ [1, 2, ..., n− 1] , E(Y) is the expectation of the response variable Y,
X are the independent variables for each i. An exponential family distribution is specified for Y
along with a link function g. The P-spline functions combined with the parametric component
gives a good approximation of g(E(Y)) in the GAM approach. However, this method suffers with
numerical rank deficiency. [Woo04] proposed GAM with a ridge penalty to prevent numerical rank
deficiency. It is based on the pivoted QR decomposition and the singular value decomposition.
[Woo04] examined singular values and removed all the values less than the most substantial singular
value multiplied by the square root of the machine precision. This deletion had the effect of
recasting the problem into a reduced space in which the model parameters were identifiable.
Therefore, this approach dealt adequately with the severe problem of rank deficiency that occurs
only over a part of the smoothing parameter space and gives an approximate solution to the initial
approaches.

The thermal imaging data concerned in this thesis is spatial-temporal in behavior. Therefore,
multivariate or spatial interpolation becomes essential on functions of more than one variable.
[JH13] proposed discrete wavelet transform on preprocessed thermal brain imaging data. This tech-
nique was able to detect tumors in the brain, and the method showcased the use of time-resolved
thermography. [HHS+14] developed a wavelet shrinkage scheme based on subspace analysis in
1D wavelet domain to remove motion related patterns from the intraoperative thermographic
brain image sequence. The results of the simulation study and the intraoperative measurements
revealed an efficient method for improving perfusion and analyzing neuronal activity. [ME05]
built a two-dimensional coefficient surface that allows for interaction across the indexing plane of
the regressor array. They presented a penalized signal regression using penalized B-spline tensor
products, where difference penalties are placed on rows and columns of the tensor product coeffi-
cients. The size of this model was not a problem, but the intermediate step with flattened basis
led to computational issues. Imagine an image of 1000 * 1000 pixels and 1000 tensor products; the
basis matrix then have 109 elements which consumes an enormous amount of memory. [ECD06]
proposed a fast algorithm that takes advantage of the unique structure of array data and the model
matrix as a tensor product. The algorithm avoids computation of full basis matrix and computes
the normal equations directly. The algorithm was designed to handle large basis functions.

[Boo89] discussed thin plate splines as an approach to smooth two dimensional surface. The
thin-plate spline was visualized as a technique which provided an optimal solution to the problem
of deforming a flat piece of sheet metal at a finite number of locations [WM04]. In principle,
thin-plate splines (TPS) is used as the model for multidimensional surfaces, but they have too
many parameters to estimate with a vast system of equations. [Woo03] showed fitting a thin plate
spline to n data points involves estimation of n parameters and a smoothing parameter λ. This
results in O(n3) operations causing computational issues if it is implemented in a semiparametric
framework for example. Normally, spatial smoothers such as Thin plate splines uses Euclidean
distances between observations even though this distance may not be a measure of spatial prox-
imity. Euclidean distance is extremely sensitive to the scales of the variables involved since all
variables are measured in the same units of length. Secondly, the Euclidean distance is blind to
correlated variables. [Mah36] presented the Mahalanobis distance as an alternative measure of the
distance. The Mahalanobis distance of an independent variable X ∈ IRn∗p with mean µ ∈ IRn∗p

and covariance matrix C ∈ IRn∗n is defined as:

D(X) =
√

(X− µ)TC−1(X− µ). (2.3)

The Mahalanobis distance uses the covariance among the variables for calculating the distances.
With this measure, the problems of scale and correlation inherent in the Euclidean distance are
no longer an issue. A point to note is that the Mahalanobis distance is the generalized form of
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Euclidean distance. If the covariance matrix is the identity matrix, the Mahalanobis distance
reduces to the Euclidean distance.

[WR07] replaced straight-line distances with geodesic distances in a smoother that is a sort of
approximate thin plate spline known as Geodesic Low rank Thin Plate Splines (GLTPS). However,
this algorithm is costly for large datasets. The principle difficulty in interpreting the results of
this method is that it is unclear what their penalty term penalizes. To overcome these challenges,
[MW14] used a method of spline smoothing with respect to generalized distances proposed ori-
ginally by [Duc77]. They modeled a response variable Y = f(e), where f is a smooth function,
dependent on e ∈ IRn, a vector of generalized distances between n observations. Finally they
approximate the model as f(e) = fn(X(e)), where X(e) is the location of the point with distance
vector e in the n dimensional Euclidean space. The method smooths over a Euclidean space in
which the Euclidean inter-observation distances are approximately equal to the original general-
ized distances which is given by ‖X(ei) −X(ej) ‖≈ eij . eij is the generalized distance between
points i and j (‖ is the Euclidean norm) where i, j ∈ [0, 1, ..., n− 1].

[Ram02] suggested a method named FELSPLINE (Finite element L Spline) in which a connec-
tion between smoothing with differential operators based penalties and partial differential equa-
tions were used to produce a smoother which solved partial differential equation problem defined
only over a finite area. However, an extreme boundary condition was required to ensure a unique
solution to the L-spline smoothing which might not work in all kind of problems. [WBH+08]
proposed an alternative model by experimenting with the physical analogy of a soap film which
are represented as a basis penalty smoother, and has better boundary behavior. Mathematically,
the soap film consists of two sets of basis functions, one that is based entirely on the domain and
the other that is induced by the known or estimated boundary values. One problem with soap
film smoothing is that the basis function setup is computationally expensive. Additionally, no
distinction exists between open boundaries (a boundary that is simply the limit of the region) and
hard boundaries (real physical barriers).

[CDE06] introduced generalized linear array model (GLAM), where the data is arranged in
an array structure or regular grid. GLAM model is based on generalized linear model (GLM)
with the design matrix denoted as a Kronecker product ⊗. The algorithm takes advantages of
the structure of the multidimensional data since the fitted values and standard errors are in the
correct space. Suppose the response variable Y ∈ IRn∗m is arranged in a n-dimensional array with
each array containing m values, the design matrix of the independent variable X ∈ IRn∗p is the
Kronecker product X = Xn−1 ⊗Xn−2 ⊗ . . .⊗X0 where X0, X1, ..., Xn−1 ∈ IRp. The analysis of
GLM with response variable Y and design matrix X proceeds by the evaluation of the algorithm
using the equation:

XTWXβ̂ = XTWZ, (2.4)

where β̂ is the estimate of β ∈ IRp∗m, W ∈ IRn∗n is the diagonal weight matrix, and Z =
η+ W−1(Y−µ) is the working variable with µ being the mean values. Computationally, GLAM
provides array algorithms to calculate the linear predictor, η = Xβ and the weighted inner
product XTWX without evaluation of the model matrix X thereby avoiding computational issues
in storage and managing huge amount of data with high speed and efficient computations during
model estimation.

A thorough research has been done in the previous works to analyze spatial-temporal inter-
actions in image datasets. Smoothing spatial-temporal model is suitable to estimate the spatial
and temporal trends simultaneously. [KW03] proposed geoadditive models with Gaussian random
fields where they imply that response variable is modeled as the sum of spatial and temporal
effects given as f(space) + f(time). P-Spline ANOVA type interaction model for spatial-temporal
smoothing proposed by [LD11] allows spatial-temporal interactions. They used penalized splines
in mixed model (semiparametric regression) framework for smoothing spatial-temporal data and
is given by:

Y = κ+ fs(X1,X2) + ft(Xt) + fst(X1,X2,Xt) + ε, ε ∼ N (0, σ2). (2.5)

where κ is linear predictor, ε is the Gaussian error term with covariance σ2, X1 and X2 are
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spatial covariates, Xt is the temporal covariate, fs is the function for two-dimensional spatial
interaction, ft is the function to capture temporal trends and fst is the function for the spatial-
temporal interaction. The temporal trends were modeled using unidimensional P-splines whereas
the spatial and spatial-temporal interactions used two-dimensional and three-dimensional tensor
products of P-splines respectively. However, the issue with such implementation is that with large
datasets, the tensor products are computationally expensive. For instance, when the data has a
strong seasonal trend, the size of basis matrices explodes, and the tensor products are easily of
the order of thousands [LD11].

Lately, the literature of image analysis has seen an upsurge in the use of Graphical models to
spatially smooth multidimensional data and to express prior and generic knowledge. Graphical
models [Lau96] helps in dividing a complex model into a combination of simpler parts. Probability
theory provides a conceptual idea for combining these parts into a consistent model. A probabilistic
graphical model is a pair ((X,G) = (V,E)) of random variables X and a graph G where V is a set
of nodes and E is a set of edges [Li09]. The random variables X is indexed by nodes of G such that
each node v ∈ V is associated with a random variable Xv with xv ∈ Xv. xv is the value assigned
to the random variable Xv. The edge set E reveals the conditional independence on X. A special
kind of graphs called undirected graphs contains only undirected edges, which are represented by
a set of unordered edge pairs [Li09]. Figure 2.1 shows the example of an undirected graph. Since
the pixels in our intraoperative thermal image data are non-causal in nature, undirected graphs
particularly become useful for use in our problem set.

Figure 2.1: The left figure is an undirected graph ((X,G) = (V,E)) where circles resembles a set
of nodes V and the lines connecting the nodes are the set of edges E. The random variables X
are indexed on the nodes. The right figure shows a first order neighborhood systems of the left
graph where red node e has green neighboring nodes b, d, f and h

The nodes in the set V are related to one another via a neighborhood system. A neighborhood
system is defined as the set of nodes neighboring a node v excluding itself [BK73]. In the first
order neighborhood system, also called the 4-neighborhood system, every interior node has four
neighbors. The nodes at the boundaries have fewer neighbors. Figure 2.2 (a) shows an example
of a first order neighborhood system. A clique S for (V,E) is defined as a subset of nodes in
V i.e S ⊂ V [Li09]. The single-node, horizontal and vertical pair-nodes cliques, constitute the
first order neighborhood system as shown in Figure 2.2 (b-d). It consists of either the single node
S1 = (v), or a pair of neighboring nodes S2 = (v, v

′
), or a triple neighboring nodes S3 = (v, v

′
, v
′′
)

[Li09]. We intend to limit our discussion with only single and pair node cliques. The collection of
a single node and pair node cliques for the first order neighborhood system is given as:

S = S1 ∪ S2 (2.6)

A lot of research has been conducted in the past to build random fields as an extension to the
undirected graphical model. A random field model ([Bes74][Bes86b]) assigns a potential to each
site, which represents intensity, depth or a category label. As previously discussed, the random
variable set X = (Xa, ....., Xv) is defined on the set of nodes V in which each random variable
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Figure 2.2: (a) shows a first order neighborhood system while (b)-(d) shows different types of
cliques possible with different combination of nodes.

takes a value from a discrete or a continuous label set. We use the notation Xv = xv to denote
the event that Xv takes the value xv and the notation (Xa = xa, ....., Xv = xv) to denote the
joint event [Li09]. Hence, the probability that random variable Xv takes the value xv is denoted
by P (Xv = xv), abbreviated P (Xv) and the joint probability is denoted by P (X = x) = P (Xa =
xa, ....., Xv = xv) and abbreviated P (X) [Li09]. A Markov random field is the random variable
set X to system G = (V,E) which satisfies Markov property and is connected to each other in an
undirected graph [KS80]. The properties that it needs to satisfy are:

P (X) > 0,∀x ∈ X (Positivity) (2.7)

P (Xv|XV−v) = P (Xv|XSv ), (Markovianity) (2.8)

The Markov property (Markovianity) can be termed as the property of a random variable where
the conditional probability distribution of the random variable depends only upon its cliques Sv
instead of all the random variables present in the system V − v. Gibbs Random Field (GRF) is
another type of random field where a set of random variables X is said to obey a Gibbs distribution
on V with respect to S [Gib]. [KS80] showed that a discrete Gibbs random field (GRF) provides
a global model by stipulating a probability mass function. It describes the global properties of an
image regarding the joint distribution of potentials for all pixels. [DE87] presented a new approach
to the use of Gibbs distributions. They proposed dynamic programming based segmentation al-
gorithms for noisy and textured images, considering a statistical maximum a posteriori probability
(MAP) criterion. [AHK65] used Markov assumption to model spatial-temporal data. An MRF
is characterized by its local property (the Markovianity) whereas a GRF is characterized by its
global property (the Gibbs distribution). The Hammersley-Clifford theorem [HC71] established
the equivalence of these two types of random field models. It states that a unique Gibbs Random
Field exists for every Markov Random field as long as Gibbs random field is defined in terms of a
neighborhood system. The joint probability function of a Markov Random field can be postulated
in terms of Gibbs Random field as [Li09]:

P (X) =
1

J
e−

1
T U(X) (2.9)

where J ∈ IR is a normalizing constant called the partition function, T ∈ IR is a constant called
the temperature which is assumed to be 1 unless otherwise stated, and U(X) ∈ IR is the energy
function given as:

U(X) =
∑
s∈S

θs(X) (2.10)

U(X) is the sum of clique potentials θs(X) over all possible cliques S in a neighborhood. The
value of θs(X) depends on the local configuration of the clique s. We discuss a special case where
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cliques of only first order neighborhood with single and pair nodes are considered. In this case,
the energy function is written as

U(X) =
∑
vεV

θ1(Xv) + γ
∑
vεV

∑
v′εS

θ2(Xv, Xv′) (2.11)

where θ1 and θ2 are the unary and pairwise clique potentials for n random variables and γ ∈
IR is the pairwise potential weight. It is intuitive from the Markov-Gibbs equivalence that the
probability of assigning a label x to a random variable X is increased if we decrease the overall
energy function U(X). Hence, if the response variable is Y and the random variable assignments
are X, then according to the Bayes rule [Bay63], the maximum a posteriori probability (MAP) is
written as:

argmaxP (X|Y) = argmaxP (Y|X)P (X) (2.12)

where P (X|Y) is called the a posteriori probability. It is to be noted that P (X) is termed as
P (X|Y ).

The ubiquity of Gaussian random variables in statistical applications had led to the use of
continuous random fields, called Gaussian Markov Random Fields (GMRF) as image models.
[Che89] proposed the algorithm for sampling GMRFs. Pixel or sites were assigned continuous
labels which had joint Gaussian distributions with means µ, standard deviations σ, and correlations
controlled by some specific parameters. GMRF is a pairwise interaction model with the random
variables at each pixel permitted to take on any real value.

[FKL04b][FL01a][FL01b][FL][Mar95][LF01][BKL05] proposed extensions of penalized spline
semiparametric space-time regression model using a Bayesian perspective. The non-linear ef-
fects of continuous covariates and time trends were modeled using Bayesian versions of penalized
splines, while correlated spatial effects were solved using Gaussian Markov random field prior
in a continuous schema. The inference has been performed using Empirical Bayes approach on
the generalized linear mixed model representation. This approach of inference has been termed
a posteriori mode estimation and resembles penalized likelihood estimation. The advantage of
the Bayesian approach is that all unknown functions and parameters are in a unified framework.
The empirical approach is based on generalized linear mixed model (GLMM) developed by [LZ99]
for longitudinal data analysis using smoothing splines, or for geoadditive models using stationary
Gaussian random fields [KW03]. The time trends of the continuous independent variables have
been modeled using P-Splines, and the spatial effect has been captured using Gaussian Markov
random field which also works in the continuous schema. [FKL04a] compared the performance of
Empirical Bayes (EB) using Gaussian Markov Random field, and Full Bayes (FB) approaches with
Markov Chain Monte Carlo (MCMC) technique. The spatial-temporal model using EB approach
showed better accuracy and runtime as compared to FB approach, confirming that the inclusion
of the spatial information was substantial [FKL04a]. The author concluded that Empirical Bayes
inference is a promising alternative to full Bayes inference even for relatively large data sets since
Monte Carlo simulations are computationally expensive as compared to Empirical Bayes approach
which uses Markov random field priors.

In popular literature, a different version of Markov random fields known as discrete Markov
Random Fields has become very common. In these models, the random variable defined on each
node or pixel takes only discrete values. Discrete MRF is subdivided into Ising prior and Potts
prior. The random variables defined using Ising prior have only binary values whereas Potts
prior allows them to choose from a range of discrete values. These two priors are different from
Gaussian MRF priors as these two involve discrete labels as compared to continuous labels of
Gaussian MRF. Various attempts have been made in the past to perform a comparison of there
properties, complexities as well as performances. [SS06] compared Discrete MRF based on Ising
prior to Gaussian MRF in the context of two different empirical examples. Both the examples
featured a two-dimensional regular lattice, and for both types of priors, the neighborhood structure
involved eight immediate neighboring pixels. In the first example, the author found that Ising prior
estimated higher posterior probabilities of the pixels as compared to Gaussian MRF. The tendency
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of the Ising prior to fill voids and smooth over small gaps were noticeable in the first example.
Overall, the Ising prior appeared to promote strong clustering and greater segmentation accuracy
than the Gaussian prior. However, the author observed that Gaussian prior consumed lesser time
than Ising prior to achieve the optimal solution. The high runtime of Discrete Markov random
fields is explained from the fact that they are NP-hard problem [Sin93]. The second example in
[SS06] was a spatial-temporal functional magnetic resonance imaging (fMRI) data in human brain
imaging environment. The data had high levels of noise, and spatial smoothing was crucial to
obtain quality results. The data was fitted using the Ising and the Gaussian priors followed by
the simulation study based on the fitted data. The objective in fMRI studies of the human brain
was to identify areas where an increase in the blood oxygenation levels occurs in response to the
presence of an external stimulus, as measured by an observed fMRI signal time series at each site
(labeled as ’voxel’) on a large regular three-dimensional lattice. The dataset represented voxels
of the brain as a dependent variable in a 72 ∗ 86 lattice with time series regressions, each with 63
observations. The Discrete MRF, i.e., Ising prior and Gaussian MRFs were then used to smooth
the data. [SS06] found that Ising prior had less ’starring’ (isolated voxels being classified as active)
than the Gaussian prior, and accuracy for clustering active voxels were higher with Ising prior
than Gaussian prior as shown in Table 2.1.

Noise level Ising prior Gaussian prior
0.5 0.095 0.109
1 0.642 0.698
2 1.748 1.781

Table 2.1: Average Performance Metrics for 50 Replicates of the fMRI dataset simulation based
on the Ising and Gaussian priors. The metrics corresponding to the best performing prior are in
bold. The table shows the % of voxels which were misclassified at different noise levels [SS06].

To investigate further, the author undertook a simulation study on fitted regressions and found
that the Ising prior provided superior performance based on real misclassification rates of voxels.
Overall, the simulations revealed Gaussian prior as the weaker of the two prior. [NTC13] performed
similar comparisons on Potts prior and Gaussian MRFs and found that the Gaussian prior had
the better runtime results but the final segmentation accuracy was worse than Potts prior.

Discrete Markov random fields as probabilistic models have been widely used in previous works.
These models are modeled based on factor graphs [KFL06] in which the graph expresses relations
on a set of random variables [Pea88][KF09]. The conditional independence of random variables in
an undirected discrete graphical model implies that factorization of the variables is imminent to
carry out graph-based algorithms. A very important notion of factor graph is the message, which
can be understood as a random variable Xa telling something about the random variable Xb, when
the message is passed from Xa to Xb. It is therefore common to use factor graphs to visualize
this factorization of the graphical model [KFL06][Loe04]. Factors enable the recursive structure of
calculating messages, making the message passing [Kol06] or belief propagation [FH06] algorithms
easier to understand and implement. From the equations (2.9-2.11), it is written that:

P (X|Y) ∝ exp

(
−
(∑
v∈V

θ1(Xv) + γ
∑
v∈V

∑
v′∈S

θ2(Xv, Xv′)

))
(2.13)

Factor graphs alleviates the challenge of solving the above equation by defining factor or clique
potentials not in log space by:

P (X|Y) ∝
∏
v∈V

ϕ1(Xv)
∏

v,v′∈S
ϕ2(Xv, Xv′) (2.14)

where ϕ1 and ϕ2 are the unary and the pairwise factors defined on n random variables respectively.
The maximum a posteriori probability (MAP) is defined by the simple product of these small factor

Master Thesis 11



CHAPTER 2. RELATED WORK

functions. Due to the addition of the factors in the graphical model, the notation now becomes
(X,G) = (V,F,E) where F are the factors that are assigned to the set of nodes V and the set of
edges E.

Figure 2.3: (a) shows a typical thermographic image of the cortex , (b) is the representative factor
graph of a small region of the image with 5 pixels and (c) shows the resultant label diagram of
the image after finding the maximum a posteriori probability.

The problem of finding the maximum a posteriori probability (MAP) seeks the most probable
label assignments that describe a set of random variables. There exists several optimal solutions
which make the distribution P (X|Y) multi-modal. Also, solving the Markov random field formu-
lation of the MAP problem is known to be NP-hard [Coo90][Shi94]. This means that we can not
expect, that the MAP-problem is exactly solvable. However, even if the optimal solution cannot
be calculated in suitable time, one can find approximate solutions. In such cases, it is favorable
to use methods which give upper and lower bounds on the optimal posterior probabilities and
energies, respectively.

Search based algorithms such as ICM [Bes86a] keeps all variables except one fixed in each
step and adjusts the free variable such that the objective function is minimized. The variables are
repeatedly visited in a particular order until no alteration of a single variable can further reduce the
value of the objective function. These algorithms have an exponentially high runtime if they are
applied to a large number of variables [AKK+10]. [Pea88] [MWJ13][WF06] uses message passing
algorithm called Loopy Belief Propagation (LBP) whose primary operation is to send messages
between the nodes of the graph. It acts as an approach related to dynamic programming if the
messages are sent in serial order. However, even if the messages are sent in the parallel order, it
guarantees to converge to the optimal solution, but with some overhead of calculations. However,
the prime issue with LBP is that there is an uncertainty on really what it optimizes [AKK+10].
[WF06] showed that fixpoints of the sum-product-LBP coincide with stationary points of the Bethe
variational problem [Bet35].

[WJW05][WJ08] proposed algorithms which are similar to LBP but based on a convex re-
laxation of the MAP problem by considering a convex upper bound. A decomposition of the
original problem into several tree structured subproblems acts as a promising solution [WJW05].
By re-parametrization of the decomposition, which re-weights the trees, a bound obtained by
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this decomposition is optimized. This method is known as Tree reweighted Belief Propagation or
TRBP [WJW05]. While TRBP process fix-point updates, the algorithm gets stuck in local optima
[Kol06]. Furthermore, TRBP has no guarantee for convergence if all messages are calculated in a
parallel manner. [WJ08] proposed a consistent tree representation with some ordering of nodes.
This ordering restricts the choice of the decomposition defining trees for fully connected graphs.
Dual decomposition proposed by [GK87][Gui03] is a conventional technique in convex optimiza-
tion to decompose the problem in a set of simpler interdependent subproblems. [Kol06] proposed
a sequential version of tree-reweighted message passing (TRW-S) which is guaranteed to converge
to minima satisfying the so-called week tree agreement. [CR12] implemented TRWS algorithm in
FPGA hardware to reap the benefits of its sequential execution and utilize significant parallelism
and memory bandwidth for acceleration.

[KAH+14] performed a comparative study of these inference techniques for Discrete Markov
Random fields (DMRF). The author discussed pixel-based-models, superpixel based models, etc.
with varying orders. In pixel-based models, each pixel in a 2D lattice is a variable whereas, in
superpixel based models, a cluster of pixels acts as a single variable. The models were evaluated
based on different neighborhood structures. The study attempted to compare the inference tech-
niques based on runtime, energy, bound, amount of memory consumed and so on. The inference
algorithms were broadly classified into linear programming methods, move making methods and
message passing methods. In all these inference methods, algorithms based on Monte Carlo simu-
lations were not considered. The findings were summarized for problems such as Stereo Matching,
Inpainting, and Photomontage. The author found that with good stopping conditions, Tree-
reweighted message passing (TRWS) performed well for all models to which it can be applied.
Compared to BP, TRW-S has better convergence properties guaranteed by its tree-sequential
style of message passing on the tree-decomposed graph [BBHS07] [BGPC10], and in many cases
performed better in its quality of labeling results than BP [Ibm11].

Belief propagation [Pea88] finishes message passing in two passes: message passing from leaf
nodes to the root node of the tree (upward pass) and from the root to the leaves (downward pass).
Figure 2.4 shows an inward pass with each node having four possible labels. The message that
node q receives from node p is given as [Kol06]:

Mpq(j) = min
i
{θp(i) + γθpq(i, j)} (2.15)

where i, j ∈ [0, 1, 2, 3] are the possible labels in node p and q respectively, θp(i) ∈ IR is the unary
potential for node p at label i and θpq(i, j) ∈ Z≥0 is the pairwise potential for node p and q at labels
i and j respectively. The message that node r receive from node q therefore becomes [Kol06]:

Mqr(k) = min
j
{θq(j) +Mpq(j) + γθqr(j, k)} (2.16)

where k is the number of possible labels for node r. After two-pass message passing, the beliefs for
all the nodes and edges are obtained. If all the node beliefs have the unique minimum assignment,
the global optimum label for each node is found based on its belief individually. In the case of
graphs without loops, the belief propagation finds the optimum assignment with minimum energy.

With belief propagation, we expect that the belief of one node is propagated to the other
nodes far apart in the graph. With loopy graphs, however, the message can also go along the
loop back to the node itself and impact its original beliefs [WJW05]. It is often the case that
when running belief propagation on a loopy graph, messages do not converge but oscillate. Even if
messages are converged, and we find the local best label assignment, the minimum energy of this
assignment is usually higher than the true global minimum [WJW05]. Tree-reweighted message
passing (TRWS) [WJW05] is designed to avoid this weakness by transforming the original energy
minimization problem on a loopy graph to a set of minimization problems on trees that cover the
graph. The original energy function on an MRF with parameters can be decomposed into a sum
of energy functions on trees as follows:

U(X|θ) =
∑
T

ωTU(XT |θT ) (2.17)
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Figure 2.4: A descriptive diagram of flow of messages between two nodes during an inward pass
towards root node [Kol06].

where ωT is a set of parameters defined on the tree T , θ are the unary and pairwise potentials
defined on the graph. We obtain the lower bound of the original energy minimization problems
by applying Jensens inequality as follows [WJW05]:

min
X

U(X|θ) ≥
∑
T

ωT min
X

U(XT |θT ) (2.18)

One advantage of this lower bound is that it efficiently finds the best label assignment for each
tree using belief propagation [WJW05]. Any subset of the union of the best label assignments for
all the trees results in locally optimum energy. The equality is satisfied when the label assignments
for all the trees agree with each other. The union of these assignments is proven to be the exact
global optimum assignment that we want to achieve [WJW05]. After decomposition, the goal is to
find the proper set of parameters on trees that maximizes the lower bound. A modified version of
Tree reweighted message passing finds the best parameters by iteratively updating beliefs [Kol06].
For example, to update a belief of one node, we first take all the trees that contain this node and
perform BP on each tree. The average among the beliefs of the node in the corresponding trees is
then calculated. The averaged belief is used as a new unary potential for the update of the other
nodes [Kol06].

Figure 2.5: A typical TRWS Algorithm

An important property of the TRW-S method is that if we repeat the belief update one node at
a time, the lower bound is guaranteed not to decrease [CR12]. In other words, we avoid the energy
value oscillating by updating belief sequentially [CR12]. The first diagram in Figure. 2.6 shows
a 3x3 factor graph, where the dark and white rectangles represent unary and pairwise factors,
respectively. The second diagram shows the tree-decomposition of the first figure. Each row or
column corresponds to a tree; the tree T1 consists of node 1, 2 and 3. Note that the update
order (the numbers in circles) is monotonically increasing for every tree. Thus, a message once
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computed is reused in the later update; the message from 1 to 2 computed in the update of node
2 is reused in the update of node 3. If we follow this monotonic order to pass messages from
top-left to bottom right (forward pass) and in the opposite direction (backward pass), we obtain
the equivalent result of sequential belief update while computing each message only once [CR12].

Figure 2.6: An example 3x3 grid factor graph with its monotonic chains [CR12]

In this thesis, a discrete factor graph is constructed based on the implementation of the
OpenGM framework [ATK12] (see Appendix A). It has built-in functions which help in defin-
ing unary and pairwise factors, construct a graphical model and finally run inference algorithms
like TRWS to minimize the energy function.

2.1 Summary

Various statistical methods were presented in this chapter which gave insights into the analysis
of spatial-temporal datasets. The study focused primarily on robust estimation of such data and
showcased the advantages as well as the issues involved in the practical implementation of the
methods. The basic concepts related to semiparametric regression framework, graphical model,
Markov Random fields and factor graphs were also discussed. It is clear that the optimization of
factor graphs by minimizing the overall energy function of a probabilistic model is vital. Therefore,
the crucial trade-offs between various inference schemes were explored. After taking into consid-
eration various factors involved, subsequent chapters put forward the proposed model developed
in this thesis.
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Chapter 3

Background theory

3.1 B-splines

B-splines are attractive for univariate non-parametric modelling of time series since they offer
more control and flexibility than Bezier curves [DB01]. B-spline curves are composed from many
pieces of polynomials. Consider w + 1 real equidistant values ti called knots with i ∈ [0, 1, ..., w].
The knots has two endpoints, t0 and tw with:

t0 ≤ t1 ≤ .... ≤ tw
For order j ∈ [1, ..., d], d being the order of the spline, a set of real valued B-spline basis

functions Bij is defined for each augmented knot set ti as [DB01]:

Bi0(t) =

{
1, if ti ≤ t < ti+1

0, otherwise

Bi,j(t) = ψi,j(t)Bi,j−1(t) + [1− ψi+1,j(t)]Bi+1,j−1(t)

where

ψi,j(t) =

{
t−ti

ti+j−ti , if ti+j 6= ti

0, otherwise

The above equations assumes that 0/0 is 0. Therefore, a spline function of order d is composed
of a linear combination of basis B-splines given by [DB01]:

p−1∑
i=0

βiBi,d(t)

The β ∈ IRp are control points or de-boor points [DB01] or simply spline coefficients. It is to
be noted that p = w − d − 1. As discussed in the previous chapter, spline curves are categorized
into open and closed curves. Open spline curves are beneficial to use in our case because the first
and last knots do not coincide with each other. Defining the position of knots ti is crucial in a
spline regression framework. For a discontinuous data, a non-uniform position of knots seems to
be the best solution. However, the intraoperative thermal imaging data is uniform with equal
distance between each time points. [UAE93] showed that defining the knots and their respective
locations in a non-uniform space are computationally costly as well. Therefore, equally spaced
knots are considered for modeling the time series of each pixel in the intraoperative data. Another
factor which determines the amount of the spline fit to the data is the number of knots. A higher
number of knots leads to overfitting while a lower number of knots leads to under-fitting of the
data.
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Figure 3.1: a) shows an example of a quadratic curve b) and (c) are its two polynomial segments.
The blue dots represent the control points.

3.2 Discretization of spline coefficients

The thesis aims to discretize the spline coefficients to model them using the discrete Markov Ran-
dom field priors. There are broad categories of discretization methods that are used to transform
these continuous features. Some unsupervised clustering algorithms like binning [CGB96], outputs
a mesh over the multi-dimensional continuous feature space, where each feature is partitioned into
regions independent of the other attributes. Equal width binning method merely divides the range
of observed values for a variable into k equal sized bins, where k is the user supplied parameter.
[Cat91] discussed that this type of discretization is susceptible to outliers that may profoundly
skew the range. The method also does not use instance labels for partition boundaries hence it
is likely that the crucial information is lost by binning. It also leads to high discretization error.
K-means clustering [HW79] (see Appendix C) is an unsupervised clustering algorithm which aims
to classify the data through a certain number of components (k). However, K-means algorithm
is prone to converge at a local minimum. The algorithm also requires a prior specification of
the number of components. The algorithm is also very inefficient with the noisy data containing
many outliers. It also heavily relies on the proper initialization of mean values to provide accurate
results.

3.2.1 Gaussian Mixture Model (GMM)

Gaussian Mixture Model is a probabilistic model with a mixture of k normally distributed com-
ponents [Rey09]. Instead of hard assigning a data point to a particular Gaussian component, it
assigns probability of a Gaussian component belonging to a data point [Rey09]. The algorithm
helps in solving the problem of local minima. Gaussian Mixture Model maintain many of the
theoretical and computational benefits of Gaussian models, making them practical for efficiently
modeling huge datasets such as intraoperative functional thermal imaging data.

Let β ∈ IRm∗p are the spline coefficients with m number of pixels and p number of control
points. Assuming total of k Gaussian components then a Gaussian mixture model is parameterized
by three types of values, the mixture component weights ω ∈ IRk, the kth component means µk
∈ IRm∗p and the kth component covariances Ck ∈ IRm∗m. The mixture component weights are

defined with the constraint that
k∑
i=1

ωi = 1 so that the total probability distribution normalizes to

1. The probability is therefore the summation of k normal distributions given as:

Master Thesis 17



CHAPTER 3. BACKGROUND THEORY

P (β) =

k∑
i=1

ωiN (β|µi,Ci) (3.1)

where N represents multivariate Gaussian distribution given by:

N (β|µi,Ci) =
1√

(2π)k|Ci|
exp

(
− 1

2
(β − µi)TCi−1(β − µi)

)
(3.2)

Figure 3.2: An example Gaussian mixture model with k = 4 Gaussian components [TP09]

3.2.1.1 Expectation Maximization Algorithm

To learn the parameters ω, µ and C, Expectation Maximization algorithm [DLR77] is used. Ex-
pectation maximization (EM) is an iterative technique for maximum likelihood estimation where
the maximum likelihood of the data increases with each subsequent iteration, meaning it is guaran-
teed to converge and therefore, it is not NP-hard [DLR77]. Figure 3.3 shows the flow of expectation
maximization algorithm. The first step is the initialization step where the algorithm assigns initial
values to ω̂k, µ̂k and Ĉk. In the second step, i.e., the expectation step, the probability that a
data point is generated by each of the k Gaussian components are computed. It computes this
probability by the following equation:

P̂ik =
ω̂kN (βi|µ̂k, Ĉk)
k∑
j=1

ω̂jN (βi|µ̂j , Ĉj)

(3.3)

The third step is the maximization step where the algorithm updates weights ω̂k, means µ̂k,
and covariances Ĉk by means of the following equations:

ω̂k =

m∑
i=1

P̂ik
m

, µ̂k =

m∑
i=1

P̂ikβi

m∑
i=1

P̂ik

and Ĉk =

m∑
i=1

P̂ik(βi − µ̂k)2

m∑
i=1

P̂ik

(3.4)

The steps of expectation and maximization are performed iteratively until the values of ω̂k, µ̂k
and Ĉk converges, giving the maximum likelihood estimate. Figure 3.4 shows the discretization
map after applying Gaussian Mixture Model on our intra-operative thermal imaging data using
k = 12 Gaussian components and p = 431 control points.
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Figure 3.3: Expectation Maximization Algorithm

Figure 3.4: The left figure is the image of our raw data at 0th time point. The right figure
shows the discretized pixels with a label using Gaussian Mixture Model with k = 12 Gaussians
components and p = 431 spline control points.

3.3 Spherically Invariant Random process (SIRP)

[Ver64] introduced spherically invariant random process and showed that a random process is
spherically invariant if the process has zero mean and unit variance Gaussian distribution. Hence,
the multivariate Gaussian or normal distribution is generalized in the form of spherically invariant
random process (SIRP) [Bre82]. The major advantage of using SIRP to represent a multivariate
Gaussian distribution is that their probability density functions (PDF) is denoted as a quadratic
function instead of an exponential function. This decreases the overall time complexity of run-
ning the algorithm. Assuming n be the size of random processes and l being a constant then
SIRP implementation with a quadratic function has a runtime of O(n2) whereas a non-SIRP
implementation with an exponential function has O(ln). A generalized SIRP notation is given by:

P (X) = π−n/2f(XTX;n) (3.5)

where X is the nth order random process and P (X) is the joint probability density function (PDF)
of nth order. It is understood from the above equation that SIRP is a generalization of multivariate
Gaussian distribution with N (0, σ2) and f(XTX;n) being exponential. [Bre82] shows that using
SIRP, the multivariate probability density function of an odd order is obtained from the first-order
PDF only by means of differentiation, however multivariate PDF of even order is explicitly given
by means of G-functions. Hence, [Bre82] proposed to model a SIRP implementation of multivariate
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PDF, in terms of G-functions.

3.3.1 Meijer G-function

G functions are generalized form of hypergeometric functions which are used to describe any
special function such as differentiation, integration, Laplace transform, probability density function
among others. [Bre82] shows the implementation of SIRP with multivariate PDF using Meijer-G
functions. Meijer-G function is given by the following formula in a complex plane [Bre82]:

Gm,n
p,q

( e1,...,ep
h1,...,hq

∣∣ z) =
1

2πi

∫
L

∏m
j=1 Γ(hj − s)

∏n
j=1 Γ(1− ej + s)∏q

j=m+1 Γ(1− hj + s)
∏p
j=n+1 Γ(ej − s)

zs ds (3.6)

where

• ep = (e1, e2, ...., ep) and hq = (h1, h2, ...., hq) are two sets of complex parameters.

• Γ(s) denotes the gamma function in s plane. z 6= 0

• m, n, p and q are integer numbers with 0 ≤ m ≤ q and 0 ≤ n ≤ p

• ek − hj 6= 1, 2, 3, ... for k ∈ [1, 2, ..., n] and j ∈ [1, 2, ...,m]

The above equation for G-function is important to finally formulate a spherically invariant
Random Process for multivariate Gaussian distribution. The first order joint probability density
function is written in terms of G functions as [Bre82]:

P (X) = AGm,n
p,q

(
ep

hq

∣∣∣λXTX
)

(3.7)

where A is a normalizing factor and λ is a constant which yields unit variance. The above
equation provides a simpler way of representing multivariate Gaussian distribution and convert
an exponential time complexity to a quadratic time complexity by using explicit notation of G
functions.
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Chapter 4

Semiparametric regression

Somatosensory stimulations such as touch, pressure, or heat create neuronal activity along a
sensory nerve to the spinal cord and finally in the concerned regions of the brain. The neuronal
activity lead to an increase in regional cerebral blood flow due to neurovascular coupling. The
blood flow at the active sites cause minute temperature changes in the range of 40-80 mK which
is finally captured by thermal imaging [GHK+03]. Successful detection of this neuronal activity
and negating any background noise is a challenging task in the field of intraoperative functional
thermal imaging.

Figure 4.1: A typical sequence of brain activation starting from stimuli till the temperature
changes leading to heat radiation from the active sites.

4.1 The Univariate spline regression Model

Figure 4.2 shows a detailed flow of the univariate spline regression that has been developed to
model the intraoperative thermal imaging data. The parametric component is combined with a
non-parametric component such as P-splines to form a semiparametric regression framework. The
penalized normal equation has been used to estimate the spline coefficients. Depending on the
varying values of the Lagrange multiplier λ (to be discussed later), the estimated spline coefficients
are derived for its model statistics such as AIC to determine the optimal fit to the intraoperative
data.

4.1.1 Parametric component

Neurovascular coupling induces temperature changes into thermal time series. This behavior
is propagated through several tissue layers due to which it is expected that the thermal signal
resembles a bell like curve [JH14] [NH18]. Given ti ∈ [t0, t1, ..., tn−1] time points with 0 ≤ i ≤ n−1,
the parametric component, X ∈ IRn of the semiparametric regression framework is modeled with
a Gaussian activation function which is given as [NH18]:

κ(ti|µ, σ) =
1

σ
√

2π
exp−

(ti−µ)
2

2σ2 (4.1)

where µ ∈ IR being the mean or time to peak value and σ2 ∈ IR being the variance or steepness of
temperature change. It is expected that µ correlate with the depth of the focal activation, meaning
that the neuronal activity in deeper tissue layers lead to a weaker amplitude of the measured signal
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[HKP+17] [NH18]. In this case, the shape of the signal is also expected to have less curvature and
therefore higher σ2. Figure 1.3 shows an example of Gaussian activation pattern with µ = 30,
σ − 10. The experimental conditions are modeled as the dilated and shifted variants of Eq. 4.1
and stacked into X [NH18]. The signal κ(ti|µ, σ) is vectorized with time points to form a vector
Γ(µ, σ) = [κ(t0|µ, σ), κ(t1|µ, σ).......κ(tn−1|µ, σ)]. In case of s + 1 electrical stimulations with a
period of ∆ seconds, the number of parametric components hence becomes s+ 1 [NH18]. So, the
design matrix is given by [NH18]:

X(µ, σ) = [Γ(µ, σ)Γ(µ+ ∆, σ).....Γ(µ+ s∆, σ)] (4.2)

4.1.2 Non-parametric components as B-splines

The non-parametric component is introduced in the parametric model to capture the random and
non-linear effects. The addition of this component helps in modeling the low and high frequent
non-linear behavior in the intraoperative thermal imaging data [NH18], and therefore the model
is termed as semiparametric regression framework. The univariate regression model proposed in
this thesis contains a non-parametric component [NH18], using B-spline basis function. Both
parametric and non-parametric components are added to a semi-parametric regression framework
as shown below:

Y = Xα+ B1β1 + e (4.3)

where Y ∈ IRn∗m are the response variable with n being the number of time points and m
being the number of pixels, X ∈ IRn∗1 is the parametric component, α ∈ IR1∗m are the coefficients
of the non-parametric component, B1 ∈ IRn∗p are the spline basis functions with p being the
number of spline control points, β1 ∈ IRp∗m are the spline coefficients and e ∈ IRn∗m are the error
terms modeled as the Gaussian distributed noise. Single matrices G ∈ IRn∗(p+1) stacks the two
components as G = [X B1]. Therefore, the semiparametric regression becomes:

Y = Gβ (4.4)

4.1.3 Penalized B-splines

A special care needs to taken with the non-parametric component. To prevent issues of underfitting
and overfitting due to inappropriate selection of control points, a specific penalty matrix P ∈ IRp∗p

is added to the G matrix [HKP+17]. By constructing a block diagonal matrix S = blkdiag(0k,P1)
where 0 are added for parametric components and P1 is the penalty matrix of non-parametric
component, we make sure that the penalty is added to the estimate of non-parametric component
only. The minimization problem then becomes [NH18]:

m
β
in||Gβ −Y||22 + λ||Sβ||22 (4.5)

where λ is the Lagrange Multiplier. Finally, the coefficients are estimated by the penalized normal
equation given by [NH18]: ∣∣∣∣ α̂β̂1

∣∣∣∣ = (GTG + λSTS)−1GT (Y) (4.6)

The estimates [α̂, β̂1] are used to obtain the semiparametric fit of of Y i.e Ŷ ∈ IRn∗m and is
given as:

Ŷ = G

∣∣∣∣ α̂β̂1

∣∣∣∣ (4.7)
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Figure 4.2: An overview of the univariate semiparametric regression model for the modelling of
functional intraoperative spatial temporal data

4.2 Optimal Lagrange Multiplier λ

As the Lagrange Multiplier λ influences the extent of P-spline fit, Akaike Information criterion
[Aka11] is used to choose the optimal value of λ. AIC optimizes the log likelihood of the fitted
model for the effective number of parameters i.e. spline coefficients. The definition of AIC is
equivalent to:
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AIC(λ) =
log(||Y − Ŷ||2) + 2tr(H) + 2

m− tr(H)− 2
(4.8)

where m are time points, the hat matrix H = G(GTG + λSTS)−1GT and tr(H) is the trace of
the hat matrix. AIC(λ) is evaluated for different values of λ. The best fitted model is the one
which minimizes AIC. Figure 4.3 shows the plot between AIC scores for an arbitrary pixel (say
306869th) calculated with different λ values ranging from 0.1 till 10 for p = 431 spline control
points. Each iteration of semiparametric regression framework with a different λ leads to a new
AIC score for each pixel. Hence, for ten different λ, ten AIC scores are generated for each pixel.

Figure 4.3: The plot between different values of Lagrange Multiplier λ and corresponding values
of Akaike Information criterion, AIC(λ) for the pixel (say 306869th).

Figure 4.4: Time series of the pixel 306869th. The blue dots resembles the original signal Y for
n = 1024 time points. The red line shows the semiparametric regression fit Ŷ using the optimum
AIC score.

From Figure 4.3, it is observed that AIC(λ) is minimized at λ ≈ 1. Therefore, the estimated
spline coefficients at that λ value are the best estimates for the pixel 306869th. Similarly, we found
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optimum AIC(λ) for all pixels. We visualized the optimum fit of time series of the pixel 306869th

in the Figure 4.4 using the semiparametric regression framework. It can be reasoned from Figure
4.4 that the framework does gives us a decent fit by taking care of high bias (under-fitting) and
high variance (overfitting).

4.3 Computing Z-statistics

To evaluate the performance of the univariate spline regression model, we calculated Z-statistics
which helps in estimating the robustness of the model to detect neuronal activity. Z-statistics
gives us an idea about the number of standard deviations by which the parametric component is
above the mean value. We first calculate the residual sum of squares (RSS) using the normalized
Y and its P-spline estimate Ŷ ∈ IRn∗m. RSS is given by:

RSS =

n−1∑
i=0

(Y − Ŷ)2 (4.9)

Therefore, the Z-statistics are given by [NH18]:

Z =
α̂√

RSS′ ∗ σ2
α

(4.10)

where RSS′ = RSS/(n − tr(H) − 1) and σ2
α is the covariance matrix for the parametric com-

ponent. For fixing the threshold of the Z-statistics to decide about the significant activations, we
implemented Bonferroni corrected thresholding levels (Z ≥ 5.2) as in [RWC03]. Since we evaluate
semiparametric regression framework based on ten different λ, there are ten Z-statistics generated
for each pixel. Taking an example of pixel 306869th, the AIC gets minimized at λ ≈ 1, therefore,
optimum Z-statistics for pixel 306869 is obtained at λ ≈ 1.

4.4 Summary

The P-splines modeled in the semiparametric regression framework provided a decent fit to our
intraoperative thermal imaging data. It also fits well in the generalized linear model approach,
and its properties are more natural to verify and apprehend. The crucial advantage of using
semiparametric regression framework is that its regression property helps in extending univariate
spline regression with the parametric components. However, the downside of such a model is that
no spatial information is known a priori about the spline coefficients β̂. Therefore, it provides an
opportunity to spatially regularize the spline coefficients with discrete Markov random fields to
improve the accuracy of detecting neuronal activity.
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Chapter 5

Spatial Regularization using
Markov Random fields

This chapter illustrates the extension of univariate spline regression framework by spatial regu-
larization using Markov random fields to compensate the background noise in the intraoperative
thermal imaging data. The extended model is expected to improve the detection of specific pat-
terns correlating with neuronal activity. The subsequent sections in this chapter form the core
contribution of this thesis. We implemented four different model setups presenting different ways
to approach spatial regularization using Markov Random Fields.

5.1 MRF based on Lagrange Multiplier λ

We designed an MRF model based on Lagrange multiplier λ. As discussed in the previous chapter,
different values of λ provide a varying degree of fit for a time series. Each values of λ are evaluated
based on the Akaike Information Criterion (AIC). However, to maximize the final value of our final
Z-statistics, we replaced the AIC evaluation for the optimal λ by a Markov random field approach
on all possible λ values. The model does not require any discretization step since the number
of possible λ are the number of possible discrete labels k for each pixel. The intuition behind
building an MRF model based on λ is that the time series of the adjacent pixels shows similar
smoothness behavior. Therefore, after spatial regularization, adjacent pixels should attain similar
optimum λ. Figure 5.1 showcases the extension of univariate spline regression framework with a
Markov Random field model based on Lagrange multiplier λ. The preceding steps mentioned in
the figure are related to the loading of spatial-temporal data and defining parametric as well as
non-parametric components whereas the intermediate steps are related to adding a penalty on the
non-parametric component and formulating a semiparametric regression framework. The figure
is highlighted with two blue rectangular boxes. The right rectangular box represents the steps
already discussed in Chapter 4 while the left rectangular box contains the proposed extension
of the univariate model with MRF on Lagrange Multiplier λ. Similar representations have been
followed in other models as well which are proposed later in this chapter.

5.1.1 Unary potentials

Each iteration of the univariate regression model with a different Lagrange multiplier λ gives the
corresponding P-spline estimate Ŷ and its Z statistics. Suppose, the univariate spline regression
model is evaluated based on k different λ values, then k discrete labels in the range of [0, 1, ..., k−1]
are possible on each of the pixels in the factor graph. Therefore, each pixel now consists of k
different Z values for each corresponding λ with Z ∈ IRk∗m and m being the number of pixels.
The unary potentials are modeled using the reciprocal of the Z-statistics at each pixel of the
intraoperative data. The reciprocal of Z-statistics helps in minimizing the overall energy function
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Figure 5.1: An overview of the proposed MRF model based on Lagrange Multiplier λ for modelling
of intraoperative thermal imaging data

in the Markov random field framework by penalizing the discrepancy between the Z-statistics for
the adjacent pixels and ultimately finding the maximum a posteriori probability (MAP). It is
especially helpful for performance since there is no discretization error involved and the solution
is more likely to be unique. Hence, the unary potential for a pixel q at a specific λk is calculated
as:

θq(λk) =
1

Zq(λk)
(5.1)

where Zq ∈ IR is the Z-statistics for the pixel q at λk where k ∈ [0, 1, ..., k − 1] are the possible

discrete labels. Therefore, pixel q has the unary potential vector θq ∈ IRk given as:
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θq =


θq(λ0)
θq(λ1)
−−
−−
−−

θq(λk−1)

 ,

Figure 5.2 shows the assignation of unary potentials to the pixels p ad q respectively. The
pixels have been assigned k different discrete labels. The label which minimizes the overall energy
function is assigned to the pixel as the maximum a posteriori estimate.

Figure 5.2: Unary potentials assigned to each labels of pixel p and q for MRF based on λ

5.1.2 Pairwise potentials

Generally, in real images including our intraoperative thermal imaging data, neighboring pixels
are homogeneous which means that they usually have similar characteristics such as temperature
intensity. Hence, pairwise potential is defined as the cost of assigning different labels to adjacent
pixels whereas there is no cost for two adjacent pixels with the same label. Higher the difference
between the value of labels between adjacent pixels, more significant is the cost. We apply l1 norm
to define pairwise potential between the adjacent pixels which is given as:

θpq(i, j) = γ||i− j||1, (5.2)

where θpq ∈ Zk∗k≥0 is the pairwise potential for all combinations of discrete label values, and i, j ∈
[0, 1, ..., k − 1] are the discrete labels assigned to pixel p and q respectively, γ ∈ IR is the pairwise
potential weight. It is to be noted that pairwise potential doesn’t depend on the input data and
can be fixed a priori for the fixed number of labels.

Figure 5.3: The interaction between labels of adjacent pixels. In this figure, k labels are defined
on each pixel.

28 Master Thesis



CHAPTER 5. SPATIAL REGULARIZATION USING MARKOV RANDOM FIELDS

5.1.3 Analysis of pairwise potential weight γ

γ plays a crucial role in determining the extent of spatial regularization achieved. It is intuitive
from the energy function U(X) discussed in Chapter 2 that the value of γ determines the energy
U(X). When the adjacent pixels (say p and q) have different labels assigned to them, the joint
probability P (X) is affected by a factor eγ . A higher value of γ results in a higher value of the
energy U(X). Therefore, there is a higher cost for assigning different labels to the adjacent pixels.
Eventually, a higher level of smoothness is obtained after finding the Maximum aposteriori estimate
(MAP) estimate since the adjacent pixels have the tendency of attaining similar discrete labels.
In short, γ is the fundamental property which determines the amount of spatial smoothness. If
the value of γ is very high, the pairwise potential is high resulting in over smoothing while a very
low value of γ leads to under smoothing. A value of zero doesn’t effect smoothing at all due to
which we see no spatial regularization.

5.1.4 Computing new Z-statistics

After defining unary and pairwise potentials, a graphical model based on the factor graph is
created. The inference procedure Sequential Tree reweighted message passing (TRWS) as in
[Kol06] is applied to the factor graph. The stopping condition for the TRWS algorithm is defined
as the state when the gap between the energy and bound values is less than 10−6. When the
maximum a posteriori probability or the minimum energy is attained by maximizing the lower
bound, the inference algorithm converges, and the inferred optimum labels are assigned to each
pixel. Let the optimum labels inferred for each pixel be given as kinf ∈ Zm≥0, therefore, the
optimum Z values for every pixel after spatial regularization based on Lagrange Multiplier λ is
given as:

Z =



Z0
kinf

Z1
kinf

−−
−−
−−
Zm−1kinf

 (5.3)

where Z ∈ IRm are the new spatially regularized values of Z for all m pixels, Zm−1kinf
∈ IR is the

Z value at the optimal label kinf for the (m− 1)th pixel.

5.1.5 Drawbacks

The drawback of the spatial regularization based on Lagrange Multiplier λ is that it uses an
arbitrary range of λ values and the number of λ acting as the number of labels k are also uncertain.
Currently, we defined the range of λ between 0 and 10 with k = 10. However, a value of λ out
of this range may be an optimum λ value for a particular time series. It is observable that the
limitation is inherited from the univariate spline regression framework.

5.2 MRF based on Z-statistics

The second model has been designed to spatially regularize the final Z-statistics obtained from
univariate spline regression model in Chapter 4. In this model, we define two possible discrete
labels on each pixel. The selection of two labels i.e. k = 2 has been made based on our eventual
target of differentiating the pixels only by the criterion of existence or non-existence of neuronal
activity. Figure 5.4 shows the workflow of the model. The workflow is identical to the semipara-
metric regression model discussed in the Chapter 4, however with an extension of Markov random
field component based on Z-statistics.
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Figure 5.4: The univariate spline regression model extended by an MRF model on Z-statistics.

5.2.1 Unary potentials

As discussed in Chapter 4, the threshold value of the Z-statistics which determines the presence/non-
presence of neuronal activity has been set as 5.2. We, therefore, aim to evaluate the l2 norm
between the Z values of the pixel and the threshold value 5.2. The following equations model the
unary potentials of a pixel q as:

θq(0) = ||Zq − 5.2||22
θq(1) = ||5.2− Zq||22

(5.4)

where θq ∈ IR2, θq(0) defines unary potential at 0th label, θq(1) defines unary potential at 1st

label and Zq ∈ IR is the Z value at pixel q. Figure 5.5 shows the assignation of unary potentials
to the pixels p and q. The pixels have been assigned 2 discrete labels. The label which minimizes
the overall energy function is assigned to each of the pixels after inference.

Figure 5.5: Unary potentials assigned to each labels of pixel p and q respectively

5.2.2 Pairwise potentials

We use l1 norm to model the pairwise potentials as shown in section 5.1.2. However, the label set
i and j only take the values [0, 1] and therefore the pairwise interactions with the adjacent pixels
look like the Figure 5.6 shown below. The value of pairwise potential weight γ plays a crucial role
in determining the degree of smoothness in this model as well.

Figure 5.6: Figure showing the interaction between labels of adjacent pixels for MRF on Z values.

5.2.3 Advantages

One of the main advantages of creating a Markov random field on Z statistics is that it is com-
putationally inexpensive. Since a maximum of two labels are assigned to each pixel in the factor
graph, TRWS has a short runtime till the energy function is minimized.
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5.3 MRF on spline coefficients

Although, the univariate spline regression model presented in chapter 4 and the two MRF frame-
works so far discussed provided robust models to estimate our spatial-temporal data, the back-
ground noise due to high-frequency physiological effects and periodic non-uniformity correction
still propagates to the spline coefficients β̂ and the signal estimates Ŷ. So far, the MRF mod-
els that have been discussed doesn’t compensate these effects. Therefore, the motivation of this
section is to develop a model which spatially regularizes the spline coefficients β̂. We discretize
the spline coefficients using Gaussian Mixture model with k Gaussian components. We then con-
struct a graphical model based on the derived mean values of each component and finally run the
inference procedure TRWS on the graphical model. The resultant MRF estimate Ŷmrf is negated
from our input data Y in the penalized normal equation to get new estimates of spline coefficients
β̂fit thereby compensating the background noise. We intend to develop two different sub-models
based on spatial regularization of spline coefficients.

5.3.1 Single non-parametric component

The first sub-model is based on the semiparametric regression framework with a single non-
parametric component. Figure 5.8 shows the overall flow of the proposed MRF model. The
univariate spline regression model provides P-spline estimate Ŷ, the coefficients of parametric
component α̂ and non-parametric component β̂1.

The discretization strategy employs Gaussian Mixture Model (GMM) on the spline coefficients
β̂1 ∈ IRp∗m of the single non-parametric component. The GMM algorithm considers the spline
coefficients, i.e., β̂1 as its data input on which discretization is performed with k number of
Gaussian components. For obvious reasons, we term the number of labels as the number of
Gaussian components. Each component k has its Gaussian distribution and a diagonal covariance
matrix C. The algorithm calculates optimum mean values µk ∈ IRp for each k. It also predicts
optimum labels for each data point m in β̂1. The Expectation Maximization algorithm calculates
the optimal means µ̂k. The steps of expectation and maximization are performed iteratively until
the values of µ̂k converge, providing the maximum likelihood estimate. An optimum mean value
µ̂k for component k is given by:

µ̂k =

m−1∑
i=0

P̂ikβ1i

m−1∑
i=0

P̂ik

(5.5)

where m are the number of data points or pixels, P̂ik is the probability that a data point β̂1i

are the spline coefficients at pixel i. Figure 5.7 shows that a discrete label corresponds to a mean
value obtained from the discretization.

Figure 5.7: µk−1 represents mean value for the Gaussian component k − 1.

5.3.1.1 Unary potentials

During the discretization of the spline coefficients, we assign a discrete label to each pixel and
calculate mean values µ̂k. The unary potential introduces a cost for assigning a discrete label
to a particular pixel. We attempt to use l2 Norm to model the deviation of the signal Y for a
particular pixel from its estimate Ŷk. The estimate Ŷk for a Gaussian component k is given as:
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Figure 5.8: An overview of the proposed MRF model based on a single non-parametric component.

Ŷk = G

∣∣∣∣ α̂µ̂k
∣∣∣∣ (5.6)

where α̂ ∈ IR1∗m are the estimated parametric coefficients from our univariate spline regression
model, µ̂k ∈ IRp∗m are the means calculated using Gaussian Mixture model for the kth component
with p being the number of control points, G ∈ IRn∗(1+p) is the matrix [X B1] containing
parametric as well as the single non-parametric basis component with n being the number of time
points. The unary potential for pixel q are calculated by iterating the below equation for each of
the Gaussian components k:

θq(µk) = ||Y − Ŷk||22 (5.7)

where θq ∈ IRk are the unary potentials for pixel q at all k Gaussian components, Y ∈ IRn∗m is the

input signal and Ŷk ∈ IRn∗m is the signal estimate based on discretization of spline coefficients.

5.3.1.2 Pairwise potentials

We use l1 norm for defining pairwise potentials as stated in the previous models. The pairwise
potential θpq(i, j) for pixel p and q is given as:
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Figure 5.9: The unary potentials defined for k Gaussian components at pixels p and q.

θpq(i, j) = γ||i− j||1, (5.8)

where i, j ∈ [0, 1, ..., k− 1] are the possible labels on each pixel, γ is the pairwise potential weight.
The only difference between the pairwise potentials applied in this model with the previous models
is the way we define the labels. The MRF on Lagrange Multiplier takes the number of different
values of λ as the possible labels on each pixel, whereas MRF on Z-statistics have pixels with
only two labels defined on them. The effect of pairwise potential weight γ on overall degree of
smoothness is same as explained before. Figure 5.3 shows the pixel-pixel interactions to calculate
the pairwise potential.

Figure 5.10: The left figure shows the labels assigned to each pixel of our intraoperative data
by the Gaussian Mixture Model. The right figure shows the inferred labels after MAP estimate
using TRWS algorithm. The results are for p = 431 control points, m = 307200 pixels, k = 3
components, γ =1 and n = 1024 time points. A relative smoothness has been observed in the
second figure.

5.3.1.3 Refit of the parametric component

The pixels are assigned their optimum mean values corresponding to there optimum labels after
running TRWS inference. Let kinf ∈ Zm≥0 is the inferred label on all pixels and µm−1inf ∈ IRp

corresponds to the mean value for the inferred label on (m−1)th pixel. We therefore calculate the
MRF spline coefficients estimate β̂mrf ∈ IRp∗m by stacking all the inferred mean values of each
pixels using the following equation:
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β̂mrf =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0
inf

µ1
inf

−−
−−
−−
µm−1inf

∣∣∣∣∣∣∣∣∣∣∣∣
(5.9)

The MRF signal estimate Ŷmrf are now calculated by the following operation:

Ŷmrf = B1β̂mrf (5.10)

where B1 ∈ IRn∗p is the spline basis matrix or the single non-parametric component. From Figure
5.11 it is clear that Ŷmrf leads to a more rough fit on the signal data Y and shifts some local
effects into the target pixels. Therefore, the parametric component has to be refitted to validate the
target signal with the hypothesis that they still possess Gaussian distribution activation pattern.
This is done by finding new parametric and spline coefficients α̂fit and β̂fit1 respectively when

the signal Y has been deducted by the MRF estimate Ŷmrf using the penalized normal equation.
The raw data Y shows increasing or decreasing linear trends called step artifacts due to periodic
non-uniformity correction. This deduction of Ŷmrf from the raw data Y compensates these effects.
It can be observed from the figure that Ŷfit doesn’t show any trends and is centered around zero.
The penalized normal equation to calculate the refitted coefficients is given as:∣∣∣∣ α̂fitβ̂fit1

∣∣∣∣ = (GTG + λSTS)−1GT(Y − Ŷmrf ) (5.11)

The refitted model estimate Ŷfit ∈ IRn∗m is now given by:

Ŷfit = G

∣∣∣∣ α̂fitβ̂fit1

∣∣∣∣ (5.12)

The residuals Ŷres ∈ IRn∗m becomes:

Ŷres = (Y − Ŷmrf )− Ŷfit (5.13)

The model statistics such as Residual Sum of Squares (RSS) are calculated using the following
equation:

RSS =

n−1∑
i=0

(Ŷres)
2 (5.14)

where n are the number of time points. Using the RSS values, the final Z-statistics are calculated
as:

Z =
α̂√

RSS′ ∗ σ2
α

(5.15)

where RSS′ = RSS/(n − tr(H) − 1), the hat matrix H = G(GTG + λSTS)−1GT and tr(H) is
the trace of the hat matrix, σ2

α is the covariance matrix for the parametric component. We finally
apply spatial regularization on the resultant Z values as explained in the section 5.2. By doing so,
we integrate the MRF on spline coefficients of a single non-parametric component with MRF on
Z-statistics to attain an improved accuracy of detecting neuronal activity.

5.3.1.4 Drawbacks

The discretization of spline coefficients using Gaussian Mixture Model is computationally expens-
ive. It is due to the high dimensionality of input data (i.e., spline coefficients). If k is the number
of Gaussian components used, m is the number of data points or pixels and i being the num-
ber of iterations of Expectation Maximization (EM) algorithm then to get the optimum values

34 Master Thesis



CHAPTER 5. SPATIAL REGULARIZATION USING MARKOV RANDOM FIELDS

Figure 5.11: The figure shows the time series values of Y , Ŷmrf , and Ŷfit for a pixel (say

306869th). It is visualized from the figure that Ŷmrf results in a rough estimate of Y . After

compensating Ŷmrf from Y , Ŷfit is obtained which is centered around zero. The figure only
shows the first 200 time points out of total n = 1024 time points for better visualization.

after convergence of EM algorithm, the time complexity becomes O(i ∗mk). One alternative is
to use spherically invariant random process (SIRP) representation of the multivariate Gaussian
distribution. However, SIRP still needs to use k Gaussian components as well as all the pixels
to calculate the means using EM algorithm. This method, however, should decrease the time
complexity since it does not use exponential functions but we do not expect a drastic reduction
since the dimensionality of the input data remains the same.

Another possible solution is the dimensionality reduction using Principal component analysis
(PCA) (see Appendix B). PCA converts the spline coefficients in a lower dimensional space. This
instance of spline coefficients in smaller dimension is used as the input data for the Gaussian
Mixture model. However, one of the fundamental requirements of PCA algorithm is to choose a
discrete number of principal components based on the explained variance. However, by doing so,
some crucial feature information from the data is lost since the principal components with the
least explained variance also contribute to the detection of neuronal activity.

5.3.2 Two non-parametric components

We designed a second sub-model based on spatial regularization of spline coefficients. In this sub-
model, we use two non-parametric components in the univariate spline regression framework and
spatially regularize the spline coefficients of one of the component. The idea behind adding a new
non-parametric component is to address the interference of high-frequency effects in our data such
as heart rate or respiration. Two non-parametric components with a high number of control points
should compensate these effects better than using a single non-parametric component since two
non-parametric components acts as an enhanced low pass filter. The semiparametric regression
model with two non-parametric components therefore becomes:

Y = Xα+ B1β1 + B2β2 + e (5.16)

where B1 ∈ IRn∗p is the B-spline basis matrix of the first non-parametric component with p being
the number of control points and B2 ∈ IRn∗p is the second B-spline basis matrix of the second
non-parametric component, β1 ∈ IRp∗m and β2 ∈ IRp∗m are there corresponding spline coefficients.
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The above configuration therefore changes the G ∈ IRn∗(2p+1) matrix in the following structure :

G = [X B1 B2] (5.17)

The penalty matrix P1,P2 ∈ IRp∗p is added to the block diagonal S matrix:

S = blkdiag(0k,P1,P2) (5.18)

The univariate spline regression estimate of the coefficients, α̂, β̂1, β̂2 are calculated by using
the following penalized normal equation:∣∣∣∣∣∣

α̂

β̂1

β̂2

∣∣∣∣∣∣ = (GTG + λSTS)−1GT(Y) (5.19)

The discretization strategy employs Gaussian Mixture Model(GMM) on the spline coefficients
of the second non-parametric component i.e β̂2. The procedure for discretization is as per the
discussion in the previous sub-model. We again assume k as the number of Gaussian components
each having its Gaussian distribution. The Expectation Maximization algorithm is applied to
calculate optimum mean values µ̂k for each of the Gaussian components. It also predicts the
optimum labels for each pixel, i.e., data points. We obtain an optimum mean value µ̂k for the
component k which is given by:

µ̂k =

m−1∑
i=0

P̂ikβ2i

m−1∑
i=0

P̂ik

(5.20)

where m are the number of data points or pixels, P̂ik is the probability that a data point β2i

is generated by the Gaussian component k.

5.3.2.1 Unary potentials

Although we still use the l2 norm as we did in calculating the unary potentials for the previous
models, there are slight modifications in its definition for the current model. The G matrix now has
X, B1 and B2 as its components. Also, the mean values are calculated only for spline coefficients
β̂2. Therefore, the estimate Ŷk for Gaussian component k is given as:

Ŷk = G

∣∣∣∣∣∣
α̂

β̂1

µ̂k

∣∣∣∣∣∣ (5.21)

where α̂ ∈ IR1∗m are the estimated parametric coefficients, β̂1 ∈ IRp∗m are the spline coefficients
for the first non-parametric component and µ̂k ∈ IRp∗m are the means calculated using Gaussian
Mixture model on spline coefficients β̂2. G ∈ IRn∗(1+2p) is the matrix containing parametric as
well as both non-parametric components with n being the number of time points. The unary
potentials for pixel q are calculated by iterating the below equation for each Gaussian components
k:

θq(µk) = ||Y − Ŷk||22 (5.22)

where θq ∈ IRk is the unary potential for pixel q at all Gaussian components, Y ∈ IRn∗m is the

input signal, Ŷk ∈ IRn∗m is the estimate based on discretization of spline coefficients. In order to
visualize the assignation of unary potentials, we refer the Figure 5.9.
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Figure 5.12: An overview diagram of the proposed MRF model based on spline coefficients of a
single non-parametric component in a two non-parametric component spline regression framework.

5.3.2.2 Pairwise potentials

We use l1 norm for modeling the pairwise potentials and all the properties of the pairwise po-
tential are as defined with the MRF on single non-parametric component. Figure 5.3 shows the
interactions between adjacent pixels. The pairwise potential is therefore given as:

θpq(i, j) = γ||i− j||1, (5.23)

where i, j ∈ [0, 1, ..., k− 1] are the possible labels on each pixel, γ is the pairwise potential weight.

5.3.2.3 Refit of the parametric component

Let kinf ∈ Zm≥0 are the inferred labels on all the pixels after TRWS inference convergence. Let

µm−1inf ∈ IRp corresponds to the mean values for the inferred label on (m−1)th pixel. We calculate

the spatially regularized spline coefficients β̂2mrf ∈ IRp∗m by stacking all the inferred mean values
of each pixels using the following notation:
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β̂2mrf =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0
inf

µ1
inf

−−
−−
−−
µm−1inf

∣∣∣∣∣∣∣∣∣∣∣∣
(5.24)

The MRF signal estimate Ŷmrf is finally calculated as:

Ŷmrf = B2β̂2mrf (5.25)

where B2 ∈ IRn∗p is the basis matrix for the second non-parametric component. We now deduct
Ŷmrf from Y and refit the parametric component after performing the following penalized normal
equation: ∣∣∣∣∣∣

α̂fit
β̂fit1
β̂fit2

∣∣∣∣∣∣ = (GTG + λSTS)−1GT(Y − Ŷmrf ) (5.26)

The refitted model estimate Ŷfit ∈ IRn∗m is therefore given by:

Ŷfit = G

∣∣∣∣∣∣
α̂fit
β̂fit1
β̂fit2

∣∣∣∣∣∣ (5.27)

We find the residual estimates, RSS and Z-statistics using Eq. (5.13 - 5.15) of the previous
section. We finally spatially smooth the resultant Z-statistics based on our second model mentioned
in section 5.2 to improve the accuracy further.
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Chapter 6

Performance Evaluation

Some of the basic definitions that needs to be discussed before we reflect on the performance
results are summarized below:

Resting state data (Raw data): It contains the temperature recordings of the cortex when
the subject is not involved with an explicit stimulus. The resting state is observed through changes
in blood flow which creates blood-oxygen-level-dependent (BOLD) signal. The signal is influenced
by many physiological factors other than neuronal activity such as respiration and heartbeat.
Therefore, the data is noisy and contains low and high-frequency temporal interactions. These
intraoperative recordings act as our baseline dataset.

Augmented data (Signal data): In order to generate a synthetic activity in the human
cortex in addition to its resting state behavior, we augment the baseline raw dataset by a synthetic
activity function in order to accurately quantify the performance of our proposed frameworks. We
model the activation pattern with a Gaussian distribution with mean µ = 30, standard deviation
σ = 10 and a phase duration of 30 seconds.

Ground truth : The activation pattern is added to four circular areas of the baseline dataset
with a varying radius. Out of m = 307200 pixels in our intraoperative data, 303707 pixels are not
affected by the activation whereas rest of the pixels are affected by this augmentation.

Figure 6.1: Ground truth showing four circular areas of neuronal activity

True positive rate (TPR): True positive rate measures the proportion of the number of
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pixels which are correctly identified as containing neuronal activity among all the activated pixels.

TPR =
TP

TP + FN
(6.1)

where TP are the number of pixels which are correctly identified as containing neuronal activity,
FN are the number of pixels which are incorrectly identified as not containing neuronal activity.

False positive rate (FPR): False positive rate measures the proportion of the number of
pixels which are incorrectly identified as containing neuronal activity among all the non-activated
pixels.

FPR =
FP

FP + TN
(6.2)

where FP are the number of pixels which are incorrectly identified as containing neuronal activity
whereas TN are the number of pixels which are correctly identified as not containing neuronal
activity.

Accuracy: Accuracy measures the number of pixels which are correctly assigned its ground
truth value among all the pixels in the data.

Accuracy =
TP + TN

TP + FP + TN + FN
(6.3)

F1 Score: Since we have a very high number of negative samples than positive samples, we
implement F1 score as the tool for evaluating the accuracy of our model. F1 is the harmonic
average between precision and true positive rate and is given by:

F1 = 2 ∗ (precision ∗ TPR)

(precision+ TPR)
(6.4)

where precision = TP
TP+FP

6.1 Spectral Analysis

We analyze the intraoperative thermal imaging raw data by superimposing it with a Gaussian
target activation pattern signal. Hence, the superimposition causes the data to become semi-
synthetic. Since the data is spatial-temporal in behavior with stochastic properties, there is much
cross-talk that overlaps in the time domain. Therefore, it becomes imperative to analyze the
signals in frequency domain. The idea is to analyze by what amount our activation pattern and
its frequencies are compressed after smoothing with Markov random fields. Fast Fourier transform
[CT65] is a widely used algorithm which converts the time signal into the frequency domain using
the following equation:

X(k) =

N−1∑
n=0

xne
−i2πkn/N (6.5)

where N = 1024 time points in our case, k = 0, 1, ......, N − 1, xn is the original time series signal
while X(k) is the Fourier transformed frequency domain signal.

6.1.1 Analysis of Gaussian activity pattern

The Gaussian activation function is generated with specific mean and variance which results in
four circular areas containing synthetic neuronal activity. It means that the rest of the pixels
are unharmed with the addition of Gaussian activation pattern and should retain its resting state
behavior. This pattern now acts as a ground-truth dataset. The raw data, the Gaussian activation
pattern, and the superimposed signal data are Fourier transformed separately so that the signal
spreads in frequency domain thereby making it easier to analyze the energy contribution of its
spectral components. The values of the Fourier transform, |X(k)| instantly tells us how much

40 Master Thesis



CHAPTER 6. PERFORMANCE EVALUATION

energy, the signal xn has at a particular spectral component. The energy contribution, E(p) by
some components p is given as:

E(p) =

p∑
n=1

|X(n)|
|X(0)|+ |X(1)|+ ......+ |X(N/2)|

(6.6)

It is to be noted that this transformation also results in a Gaussian function but in the frequency
domain. Figure 6.2 shows the positive 512 spectral componentś contribution to the energies after
Gaussian activation pattern was Fourier transformed. We try to take the first k = 128 spectral
components of our Gaussian target activation pattern for further analysis with our intraoperative
thermal imaging data since they contribute 80% to the energy. However, it is better to not include
all coefficients from 1 to 128 since some of the initial components contain low frequency drifts.
Therefore an arbitrary k1 till k2 components are chosen for further analysis. It is intuitive that
k1, k2 < k.

Figure 6.2: Energy contribution vs Number of spectral components

6.1.2 Analysis of raw vs. superimposed data

We first intend to use the raw intraoperative data (without superimposition of activation pattern)
and perform spatial regularization using our proposed MRF model on spline coefficients in a single
non-parametric component regression framework. We then perform Fast Fourier transform on the
raw as well as spatially regularized raw data to record energies at the target circular regions with
the relevant components. The energies are summarized in Table 6.1. Etot represents the total
energy at target pixels for all k = 512 spectral components whereas Erel represents the total
energy at target pixels for the relevant [k1, k2] spectral components with k1 = 50 and k2 = 100.

Now, we superimpose our raw data with Gaussian Activation pattern and then perform spatial
regularization using our proposed MRF model on spline coefficients in a single non-parametric
component regression framework. We then perform fast Fourier transform on the superimposed
as well as spatially regularized superimposed data to record energies at the target circular regions
with the relevant components. The energies are summarized in Table 6.2. The values of k1 and
k2 remains the same.

If we analyze the Etot and Erel of raw and superimposed data, we see a slight increase in
energies for the superimposed data. This is intuitive from the fact that the superimposed data
contains the energy from raw data as well as energies from the Gaussian activation pattern. This
validates the augmentation of Gaussian activation pattern. Now, analyzing the Etot and Erel of
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Weight γ
Raw Data Smoothed Raw Data

Etot Erel Etot Erel

0 20934.118 2694.555 72847.471 9088.964

0.5 20934.118 2694.555 68259.297 8491.747

1 20934.118 2694.555 71216.19 8895.446

1.5 20934.118 2694.555 72447.587 9057.304

2 20934.118 2694.555 74072.141 9316.75

Table 6.1: The table shows total energy at target sites for all 512 components as well as relevant
[50, 100] components. The values are for both raw and smoothed raw data. γ are the pairwise
potential weight. The results are for p = 431 control points and k = 12 Gaussian components for
discretization.

Weight γ
Superimposed Data Smoothed Superimposed Data

Etot Erel Etot Erel

0 20935.828 2694.844 72697.028 9063.58

0.5 20935.828 2694.844 68125.034 8233.761

1 20935.828 2694.844 70766.546 8811.024

1.5 20935.828 2694.844 69587.281 8662.67

2 20935.828 2694.844 72841.526 9071.214

Table 6.2: The table shows total energy at target sites for all 512 components as well as relevant
[50, 100] components. The values are for both superimposed data and spatially smoothed super-
imposed data. γ are the pairwise potential weight. The results are for p = 431 control points and
k = 12 Gaussian components for discretization.

smoothed raw and superimposed data, we observe an opposite pattern. The energies of smoothed
superimposed data has decreased as compared to the smoothed raw data. This reveals that our
spatial regularization framework compressed some energies from the Gaussian activation pattern
when it was superimposed with the raw data. However, the extent of compression is less which
conveys that the spatial regularization of spline coefficients using Markov random fields still gives
a decent fit to our raw data.

6.1.3 Sum of Square Error (SSE) analysis

Weight γ Non-smoothed 3D Spline Smoothing Proposed Model

0 0.108 1.91 2.91

0.5 0.108 1.91 56.41

1 0.108 1.91 170.04

1.5 0.108 1.91 197.34

2 0.108 1.91 267.43

Table 6.3: The table showing Sum of squares Error (SSE) values. The second column calculates the
SSE between the raw and the superimposed data. The third column calculates the SSE between
the raw and the superimposed data after 3D spline smoothing. The fourth column calculates
the SSE between the raw and the superimposed data after spatial regularization based on our
proposed model.
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We compare the SSE values obtained from an existing 3D-Spline smoothing method with our
proposed model. The results are summarized in Table 6.3. Typically, the values should approach
zero if the estimates match with the original signal, otherwise, it can be inferred that the model
absorbed some energy of the activation pattern. The results shows that as we increase the value
of pairwise potential weight γ, the SSE values increases for our proposed model. The reasoning is
that higher γ leads to over smoothing of spline coefficients which results in a rougher estimate of
the signal.

6.2 Number of Gaussian components for Discretization

Determining the number of Gaussian components k is crucial for improving the accuracy of our
model. The number of components are not known a priori, and there are many common methods
in modern research to estimate it. Information criterion such as the Akaike information criterion
(AIC) [Aka11] has been used to calculate the optimal k. A model which minimizes the AIC values
provides a good fit. Figure 6.3 shows the graph between the number of Gaussian components and
the corresponding AIC values after GMM applied on the spline coefficients of our intra-operative
thermal imaging data in a single non-parametric component framework. The results are for p = 431
control points. From the figure, it is visualized that even if we increase the number of components
beyond k = 100, the AIC values do not converge to a minimum. This is as per the expectation
because theoretically, it should converge to a minimum when the number of components k is equal
to the number of control points p. In that case, the discretization error is zero and AIC should
reach its minimum value. However, selecting k = p leads to unexpectedly large computations.
Hence our goal is to choose a value of k that is not approaching the number of control points but
still has a low AIC. In Figure 6.3, we observe that the point of diminishing returns is at k = 12
since the marginal loss in AIC drops at this point. This means that the first 12 components explain
most of the variance in the data which also aligns with the elbow criterion [Tho53] for selection
of the optimal k components. In the performance evaluation, we, therefore, intend to use k as 12
Gaussian components.

Figure 6.3: Figure shows the plot between the number of components and their respective AIC
scores
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6.3 Accuracy Analysis

We have calculated Z-statistics to test the accuracy of our novel semiparametric regression frame-
work. The distribution of the test statistic under the null hypothesis is approximated by a normal
distribution. For each significance level, the Z-test has a single critical value, Zcrit (in our case 5.2)
which makes it more convenient than the t-statistics [RWC03] which has separate critical values
for each sample size. Since the number of time points in our data is more than 30 and the standard
deviation has already been calculated, a Z-test is more appropriate than the t-test. Throughout
our evaluation, we assume Zcrit greater than or equal to 5.2 to be a positive response by the pixel
for detecting neuronal activity while values less than 5.2 is assumed to be the negative response
for detecting neuronal activity.

6.3.1 Univariate spline regression model

The Table 6.4 shows the performance of the existing univariate spline regression model. The best
accuracy in terms of F1 score is achieved at p = 431 control points. There is an increase in overall
accuracy of detecting neuronal activity as we increase the number of control points. However,
selecting a very high number of control points leads to overfitting and decreases the accuracy.

Control points TP FP TN FN TPR FPR F1

43 1537 1956 271452 32255 0.4400 0.0064 0.0862

100 2338 1155 301710 1997 0.6693 0.0038 0.6159

158 2577 916 302941 766 0.7377 0.0030 0.7618

215 2558 935 303332 375 0.7323 0.0030 0.7993

272 2684 809 303322 385 0.7683 0.0026 0.8205

329 2378 1115 303469 238 0.6807 0.0036 0.7794

387 2352 1141 303503 204 0.6733 0.0037 0.7784

431 2613 880 303464 243 0.7480 0.0029 0.8239

482 2519 974 303491 216 0.7211 0.0032 0.8100

539 2547 946 303515 192 0.7291 0.0031 0.8184

597 2452 1041 303554 153 0.7019 0.0034 0.8048

635 2327 1166 303592 115 0.6661 0.0038 0.7848

Table 6.4: Quantitative analysis of existing univariate spline regression model for different values
of control points p

6.3.2 MRF on Lagrange Multiplier λ

Table 6.5 summarizes the performance of our proposed spatial regularization model based on
Lagrange Multiplier λ. By comparing the accuracy values of this model with the existing univariate
spline regression framework, it is observed that overall there is a slight decrease in the accuracy
of detecting neuronal activity. This shows that finding optimum Z values based on AIC criterion
as done in univariate spline regression framework is better than building an MRF model on λ and
finding optimum λ for each pixel as a MAP estimate. Another possible reason for the decrease in
accuracy is the uncertainty of the optimum range of λ values.
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Control points TP FP TN FN TPR FPR F1

43 2654 839 283490 20217 0.7598 0.0027 0.2021

100 2536 957 301479 2228 0.726 0.0031 0.6191

158 2532 961 302898 809 0.7248 0.0032 0.746

215 2555 938 303310 397 0.7314 0.0031 0.7952

272 2706 787 303300 407 0.7746 0.0026 0.8217

329 2418 1075 303455 252 0.6922 0.0035 0.7854

387 2340 1153 303505 202 0.6699 0.0038 0.7761

431 2572 921 303480 227 0.7363 0.003 0.8183

482 2417 1076 303525 182 0.6919 0.0035 0.7942

539 2474 1019 303533 174 0.7082 0.0034 0.8063

597 2319 1174 303569 138 0.6639 0.0038 0.78

635 2185 1308 303598 109 0.6255 0.0043 0.7554

Table 6.5: Quantitative analysis of our proposed spatial regularization on Lagrange Multiplier λ.
Pairwise potential weight γ is 1

6.3.3 MRF on spline coefficients

Table 6.6 represents the performance of modeling MRF on spline coefficients of a single non-
parametric component without an MRF on Z values. Table 6.7 shows the performance of mod-
eling MRF on spline coefficients of a single non-parametric component in a two non-parametric
component framework without an MRF on Z values. The results shows that by adding an extra
non-parametric component in the spline regression framework, the accuracy increases. This con-
veys that the model with two non-parametric component is better in compensating high frequency
effects and its interference with the intraoperative data is minimized. Comparing the performance
of univariate spline regression framework in Table 6.4 and performance of our MRF model in
Table 6.7, it is observed that the overall accuracy for p = 431 control points increased from 0.8239
to 0.8245. Figure 6.4 plots the results of the proposed models in comparison with the existing
univariate spline regression framework at different value of control points.

6.3.4 Effect of pairwise potential weight vs Accuracy

We saw that incorporating two non-parametric components in our model and spatially regularizing
one of them led to a better accuracy results as compared to existing univariate spline regression
framework. To improve the overall accuracy further, we applied spatial regularization on Z val-
ues. We expected that it should further smooth the Z values by minimizing the overall energy.
We applied MRF on Z values in three different frameworks and evaluated the effect of pairwise
potential weight γ on the accuracy.

Table 6.8 shows the spatial regularization on Z values in an existing semiparametric regression
framework. For p = 431 control points, the accuracy increased from 0.8239 in Table 6.4 to 0.8581
in Table 6.8 at γ = 1.4. It is observable that γ has a crucial effect in overall accuracy. It is inferred
from the Table 6.8 that higher values of γ leads to over smoothness and therefore the circular
areas of synthetic neuronal activity is also compensated decreasing the true positives.

Figure 6.5 showcases the effect of pairwise potential weight γ on the overall smoothness. A γ
= 0.1 shows under smoothness while γ = 10 shows over smoothness. The results are for p = 81
control points. Table 6.9 and Table 6.10 shows the performance of spatial regularization on spline
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Control points TP FP TN FN TPR FPR F1

43 1609 1884 243078 60629 0.4606 0.0062 0.0543

100 2165 1328 301325 2382 0.6198 0.0044 0.5983

158 2578 915 302902 805 0.738 0.003 0.761

215 2563 930 303326 381 0.7338 0.003 0.7997

272 2692 801 303295 412 0.7707 0.0027 0.8186

329 2380 1113 303464 243 0.6814 0.0037 0.7792

387 2337 1156 303498 209 0.669 0.0038 0.7746

431 2611 882 303455 252 0.7475 0.0029 0.822

482 2518 975 303481 226 0.7208 0.00321 0.8085

539 2552 941 303504 203 0.7306 0.0031 0.8178

597 2463 1030 303549 158 0.7951 0.0034 0.8065

635 2328 1165 303590 117 0.6666 0.0038 0.7848

Table 6.6: Quantitative analysis of our proposed spatially regularized semiparametric regression
model with single non-parametric component. GMM discretization and subsequent spatial reg-
ularization is done on the spline coefficients of the single non-parametric component. Pairwise
potential weight γ is 1 and k = 12 components.

Control points TP FP TN FN TPR FPR F1

43 1464 2029 262535 41172 0.4191 0.0066 0.0677

100 1894 1599 300434 3273 0.5422 0.0052 0.5058

158 2579 914 302855 852 0.7383 0.003 0.76

215 2569 924 303323 384 0.7355 0.003 0.7999

272 2693 800 303291 416 0.7709 0.0026 0.8187

329 2397 1096 303458 249 0.6862 0.0036 0.7819

387 2346 1147 303495 212 0.6716 0.0037 0.7763

431 2624 869 303456 251 0.7503 0.0028 0.8245

482 2522 971 303472 235 0.722 0.0032 0.8082

539 2560 933 303494 213 0.7328 0.003 0.8179

597 2468 1025 303543 164 0.7066 0.0034 0.8065

635 2334 1159 303584 123 0.6681 0.0038 0.785

Table 6.7: Quantitative analysis of our proposed spatially regularized semiparametric regression
model with two non-parametric components. GMM discretization and subsequent spatial regular-
ization is done on spline coefficients of only single non-parametric component. Pairwise potential
weight γ is 1 and k = 12 components.

coefficients and Z values. The integration of MRF on spline coefficients and Z values results in
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Figure 6.4: Analysis of the accuracy on four different models.

γ TP FP TN FN TPR FPR F1

0 2613 880 303464 243 0.748 0.0029 0.8239

0.2 2641 852 303567 140 0.756 0.0028 0.8418

0.4 2667 826 303625 82 0.7635 0.0027 0.8545

0.6 2644 849 303647 60 0.7569 0.0027 0.8533

0.8 2637 856 303682 25 0.7549 0.0028 0.8568

1 2632 861 303688 19 0.7535 0.0028 0.8567

1.2 2629 864 303694 13 0.7526 0.0028 0.857

1.4 2625 868 303707 0 0.7515 0.0028 0.8581

1.6 2623 870 303707 0 0.7509 0.0028 0.8578

1.8 2623 870 303707 0 0.7509 0.0028 0.8577

2 2619 874 303707 0 0.7497 0.0028 0.857

Table 6.8: Quantitative analysis of spatial regularization of Z values in an existing univariate
spline regression framework. The results are for p = 431 control points.

better accuracy as compared to the results achieved with spatial regularization on only Z values.
This is true especially in the case when two non-parametric components is added in the spline
regression framework and the MRF is applied on the spline coefficients of one of them. It is
observed that for p = 431 control points, we achieved an improvement in accuracy from 0.8239
in Table 6.4 to 0.8589 in Table 6.10 by extending the univariate spline regression framework with
MRF on spline coefficients and MRF on final Z values. Figure 6.6 shows the accuracy comparison
of three different models based on pairwise potential weight γ with p = 431 control points. Figure
6.7 shows the final Z value map for the existing univariate spline regression at p = 431 controls
points. Observe few noisy pixels in the background region. Figure 6.8 shows the final Z value map
for our proposed MRF model on spline coefficients as well as Z values. There are no noisy pixels
in the background and some smoothing achieved in the circular regions of neuronal activity.
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Figure 6.5: The left figure shows the MRF on Z values at γ = 0.1 with p= 81 control points. The
right figure shows the result with γ = 10.

γ TP FP TN FN TPR FPR F1

0 2611 882 303455 252 0.7475 0.0029 0.822

0.2 2637 856 303565 142 0.7549 0.0028 0.8409

0.4 2673 820 303624 83 0.7652 0.0027 0.8555

0.6 2652 841 303646 61 0.7592 0.0028 0.8547

0.8 2633 860 303682 25 0.7538 0.0028 0.8561

1 2623 870 303688 19 0.7509 0.0029 0.855

1.2 2625 868 303696 11 0.7515 0.0028 0.8566

1.4 2620 873 303707 0 0.75 0.0029 0.8571

1.6 2615 878 303707 0 0.7486 0.0028 0.8563

1.8 2613 880 303707 0 0.7481 0.0029 0.8559

2 2613 880 303707 0 0.7481 0.0029 0.8559

Table 6.9: Quantitative analysis of spatial regularization on Z values in a univariate spline re-
gression framework with discretization and spatial regularization of spline coefficients of one non-
parametric component already incorporated. The results are for p = 431 control points, k = 12
Gaussian components and pairwise potential weight for MRF on one non-parametric component
is 1.
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γ TP FP TN FN TPR FPR F1

0 2624 869 303456 251 0.7503 0.0028 0.8245

0.2 2659 834 303565 142 0.7612 0.00275 0.8449

0.4 2674 819 303624 83 0.7655 0.0027 0.8557

0.6 2663 830 303651 56 0.7624 0.0027 0.8574

0.8 2653 840 303680 27 0.7595 0.0027 0.8595

1 2636 857 303688 19 0.7547 0.0028 0.8575

1.2 1617 876 303698 9 0.7492 0.0029 0.8554

1.4 2629 864 303707 0 0.7526 0.0028 0.8589

1.6 2629 864 303707 0 0.7526 0.0028 0.8589

1.8 2627 866 303707 0 0.752 0.0028 0.8585

2 2627 866 303707 0 0.752 0.0028 0.8585

Table 6.10: Quantitative analysis of spatial regularization of Z values in a univariate spline re-
gression framework containing two non-parametric components with discretization and spatial
regularization of spline coefficients of one non-parametric component already incorporated. The
results are for p = 431 control points, k = 12 Gaussian components and pairwise potential weight
for MRF on one non-parametric component is 1.

Figure 6.6: The effect of pairwise potential weight on overall accuracy for three models after
incorporation of spatial regularization on Z values. Blue bar plots are for spatial regularization
of only Z values, Green bar plots are for spatial regularization of both spline coefficients and Z
values in a one non-parametric component framework, Red bar plots are for spatial regularization
of both spline coefficients and Z values in a two non-parametric component framework.
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Figure 6.7: Spatial Z value map of univariate spline regression framework without any spatial
regularization. The results are for p =431 control points.

Figure 6.8: Spatial Z value map after spatial regularization on spline coefficients as well as on Z
values. The results are for two non-parametric components framework. p = 431 control points, γ
= 1.4.
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6.4 TRWS runtime measurement

Figure (6.8 - 6.11) shows TRWS Energy and bound curve with respect to runtime and the number
of steps. The inference stops when the bound and energy gap is less than 10−6.

Figure 6.9: TRWS Energy and bound curve with respect to number of steps for MRF on spline
coefficients. The result are for the semiparametric regression framework containing two non-
parametric components but only one non-parametric component is spatially regularized. p = 431
control points and k = 12 Gaussian components and γ = 1.

Figure 6.10: TRWS Energy and bound curve with respect to runtime for MRF on spline coeffi-
cients. The result are for the semiparametric regression framework containing two non-parametric
components but only one non-parametric component is spatially regularized. p = 431 control
points and k = 12 Gaussian components and γ = 1
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Figure 6.11: TRWS Energy and bound curve with respect to number of steps for MRF on Z
values. k = 2 components, and γ = 1.4.

Figure 6.12: TRWS Energy and bound curve with respect to runtime for MRF on Z values. k =
2 components, and γ = 1.4.

6.5 General runtime measurements

The overall timing measurements of our proposed model has been summarized in Table 6.11.
Clearly, the runtime of Gaussian Mixture Model and assignation of unary potentials are two
of the most computationally expensive steps in our proposed model. Even though the spatial
regularization using Markov Random fields provides an improved accuracy in detecting neuronal
activity, the existing univariate spline regression framework comparably has lesser runtime. The
univariate spline regression model has a runtime of around 30 seconds [NH18] as compared to the
total runtime of 366.6 seconds for our proposed model. However, we feel these two bottlenecks
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could be sidelined with the help of some optimization procedures discussed in future work.

Type Time elapsed (s)

Gaussian Mixture Model 212.2

Assigning Unary potential 116.1

MRF on spline coefficients 32

MRF on Z values 1.2

Others 5.1

Total 366.6

Table 6.11: The runtime results are for p = 431 control points, k = 12 Gaussian components and
γ = 1.4 for MRF on Z values
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Discussions and Conclusions

The visualization of neuronal activity is vital during neurosurgical tumor resections which con-
clusively helps in guiding medical personnel to determine the extent of tumor mass removal. The
postoperative functional defects dramatically affect the patients healthy life due to which tissue
resections require robust intraoperative schemes to unveil the regions of neuronal activity. How-
ever, various environmental factors such as physiological effects among others contribute to the
background noise in the intraoperative thermal imaging data. This thesis extended the semi-
parametric regression framework by incorporating spatial regularization using Markov Random
fields and improved the detection of neuronal activity by compensating the background noise. A
synthetic activation pattern modeled using Gaussian distribution was superimposed on the rest-
ing state intraoperative thermal imaging data in alternating time periods. This superimposition
helped in developing a model that includes the expected thermal behavior of neuronal activity as
well as the characteristic thermal behavior of intraoperative thermal imaging. We demonstrated
the overall applicability of our proposed framework to visualize statistically significant eloquent
areas of the exposed human cortex.

The thesis showed that the spatial regularization on spline coefficients as well as on Z values
achieved a substantial improvement in the accuracy of detecting neuronal activity. The existing
semiparametric regression framework had an accuracy of 0.8239 at p = 431 control points. The
expansion of the semiparametric regression framework with the Markov Random field components
improved the accuracy to 0.8589. This improvement showed the robustness of the proposed model
for the intraoperative thermal imaging of human cortex. We expect that the model could now
be used for non-synthetic ways of evoking neuronal activity. In this work, we proposed three
different Markov random field models which were built as an extension to the semiparametric
regression framework. We also extended two of these models by spatially regularizing their final
Z values to improve the accuracy even further. The results showed that the model which used
two non-parametric components and spatially regularized one of them achieved higher accuracy
compared to other models. The discretization of the spline coefficients was done using Gaussian
Mixture Model (GMM); however, the runtime of the GMM was high which opens an area for
improvement. The contribution of the pairwise potential weight was discussed which plays a vital
role in determining the extent of smoothness.

Overall, the improvements achieved in detecting neuronal activity should help neurosurgeons
determine the region for tumor resections during neurosurgical operations by decreasing false de-
tections of areas with tumor tissues and improved removal of the regions of the tumor without
affecting nearby healthy tissues. This should help in combating the postoperative neurological
disorders in the patient. To the best of our knowledge, we are the first to apply spatial regulariz-
ation of spline coefficients using Markov random fields in an intraoperative thermal brain imaging
data.
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Future Work

8.1 Superpixel based Markov random fields

While the thesis exhibits a promising model to remove the background noise from the intraoper-
ative thermal imaging data, a critical area that could be further investigated is a way to increase
the True Positive Rate. As it is clear from the results that the background noise has been dramat-
ically reduced, however, the detection of the areas containing neuronal activity could be improved
further. This improvement is possible by incorporating superpixel based Markov random fields
[SBS12] on the final Z values of our model. The MRF presented in this work defines pixels acting
as nodes with factors assigned to them in a discrete graphical model framework. This construction
gives the graphical model a uniform look. However, such a model only allows the local interaction
between pixels and doesn’t infer the relevant features in larger regions of the data. A superpixel
Markov random fields define a cluster of pixels as a node based on their similar characteristics
[SBS12]. On this node, unary and pairwise potentials could be defined, and therefore an irregular
factor graph is formed. The interaction and message passing happen between these regions instead
of each pixel. For superpixel based MRF models, there are fewer nodes in the graph which reduces
the computation as well. We expect that this implementation should further increase the overall
accuracy by increasing the True Positive Rate.

8.2 GPU implementation of Gaussian Mixture Model

As previously discussed, the runtime for discretization of spline coefficients using Gaussian Mix-
ture Model is very high and the methods such as PCA and SIRP have their own disadvantages. As
a future work, we propose to implement an efficient EM algorithm of the Gaussian Mixture Model
using Graphical processing units (GPU) based on NVIDIAs Compute Unified Device Architecture
(CUDA). The runtime of this implementation should dramatically reduce compared to the cur-
rently implemented GMM since the computations of the EM algorithm are divided into multiple
GPU′s. Thus a considerable speedup could be achieved without any approximations made in
the estimation formulas. The significant advantage of a GPU is its parallel and computationally
powerful processing. [TKD+16] shows a robust GPU implementation of Gaussian Mixture Model
which is created on Tensorflow.
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Appendix A

OpenGM implementation of
Graphical Model

The OpenGM framework [ATK12] is solely based on discrete factor graph models, and it can
handle these models efficiently since functions that occur repeatedly need to be stored only once.
Every factor is saved, and later the factor object is passed to the inference algorithm. As an initial
step for constructing a graphical model using OpenGM, we need to define how many variables are
there in the graph and how many labels, each variable can attain [ATK12]. Since our intraoperative
thermal imaging data is of m = 640 ∗ 480 dimension, there are 307200 variables to be defined in
our graphical model setup. The optimum number of Gaussian components calculated after the
discretization of spline coefficients acts as the number of labels that each variable can attain. The
number of variables and the number of labels are defined in a discrete label space. Each of the
variables is listed by integers ranging from [0, 1, ..., k − 1], where k is the number of labels.

To define a function such as pairwise potential θpq, one needs to indicate how many labels p
and q could attain. Once a function has been added to the model, it can be connected to several
factors and thus assigned to different sets of variables [ATK12]. This procedure is always the
same, regardless of the number and type of classes used to encode functions [ATK12]. Algorithms
for optimization and inference are classes in OpenGM. To run an algorithm, one instantiates an
object of the class, providing a model and optional control parameters, and calls the member
function, either without parameters or with one parameter indicating a visitor [ATK12]. Visitors
are a powerful tool for monitoring and controlling algorithms by code injection [ATK12]. Once
an algorithm has terminated, results such as optima and bounds can be obtained via member
functions [ATK12].

An important aspect to be considered for our TRWS inference algorithm is the stopping condi-
tion. We stop the TRWS inference whichever among the following comes first during the runtime
[ATK12]:

(a) If an algorithm has run for 1 hour
(b) If the gap between the energy and the lower bound is smaller than 10−6.
(c) If the numerical changes within the data are smaller than 10−7.
These conditions provide better numerical results for TRWS as compared to a large number

of iterations as the sole stopping condition.
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Figure A.1: Defining graphical model and running inference in OpenGM
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Appendix B

Principal component analysis
(PCA)

Principal Component Analysis (PCA) is a multivariate statistical procedure that dates back to
works from [F.R01]. The procedure orthogonally transforms the p features of the data into a new
p coordinates called principal components with the first principal component having the largest
possible variance [F.R01]. Each of the following component has the highest possible variance under
the constraint that it is orthogonal with the preceding components. The method helps in keeping
only the first q < p components while retaining most of the information, i.e., the variation in
the data [F.R01]. The principal components reduce to solving an eigenvalue/eigenvector problem,
and the new features are defined by the data at hand, not apriori, hence making PCA an efficient
unsupervised data analysis technique. The spline coefficients β ∈ IRp∗m contains m as the number
of pixels, and p as the number of features (or spline control points). Then the covariance matrix
C ∈ IRm∗m is given by [F.R01]:

C = βTβ/(m− 1) (B.1)

It is to be noted that C is a symmetric matrix and therefore is diagonalized to form the below
equation:

C = EDET (B.2)

where E is the eigenvector matrix and D is the diagonal matrix with eigenvalues λi in the de-
creasing order on the diagonal matrix. These eigenvectors are the principal axes of our data.
The projections of the data on the principal axes are called principal components [F.R01]. Hence
these principal components act as the newly transformed features of our data. The singular value
decomposition of β gives the following decomposition equation [F.R01]:

β = USET (B.3)

where U ∈ IRm∗m is the unitary matrix, S is the diagonal matrix of singular values si. From
above equations, C matrix is written as [F.R01]:

C = ESUTUSET/(m− 1) = E
S2

m− 1
ET (B.4)

meaning that the right singular vectors E are the principal directions and the singular values
are related to the eigenvalues of covariance matrix. Finally, the principal components are given
by βE = USETE = US where columns of US are the principal components. To reduce the
dimensionality of the data from p to q < p, we can select first q columns of U and the q ∗ q upper
left part of S.
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Appendix C

K-means clustering

The K-Means algorithm starts by randomly initializing the ’k’ cluster centers which are usually
chosen to be far apart from each other spatially, in the Euclidean distance, to be able to produce
effective results [HW79]. Each cluster has a center, called the centroid, and a data point is clustered
into a certain cluster based on how close the data points are to the centroid [HW79]. Then, each
point in the data is taken and assigned to the nearest cluster. Finally, the centroid of the cluster is
updated by taking the mean of the points that are newly assigned to it. This process is performed
iteratively till convergence. In other words, cluster centroids should not move anymore [HW79].
Overall, the k-means algorithm aims at minimizing squared error function given by:

L =

k∑
j=1

n∑
i=1

‖ x(j)i − µj ‖
2 (C.1)

where x
(j)
i ∈ IR is the datapoint i for cluster j, µ ∈ IRk, k are the number of clusters and n are

the number of data points, ‖ x(j)i − µj ‖2 is a chosen Euclidean distance measure between a data

point x
(j)
i and the cluster centroid µj and L is the squared error function. It is an indicator of the

distance of the n data points from their respective cluster centroids.

Figure C.1: K-Means Algorithm

Although the algorithm seems quite simple, finding the optimal solution to the problem is
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APPENDIX C. K-MEANS CLUSTERING

NP-hard if either the number of clusters ’k’ or the number of features is not fixed. It is noticeable
from the Figure C.2 that group of pixels belonging to the same cluster has been assigned the same
color. Each of these clusters possesses centroid values. Another point to be noted in the figure
is that k-means discretization suffered from attaining local minimum and therefore results in a
non-smooth discretized image.

Figure C.2: a) shows the image of our raw data at 0th time point. b) shows the discretization
map of m = 307200 pixels using K-means algorithm with k = 12 clusters. Each color represents
one of the 12 cluster labels assigned to each pixel. The result is obtained using p = 431 control
points.
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