
Splatting Illuminated Ellipsoids with Depth Correction

Stefan Gumhold

University of Tübingen,
WSI/GRIS

Sand 14, 72076 Tübingen, Germany
Email: gumhold@gris.uni-tuebingen.de

Abstract

Ellipsoids are important primitives used in visual-
ization and modeling, where often a larger num-
ber of ellipsoids have to be displayed in real-time.
The standard approach of tessellating each ellipsoid
into a smooth polygonal mesh leads to unaccept-
able polygon counts that dramatically increase the
rendering time. In this paper a method is proposed
to splat ellipsoids perspectively correct. The splat-
ted ellipsoids are illuminated with the accuracy of
floating point precision by exploiting the fragment
shader facility of current graphics accelerators. It
is also shown how to correct the depth value of the
fragment position such that overlapping ellipsoids
are displayed correctly.

1 Introduction

Ellipsoids have been used as primitives in differ-
ent applications for visualization and modeling. In
the visualization domain, ellipsoids have been used
successively for the splatting of volumetric data
sets [15, 8, 9, 13, 10, 17], 3D clouds [3]. and point
sampled surfaces [11, 18, 12]. In all three types
of approaches ellipsoids are the basis functions into
which the volumetric or surface data set is decom-
posed. The ellipsoids represent the density of the
data set, heavily overlap and have to be superposed
in order to reconstruct the data set.

In our approach we are not interested in the splat-
ting of densities but in splatting the illuminated sur-
face of ellipsoids. The application for which we de-
veloped our approach is the visualization of sym-
metric tensor fields [14, 2, 7, 6, 5, 16]. The most
intuitive approach to visualize a symmetric tensor
is to render an ellipsoid. The mathematical relation
between ellipsoids and symmetric tensors is derived
in section 2. In the simplest tensor field visualiza-

Figure 1: Test scene of a large number of ellipsoids
that visualize a tensor field.

tion approach one tessellates the three dimensional
domain of the tensor field with regularly spaced el-
lipsoids as shown in Figure 1. The coloring illus-
trates the shape of the ellipsoids. Red ellipsoids
look like cigars, green ones like pan cakes and blue
ones like balls. The magenta ones are not classified
in one of the three groups. At the moment we are
working on a better placement of the ellipsoids that
illustrate the underlying topology of the tensor field.
But for both approaches an interactive visualization
tool demands for fast rendering of a large number
of illuminated ellipsoids.

Guthe et al. [4] have proposed a method to splat
simple geometric shapes such as ellipsoids, arrows,
etc, that exhibit a rotational symmetry. The prim-
itives are pre-rendered from a large number of
view points and during visualization the best pre-

VMV 2003 Munich, Germany, November 19–21, 2003



rendered version is splat on the screen. All the
primitives were pre-lighted and no depth correction
could be performed.

Another approach that would benefit from our
method was described by Bischoff and Kobbelt [1].
They decompose 3D-models represented as trian-
gle meshes into a set of overlapping ellipsoids, such
that the surface of the union of ellipsoids re-samples
the surface of the 3d-model. They rearrange the el-
lipsoids into an order suitable for progressive trans-
mission. The representation is very robust to the
loss of single ellipsoids. For the reconstruct of the
3D model they use the marching cubes algorithm
producing again a triangular mesh. With our ellip-
soid rendering approach the ellipsoidal representa-
tion can directly be rendered efficiently. The com-
bination of both approaches has the potential for a
new view dependent rendering system.

There are several approaches to render ellipsoids.
One can ray-trace ellipsoids, tessellate them into tri-
angles and render the triangles with a graphics ac-
celerator or one can splat the ellipsoid. The by far
fastest approach is splatting with a graphics accel-
erator, i.e. one simply renders a triangle or as we do
a quadrilateral that covers the primitive (ellipsoid)
and one supplies a texture that represents shape and
illumination of the primitive. The shape is typi-
cally encoded in the α-channel with a 0 for texels
that do not belong to the shape and a 1 for texels
that do. The graphics accelerators allow to discard
fragments (rastered pixels) in dependence of the α
value, such that pixels where the fragments α is zero
are not touched at all.

Most of the newer graphics accelerators come
with an extended texturing facility that can be ac-
cessed through a vertex and a fragment shader API,
such as CG from NVIDIA or the corresponding
OpenGL ARB extensions. The vertex shader API
allows to perform view dependent calculations for
each vertex without the need to re-specify the vertex
data again if the view point changes. The output of
the vertex shader is a collection of scalar and vector
valued data that is passed to the fragment shader.
This data is dealt with in the same way as texture
coordinates, which are perspectively correct inter-
polated over the triangles or quadrilaterals that are
rasterized. In world coordinates this means that the
data is linearly interpolated over the triangles and
quadrilaterals. For each pixel encountered during
rasterization the interpolated data is passed to the

fragment shader that computes the final color and
depth coordinate of the fragment. The latter infor-
mation is used for the α- and z-buffer tests and if
these succeed for the combination of the fragment
color with the current pixel color.

In this paper we first elaborate on some basic
characteristics of ellipsoids in section 2. Then we
derive the necessary formula to compute the cor-
ner vertices of a quadrilateral splat that contains
the silhouette of an ellipsoid seen from the cur-
rent view point in section 3. In section 4 we solve
the ray-ellipsoid intersection problem for a given
ray from the view location to a pixel. The result
is used to compute the surface normal and surface
location at the pixel, what is necessary for the il-
lumination computation and the depth correction.
Section 5 solves some problems arising with less
flexible fragment shaders. We close the paper with
a comparison of the proposed rendering approach
with other approaches to render symmetric tensors.

The main contribution of this paper is the deriva-
tion of a simple solution of the ray-ellipsoid inter-
section problem, which can be used incrementally
and implemented in vertex and fragment shaders of
currently available graphics accelerators.

2 Background on Ellipsoids

Figure 2: characteristic quantities of an ellipsoid

An ellipsoid in 3D is given by a center location
c, an orthonormal basis v1,v2 and v3 and for each
basis direction a radius λi as illustrated in Figure 2.
We adopt the convention that λ1 ≥ λ2 ≥ λ3, what
can always be ensured by a permutation of the ba-
sis vectors vi. Any ellipsoid can be generated from
a sphere by stretching the sphere by the λi in the

666



major directions vi. If we enter the radii in the di-
agonal matrix Λ and the vi as columns in the rota-
tion matrix O = (v1v2v3), we can define the set
of points on an ellipsoid from the points on the unit
sphere

E = {q = OΛp + c| ‖p‖ = 1} .

As a rotation of the points p on the unit sphere re-
produces the unit sphere, we can as well replaceOΛ
in the definition of the ellipsoid by the symmetric
positive definite matrix

T
def
= OΛOT .

We can interpret Tv + c as a transformation from
a parameter space of points on the unit sphere into
world space. We denote points p̃ in the parameter
space with a tilde on top and the definition of an
ellipsoid becomes

E = {p = T p̃ + c| ‖p̃‖ = 1} , (1)

which is valid for an arbitrary symmetric, positive
definite matrix T . We can conclude that a non de-
generate ellipsoid is defined by a symmetric, strictly
positive definite matrix T and a center location c.

From equation 1 we can directly derive the im-
plicite representation of an ellipsoid in world space
by inverting p = T p̃ + c

1 = ‖p̃‖2 =
∥∥T−1 (p − c)

∥∥2
.

The surface normal can be computed from the im-
plicite representation via the gradient operator, re-
sulting in the not normalized normal vector n in
world coordinates:

n = ∇
[∥∥T−1 (p − c)

∥∥2
]

= T−2 (p − c) (2)

= T−1p̃ = T−1ñ. (3)

In equation 3 we transformed p back to parame-
ter space, i.e. on the sphere, where the normalized
normal ñ is the same as the location vector p̃. Al-
though the equations for the normal are defined all
over space they only make sense on the surface of
the ellipsoid. Equation 3 tells us that the normal is
transformed from parameter space to world space

with the inverse T−1 = OΛ−1OT =
(
T−1

)T
.

3 Splatting the Silhouette

For the rendering of ellipsoids we assume a pinhole
camera as used in most applications with an eye
point e, a view look at point and a view up direc-
tion. In order to be able to splat an ellipsoid with
a planar quadrilateral, the silhouette of the ellipsoid
is determined. Here only the eye point is of inter-
est. The silhouette of the ellipsoid seen from the eye
point is given by all points on the ellipsoids where
the surface normal is orthogonal to the vector to the
eye point

S =
{
p ∈ E|nT (p − e) = 0

}
.

If we transform the definition of the silhouette into
parameter space by transforming n via equation 3
and p and e via 1 we get the silhouette S̃ in param-
eter space

S̃ =
{
p̃| ‖p̃‖ = 1 ∧ ñT (p̃ − ẽ) = 0

}
, (4)

as the T and T−1 cancel each other out. Thus we
can compute the silhouette in parameter space and
transform it back.

0

s

rm

1

e

e

ẑ

x̂

.

~
~

~

~

~

Figure 3: Computation of the silhoutte in parameter
space. The silhoutte is a circle.

Figure 3 shows the 2D version of the silhouette
reconstruction problem in parameter space, where
the ellipsoid is a unit sphere with center in the ori-
gin. It is obvious that the silhouette is a circle on
a plane orthogonal to ẽ. Let m̃ denote the center
of the circle and r̃ its radius. By applying twice
Pythagoras one can derive that m̃ is 1/ ‖ẽ‖ away
from the center in direction of the eye point, i.e.
with ẽ = ‖ẽ‖

m̃ =
1

ẽ2
ẽ.

666



The radius of the circle can be computed from

1 = r̃2 +
1

ẽ2
=⇒ r̃2 = 1 − 1

ẽ2
. (5)

If we build an orthonormal basis x̂, ŷ, ẑ in parame-
ter space with the z-direction in the opposite direc-
tion of ẽ as illustrated in Figure 3, the silhouette is
the circle parameterized through φ

S̃ = {m̃ + r̃ (cosφx̂ + sinφŷ) |φ ∈ [0, 2π]} .
To splat the ellipsoids we simply transform the lo-
cation m̃ and the vectors x̃ and ỹ back to world
space

m = T m̃ + c,x = T x̂,y = T ŷ

and splat a quadrilateral with the four corners

V±±
def
= m + r̃ (±x ± y) (6)

resulting from choosing the four possible sign com-
binations ++, +−, −+ and −−. If we only
wanted to fill the ellipsoid with a uniform color we
could simply texture the quadrilateral with a texture
containing a filled unit circle. All the computations
necessary to compute the four corners of a quadri-
lateral can be easily performed in the vertex shader
units. We will come back to that later on when it
will be clear what further parameters are needed by
the fragment shader.

4 Incremental Ray Tracing of Ellip-
soids

4.1 Equation of the Intersection

After we have derived the formulas to compute the
corners of a quadrilateral splat that covers the sil-
houette completely, we need to compute the inter-
section of the ray

p(λ) = e + λv (7)

from the eye location e in the direction v of the cur-
rent pixel, where v is the vector from the eye loca-
tion to the pixel location as illustrated in parameter
space in Figure 4. This computation has to be done
for each pixel covered by the splat in the fragment
shader. Therefore, we want to derive a formula as
simple as possible, which allows to share as many
computational results as possible between the pixels
covered by one ellipsoid.

a)

0

v s

r

1

b e

x

e

ẑ

x̂

n

p(λ)
~

~~
~

~

~

~

~

b)

ṽ =


 x̃

ỹ

b̃




ẽ =

(
0
0
−ẽ

)

⇒ ẽT ṽ = −eb

Figure 4: Illustration of the intersection computa-
tion between the ray from ẽ in direction of ṽ with
the spherical ellipsoid in parameter space. The in-
tersection point p̃(λ) is equal to the normalized nor-
mal ñ in parameter space.

The intersection of the ray and the ellipsoid has
to be between the plane of the silhouette and the
eye location. From this follows that λ has to be in
the interval [0, 1]. The transformation to parame-
ter space is an affine transformation and preserves
straight lines. Thus, we can as well compute λ in
parameter space from the much simpler ray-sphere
intersection

1 = ‖p̃(λ)‖2 . (8)

Figure 4 illustrates the ray intersection problem
with all the necessary lengths. On the right the co-
ordinates of the vectors ẽ and ṽ are shown. We see
that the scalar product ẽT ṽ is given by −ẽb̃. For
the silhouette length s̃ we get from Pythagoras and
with the equation for the radius r̃

s̃2 = ẽ2 − 1 = ẽ2r̃2 = ẽ2
(
s̃2 − b̃2

)
. (9)

And by solving for ẽb̃ and applying s̃2 = ẽ2 − 1
once more, we get ẽT ṽ = s̃2. Plugging this into 8
yields

0 = s̃2 − 2s̃2λ+ ṽ2λ2.

Next we plug in the coordinates of ṽ and devide the
equation by s̃ = ẽ2r̃2:

0 = 1 − 2λ+
b̃2 + x̃2 + ỹ2

ẽ2r̃2
λ2.

The ray only has an intersection with the sphere if
the 2D vector formed by the x- and y-coordinates
of ṽ has a length smaller than r̃. By dividing the
coordinates through r̃, the in this way normalized

666



x- and y-coordinates need to be inside the easier to
handle unit circle. We therefore define

q̃
def
=

1

r̃

(
x̃
ỹ

)
q̃2 =

1

r̃

(
x̃2 + ỹ2

)
∈ [0, 1].

With the easily derivable equality b̃2 = ẽ2r̃4 the
equation for λ simplifies to

0 = 1 − 2λ+

(
r̃2 +

q̃2

ẽ2

)
λ2

(5)
= 1 − 2λ+

(
1 − 1 − q̃2

ẽ2

)
λ2. (10)

We finally define the reciprocal ũ of ẽ, which has
to be between zero and one for any view location
outside of the ellipsoid, and the two quantities α
and β as follows

ũ
def
=

1

ẽ
∈ [0, 1]

α
def
=

√
1 − q̃2

β
def
=

1

ẽ
α = ũα.

Comparing the definition of β with equation 10
gives

0 = 1 − 2λ+ (1 − β2)λ2,

which has only one solution, which is smaller than
one

λ =
1

1 ∓ β

λ≤1
=

1

1 + β
=

1

1 + ũ
√

1 − q̃2
. (11)

4.2 Incremental Implementation

This surprisingly simple formula enables a very fast
incremental computation of the ray-ellipsoid inter-
section, which is perfectly suited for the implemen-
tation in a fragment shader. For this we define cor-
responding to the four corners (6) of the splat two
linearly interpolated vertex attributes A[0] and A[1]
and one constant C[0]

A[0]±±
def
= V±± − e,

A[1]±±
def
= (±1,±1, ũ)T ,

C[0]
def
= e,

which encapsulate v, q̃ together with the per ellip-
soid constant term ũ and e. For each pixel we first
compute q̃2 and check if it is ≤ 1. If not, the frag-
ment is discarded. Otherwise λ is computed and via
equation 7, v = A[0] and e = C[0] the intersection
in world space.

4.3 Per Fragment Lighting

For the lighting computations we need the surface
normal of the ellipsoid in world coordinates. As
the surface normal in parameter space is identical
to the ray-sphere intersection p̃, the normal can be
computed via equation 3 to

n(λ) = T−1p̃(λ) = T−1 (ẽ + λṽ) .

If we express the constitutes of p̃ in the correspond-
ing quantities in world coordinates we get

n(λ) = T−2 (e − c + λv) .

For the computation of the not normalized surface
normal we introduce one per ellipsoid constant ver-
tex attribute A[2] and one linearly interpolated at-
tribute A[3]

A[2]
def
= T−2 (c − e) ,

A[3]±±
def
= T−2A[0]±±,

which allow to compute the surface normal incre-
mentally.

4.4 Per Fragment Depth Correction

As the x- and y-coordinates in screen space are
known from the rasterization process, only the z-
coordinate needs to be corrected. Let M be the
transformation matrix from world space to screen
space, i.e. perspective transformation and model
view transformation and Mi its i-th row. For the
depth correction we have to interpolate the screen
space z- and w-coordinate, compute z and w for
the intersection and finally divide the resulting z by
the resulting w. For this we compute the two 2D
vertex attributes in the vertex shader

A[4]±±
def
=

(
MT

2 A[0]±±,M
T
3 A[0]±±

)T
,

A[5]±±
def
=

(
MT

2 A[1]±±,M
T
3 A[1]±±

)T
.

Figure 5 illustrates the depth correction at the
example of two overlapping ellipsoids. In b) we
zoomed onto the intersection curve which is nicely
sampled on screen resolution independent of the
viewing distance.

666



a)

b)

Figure 5: Illustration of depth correction for over-
lapping ellipsoids.

5 Low Precision Implementation

One can even implement the shading of splatted el-
lipsoids without depth correction on graphics accel-
erators that do not support square root operations
but at least one dependent texture lookup in the
fragment shader, as for example the Radeon 9000.
On these graphics accelerators one can implement
the computation of λ by a 3D texture lookup. For
this one simply scales the coordinates of q̃ to the
range [0, 1] and uses ũ as the third texture coordi-
nate.

Two problems arise with this approach. Firstly,
does the computation of n consume the only avail-
able dependent texture lookup, which would be nec-
essary to allow for Phong shading. And secondly is
λ for most distances ẽ very close to 1 all over the
splat, what leads to severe numerical problems.

The first problem can be solved by implement-
ing Phong shading with a 2D texture lookup for
the diffuse component and a 3D texture lookup for
the specular component. The arguments to the dif-
fuse texture map are s = nT n and t = nT l,
where l is the direction vector to a directional light
source. The map simply implements the function
t/
√
s clamped to [0, 1]. Similarly, does the specu-

lar map take the three coordinates s = nT n · hT h,
t = nT h and u = shininess/128, where h is the
interpolated half-vector. The specular map imple-
ments the function (s/

√
t)128u.

The second problem can be solved by transform-
ing λ into the parameter µ that varies for any dis-
tance ẽ between zero and one. For this we examine

the range of λ, which only depends on q̃2. Substi-
tuting zero and one for q̃2 results in the range

λ ∈
[

ẽ

ẽ+ 1
, 1
]
.

Thus we define µ as

µ
def
= (ẽ+ 1)λ− ẽ =

1 − α

1 + ũα
∈ [0, 1],

where the second equation can be derived with sim-
ple algebra. The ray-ellipsoid intersection com-
putes to

p = e + λv = e +
ẽ

ẽ+ 1
v + µ

1

ẽ+ 1
v.

In a similar way we change the vertex attributes
A[2] and A[3] necessary for the illumination cal-
culations. One final problem arises as the inverse
transformation T−1 can scale the world space sur-
face normal to a length exceeding one, which leads
to a problem for the texture lookup in the dif-
fuse and specular maps. As the normal in param-
eter space is normalized, the transformation back to
world coordinates can scale it no more than

∥∥T−1
∥∥,

which is equal to the largest eigenvalue of T−1 or
the reciprocal of the smallest eigenvalue of T . The
world space normal can therefore be kept shorter or
equal to length one, if one divides the modified def-
initions of A[2] and A[3] by

∥∥T−1
∥∥.

6 Results

We implemented vertex and fragment shaders with
the OpenGL ARB vertex and fragment program ex-
tensions and the approach of section 5 with the ATI
fragment shader extension. Our API consists of five
functions:

1. enableEllipsoidShader(const
ViewDescr& vd). . . sets up the vertex and
fragment programs and creates textures in the
first call and binds textures and programs in
successive calls and sets per frame constants.

2. renderEllipsoid(const Pnt&
center, const SymMat& T, const
SymMat& I). . . renders an ellipsoid at the
given center location, which is given by a
symmetric matrix. Also the inverse of the
symmetric matrix has to be provided.

666



a) b) c)

Figure 6: Visual comparision of three different rendering approaches for symmetric positive tensors: ellip-
soids, icosahedra and boxes; all Phong shaded.

3. setMaterial(float ambient,
float diffuse, float specular,
float shininess). . . sets the different
material coefficients used for Phong shading.

4. setSpecularColor(float r,
float g, float b). . . sets the specular
color.

5. disableEllipsoidShader(). . . turns
off the vertex and fragment programs.

The color of the rendered ellipsoids can be specified
via glColor commands.

Figure 1 shows our test scene of a symmetric ten-
sor field visualized on a grid of 403 = 64000 ellip-
soids. In Figure 6 we compare a coarser sampling
of the test scene tensor field for three different ren-
dering approaches, that are typically used for the vi-
sualization of tensor fields. In a) the presented ap-
proach of ellipsoid visualization is used, in b) tes-
sellated icosahedra are used and in c) rectangular
boxes are shown. We optimized the rendering of
icosahedra and boxes by stripification.

To analyze and compare the performance of our
approach we rendered the test scene with differ-
ent sized ellipsoids. We computed the number of
ellipsoids rendered per second and the number of
rastered fragments per second. In the diagrams of
Figure 7 we plotted the number of rastered frag-
ments per second over the number of ellipsoids
per second, i.e. the fill rate over the setup speed.
We compared the different rendering approaches for
two graphics accelerators: a GeForceFX 5800 and
a Radion 9000. For both cards the box rendering
is always faster than the icosahedron rendering and
the ellipsoid rendering is fast than the icosahedron
rendering for small ellipsoids, i.e. a low fill rate,
and slower for larger fill rates. In the case of the

GeForce card, the ellipsoid rendering is even faster
than box rendering in case of low fill rates. We can
conclude that the setup for ellipsoid splatting is very
fast but the splatting is fill rate limited already for
small splat sizes (about 102 splats). But splatting
is never more than twice slower as icosahedron ren-
dering and achieves a much higher image quality.
An appropriate tessellation of the sphere consumes
surely more than twice as many triangles than an
icosahedron and will in most cases be slower than
our ellipsoid splatting approach.

In future work we want to apply our ellipsoid
rendering strategy to the ellipsoidal representation
proposed by Bischoff and Kobbelt [1]. We want to
investigate how to render ellipsoid decompositions
of 3D models view dependently. Furthermore, we
want to investigate different texturing approaches
for the ellipsoids such that also the anti-symmetric
part of a tensor field can be visualized by for exam-
ple a spiral pattern or a bump map.

References

[1] S. Bischoff and L. Kobbelt. Ellipsoid de-
composition of 3d-models. In Proceedings of
3DPVT Conference, pages 480–488, 2002.

[2] T. Delmarcelle and L. Hesselink. Visualiza-
tion of second order tensor fields and matrix
data. In Proceedings of IEEE Visualization
Conference 1992, pages 316–323, 1992.

[3] P. Elinas and W. Stürzlinger. Real-time ren-
dering of 3d clouds. Journal of Graphics
Tools, 5(4):33–45, 2000.

[4] S. Guthe, S. Gumhold, and W. Straßer. Inter-
active visualization of volumetric vector fields

666



a)

GeForceFX 5800

0,00E+00

3,00E+07

6,00E+07

9,00E+07

1,20E+08

1,50E+08

0 50000 100000 150000 200000 250000 300000

boxes icos ellipsoids b)

Radeon 9000

0,00E+00

2,00E+07

4,00E+07

6,00E+07

8,00E+07

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

boxes icos ellipsoids

Figure 7: For two different graphics accelerators the fill rate in fragments per second plotted over the setup
up speed in rendered tensors per second.

using texture based particles. In Proceedings
of WSCG Conference 2002, 2002.

[5] G. Kindlmann, D. Weinstein, and D. Hart.
Strategies for direct volume rendering of dif-
fusion tensor fields. IEEE Transactions
on Visualization and Computer Graphics,
6(2):124–138, 2000.

[6] G. L. Kindlmann and D. M. Weinstein. Hue-
balls and lit-tensors for direct volume render-
ing of diffusion tensor fields. In Proceedings
of IEEE Visualization Conference 1999, pages
183–189, 1999.

[7] D. H. Laidlaw, E. T. Ahrens, D. Kremers, M. J.
Avalos, R. E. Jacobs, and Carol Readhead. Vi-
sualizing diffusion tensor images of the mouse
spinal cord. In Proceedings of IEEE Visualiza-
tion Conference 1998, pages 127–134, 1998.

[8] D. Laur and P. Hanrahan. Hierarchical splat-
ting: A progressive refinement algorithm for
volume rendering. In Proceedings of ACM
SIGGRAPH Conference 1991, pages 285–
288, 1991.

[9] X. Mao. Splatting of non rectilinear volumes
through stochastic resampling. IEEE Transac-
tions on Visualization and Computer Graph-
ics, 2(2):156–170, 1996.

[10] K. Mueller, T. Moeller, and R. Crawfis. Splat-
ting without the blur. In Proceedings of IEEE
Visualization Conference 1999, pages 363–
370, 1999.

[11] H.-P. Pfister, M. Zwicker, J. van Baar, and
M. Gross. Surfels: Surface elements as ren-
dering primitives. In Proceedings of ACM
SIGGRAPH Conference 2000, pages 335–
342, 2000.

[12] L. Ren, H. Pfister, and M. Zwicker. Object
space ewa surface splatting: A hardware ac-
celerated approach to high quality point ren-
dering. In Proceedings of Eurographics Con-
ference 2002., 2002.

[13] J. E. Swan, K. Mueller, T. Moeller, N. Shareef,
R. Crawfis, and R. Yagel. An anti-aliasing
technique for splatting. In Proceedings of
IEEE Visualization Conference 1997, pages
197–204, 1997.

[14] J. J. van Wijk. Spot noise: Texture syn-
thesis for data visualization. In Proceedings
of ACM SIGGRAPH Conference 1991, pages
309–318, 1991.

[15] L. Westover. Footprint evaluation for vol-
ume rendering. In Proceedings of ACM SIG-
GRAPH Conference 1990, pages 367–376,
1990.

[16] S. Zhang, C. Demiralp, D.F.Keefe, M. J.
da Silva, D. H. Laidlaw, B. D. Greenberg,
P.J. Basser, and E.A. Chiocca andC. Pierpaoli
T.S. Deisboeck. An immersive virtual envi-
ronment for dt-mri volume visualization ap-
plications: A case study. In Proceedings of
IEEE Visualization Conference 2001, 2001.

[17] M. Zwicker, H. Pfister, J. VanBaar, and
M. Gross. Ewa volume splatting. In Proceed-
ings of IEEE Visualization Conference 2001.,
2001.

[18] M. Zwicker, H.-P. Pfister, J. van Baar, and
M. Gross. Surface splatting. In Proceedings
of ACM SIGGRAPH Conference 2001, pages
371–378, 2001.

666


