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Figure 1: Rendering results from the technique presented in this paper. From left to right: example datasets Fibers, HotRoom and

Stefan Gumhold*
TU Dresden

Brain, as well as a side-by-side comparison of the bounding box geometry we use for raycasting and the tube segments they cover.

ABSTRACT

Visualizing curve and trajectory data is a common task in many sci-
entific fields including medicine and physics. Tubes are an effective
visualization primitive for this sort of data, but they require highly
specialized renderers to achieve high image quality at frame rates
sufficient for interactive visualization. We present a rendering algo-
rithm for Hermite spline tubes, i.e. tubes that result from Hermite
splines interpolating the data, with support for varying-radii circular
tube cross sections. Our approach employs raycasting and works
directly on this continuous representation without the need for sur-
face tessellation, made possible by an efficient ray-tube intersection
routine suitable for execution on modern GPUs.

Index Terms: Computing methodologies—Computer graphics—
Rendering; Human-centered computing— Visualization—Visualiza-
tion Application domains—Scientific visualization

1 INTRODUCTION

Tubes are employed as a primitive for visualizing a wide variety
of natural and abstract structures, ranging from white matter tracts
and blood vessels (Merhof et al. [8]) over trajectories of physical
particles and objects (Fraedrich et al. [4]) to stream- and pathlines
emerging from vector fields (Zockler et al. [14], Meuschke et al. [9]).

Formed by a (potentially varying) cross section extruded from a
central axis, they pose several challenges for efficient rendering, usu-
ally addressed by striking a compromise between image fidelity and
render time. Traditionally, interactive realtime visualizations using
tubes rely on adaptive surface tessellation to maximize throughput
with minimal loss of quality (e.g. Stoll et al. [12], Nunes et al. [10]).
Since this still means discretization of the tube surface, a lot of addi-
tional data is being generated for rendering, worsening the geometry
bottleneck for large, complex datasets.

Raycasting of analytically or algebraically defined tube surfaces
can circumvent this problem, but compact formulations of the ray-
surface intersection for the former or even just the tube surface
itself for the latter are not straight-forward or — depending on the
versatility of the tube primitive — non-existent.

We tackle this problem by defining the tube from the volume
traced out by a sphere moving along the central axis, which we
describe using a Hermite spline. Other tube attributes, notably the
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radius, also follow a Hermite spline. During rendering, the Hermite
spline tubes are processed per Hermite spline segment, where each
segment is defined by two nodes with information about position,
radius, and their respective first derivatives.

The remainder of this paper will give a focused overview of
related methods in Sect. 2, explain our raycasting algorithm in detail
in Sect. 3, discuss preliminary results in section Sect. 4 and provide
a brief outlook on future work in Sect. 5.

2 RELATED WORK

Generalized cylinders were originally introduced by Agin and Bin-
ford [1]. In contrast to a regular cylinder, the cross section of a
generalized cylinder can be arbitrarily shaped and its axis is de-
scribed by a curve. Tubes are a form of generalized cylinder with —
at least when characterizing common usage of the term in the visu-
alization community — rather simple, mostly convex cross sections.
In this section, we give a brief overview of related methods for
rendering tubes. For conciseness, we restrict ourselves to methods
that employ raycasting or -tracing, as they are most related to our
approach. We categorize these methods according to whether they
work on some continuous description of the tube directly (we refer
to that as spline tubes) or rely on some sort of line primitives to
connect data points.

Spline Tubes. Bronsvoort and Klok [2] presented a method for ray-
tracing tubes defined by parametric curves. Their method employs
a generic subdivision scheme that does not make any assumptions
about curve parameterization or cylinder cross sections, resulting
in a highly versatile but expensive intersection routine targeted at
offline renderers. Reina et al. [11] present a GPU-based raycasting
scheme for spline tubes with elliptical cross section. Ellipsoids have
a discernible orientation, and this translates to intuitively understand-
able corkscrew patterns on the tube surface. They cannot provide
a compact implicit function for the tube surface, so they employ
the distance-bound raymarching strategy first presented by Hart [6]
to find ray intersections. Although raymarching tends to be slower
than direct raycasting, their profiling results suggest that tessellation-
based techniques will be slower still for sufficiently large datasets
as the GPU hits a vertex bottleneck. More recently, the open source
CPU raytracing framework Embree [13] added support for a variety
of spline curves for use as geometry primitives. The tube variants
of these primitives sweep a planar circle along the axis, which can
create bulge artifacts in locations of very high curvature. Thus, they
restrict valid cross section radii at a point to be smaller than the local
curvature radius of the axis.

Line Primitives. The other major category of relevant rendering
techniques is based on discretization into piecewise linear segments,
relying on a dense sampling for smooth-looking curves.



Han et al. [5] raytrace cone stumps and spheres on the CPU. To sup-
port artifact-free transparency despite composing their tube primitive
from multiple objects, they employ a CSG-derived interpretation of
ray surface hits. Kanzler et al. [7] utilize a novel voxel representa-
tion for lines, enabling fast image-order raycasting of line datasets
as tubes. Their main contribution is the voxel representation itself,
as it supports level-of-detail by means of a tailor-made averaging
operation, as well as fast voxel-based approximate simulation of
global illumination phenomena. For actual intersection of the rays
with tube segments, they employ a similar approach to Han et al. [5],
albeit without support for varying radii.

3 HERMITE SPLINE TUBE RAYCASTING
3.1 Preliminaries

Terminology. A Hermite spline tube is defined by a sequence of
control points (henceforth called nodes) that provide position, radius,
and color values as well as derivatives. The shape and coloring of a
tube in between nodes is determined by a cubic Hermite interpolation
of the node attributes or, for the purpose of ray casting, a piecewise
quadratic approximation thereof (see Sect. 3.2). We will refer to the
value of an attribute of some node i as n; and its derivative as ¢;.

The position spline defines a curve in world space that forms
the generalized cylinder axis. We will mathematically refer
to the position spline as p(f) and its component functions as
Pafylz(t), respectively. A tangent spline £(t) can be derived
from the position spline by differentiation with regard to the
curve parameter, and it will interpolate the node tangents just
like the position spline interpolates the node positions. The
radius spline r(t) defines the radius of the sphere extruding
the tube at #, and the color spline’c (t) describes the color value
attributed to 7.

Finally, pairs of adjacent nodes form tube segments, resulting in
individual per-segment polynomial curves. Of particular interest for
our algorithm are the position curves py(t) and radius curves ri(t),
t =0..1 of a segment k.

Data organization. During rendering, node data is stored as vertex
attributes in a vertex buffer, each vertex representing one node. To
form segments, pairs of nodes are referenced by means of an index
buffer. The whole dataset can then be drawn with a single indexed
draw call for line lists.

Note that we impose no notion of individual tubes; they form
naturally from segments that fit together. Sharp corners are sup-
ported by duplicating a node with a differing tangent, at the
cost of introducing redundancy for the other attributes of that
node. Bifurcations are supported by referencing the same node
more than twice, or optionally — if discontinuity of any of the at-
tributes is desired — referencing another duplicate of that node from
the bifurcating segment.

3.2 Rendering

Algorithm. We begin with a high-level view of the rendering
algorithm. Our method targets rasterizer systems, meaning we have
to first identify the fragments for which to cast rays at the scene.
This necessitates the use of silhouette geometry. We opted to employ
oriented bounding boxes around the tube segments in world space.

The algorithm starts with a single indexed line list draw call for the
whole dataset. The vertex shader is purely pass-through, providing
the geometry shader with the start and end node of a segment. The
geometry shader takes the line formed by the two nodes as an input
and outputs triangle strips for two oriented bounding boxes tightly
covering the whole tube segment. We output two boxes per segment
because we actually subdivide the cubic curves of a segment into
two quadratics at the geometry shader stage — we will explain our
reasoning for doing this when discussing the intersection routine
later on.
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Figure 2: To obtain the oriented bounding box for a quadratic sub-
segment, we compute a matrix M that transforms the unit cube in the
positive octant such that it tightly fits the tube segment geometry. The
direction from start to end control point (b; and b3, respectively) and
the tangent ¥ = b, — b; determine the orientation.

Rays are then cast in the fragment shader for every fragment gen-
erated by the rasterizer, yielding color and depth information for
the closest intersection of the ray with the tube segment inside the
silhouette.

Segment subdivision. To obtain the two sub-segments, we create
two quadratic Bezier curves per attribute, the control points of which
we denote as ay, ap, az and by, by, b3, respectively. For a segment
referencing nodes i, j, we set the control points at the segment nodes
to a; = n; and b3 = nj. The respective middle control points are
then calculated as a; = n; +c1t; and by = nj — cpt;. We choose
¢1 = ¢ = 1/3, motivated by the Hermite/Bezier basis transformation.
Setting a3 = b = (a2+b2)/2 connects the sub-segments with C! con-
tinuity at the junction. The Bezier control points are provided to the
fragment shader as vertex attributes of the respective bounding box.

Silhouettes. In order to minimize the number of ray misses, the
silhouettes should be as tight-fitting around the tube sub-segments
as possible. At the same time, geometry load on the GPU should
be minimized in order to not lose the performance advantage of
raycasting for large datasets. We believe that oriented bounding
boxes are a reasonable choice. Despite their simplicity, they are
likely to be a good fit for the majority of tube segments in a dataset
since individual segments curve relatively little in practice.

To determine the bounding box for a sub-segment, we first select
a suitable orientation. We found the following strategy to yield
reasonable results (the sub-segment position curve b(r) is again
determined by Bezier control points by, by, b3):

¢ x-axis: use the normalized vector from start node to end node,
ie k= bizb
63—\l
* y-axis: project the tangent f = b, — by onto a plane with normal
% and normalize, i.e. § = ¥/||#| where ¥ =7 — 2(f,%). In case
the tangent and X are colinear, we choose any unit vector
orthogonal to X.

* z-axis: results from the cross product Z =X X J.

We can now construct a matrix R = (% ¥ 2)T representing a rotated
version of world space that has its basis vectors aligned with the final
bounding box edges. Transforming control points into this frame
yields the transformed position curve g(r) = R- b(t), which we use
for determining the bounding box extents by calculating the extrema
of the component functions g,y (t) £ (7).

Let Gyjy|s,— (1) = Gyly|(t) — r(t) and gy, 1 () = Gy (1) +7(2).
The segment extrema can be found by evaluating each component
function at# = 0,1 as well as an additional candidate 7|, acquired
by analytically computing the roots of the respective (linear)
first derivatives ¢ \y\zf(t) and qﬁcMZ’ . (#). This candidate will be



considered only if it falls inside the parameter range [0, 1].

We denote the minimum and maximum value of a component
as {x[y|z}min and {x|y|z}max. With the extrema of each component
function known, they result from the respective smallest and largest
values. For the x-extent, this yields:

Xmin = Min ((Ix,f (0)7 [CIx.f (tx) s } qx,— (1))
Xmax = max (qx,+(0), [gr+(tx),] qr+(1))
With this, scaling and translation for the oriented bounding box can

be fixed. The corresponding homogeneous transformation matrix
for use on the positive unit cube (see Fig. 2) is calculated as follows:

Xmax — Xmin 0 0 Xmin
M= RT 0 . 0 Ymax = Ymin 0 Ymin
0 1 0 0 Zmax — Zmin  Zmin

0 0

Intersection. Since no compact implicit function describing a
spline tube segment is available, direct raycasting (i.e. without
employing a ray marching strategy) requires a parametrized ray-
segment intersection to be formulated first. To that end, we
parametrize the ray-sphere intersection problem such that position
and radius of the sphere are determined by the respective attribute
curves. We then construct a function [ = f(¢) that directly relates
the curve parameter ¢ to the ray parameter / corresponding to the
front-facing intersection with the sphere at t. Thus, the smallest
local minimum of that function within the segment domain ¢ = 0..1
yields the closest intersection of the ray with the tube segment.

We further simplify the problem by formulating the intersection
in ray space (see Fig. 3). We define the ray as +(I) = o0+1-d,
where the ray origin o is the eye position and d gives the direction
to the point on the image plane corresponding to the fragment. In ray
space, the coordinate system origin is at o, while the ray direction d
coincides with the x-axis (any two vectors forming an orthonormal
basis with d may be chosen as y and z axes).

We start with the intersection of a sphere (defined by its position
p and radius r) and the x-axis, which is computed as:

s(p,r) = pxt /12— p2—p? (1)

Plugging in the segment attribute curves for ray-space position and
radius (we omit the segment ID k for legibility) and chosing the
front-facing intersection yields:

F(0) = palt) = [0 = py(0)2 — p=(0)? @

We minimize f via differentiation with respect to ¢. For convenience,
we denote the individual polynomials outside and inside the square
root as A(t) = py(t) and g(t) = r(t)> — py(t)* — p.(t)%, ie. f(t) =
h(r) —+/g(t), yielding the derivative

40
2/5(0)

f and f’ are real only within intervals where g(¢) > 0, so finding the
minima of f via root search on f’ requires knowing the real roots of
g first. Then, root finding on f has to be performed on the following
intervals of t = 0..1:

(@) tyin = 0 and the first real root of g at #, iff. g(0) >0
(b) two subsequent real roots #, and 1, of g, iff. g((ta+1%)/2) >0
(c) the last real root of g at #,, and tyq, = 1, iff. g(1) >0

[y =H () A3)

Intuitively, these intervals can be thought of as ranges of the curve
parameter r where the tube segment and the ray spatially overlap,
and the number of these intervals corresponds the the number of
times the ray hits the tube segment (see Fig. 4).

'\/HHI

S
L=<
H
[N

Figure 3: Spheres along a spline segment in ray space are intersected
with the x-axis (the ray), resulting in an intersection point x;. The point
pi(t) on the position curve and corresponding sphere radius r(z) are
parametrized by the local curve parameter r = 0..1 of tube segment k.
The first intersection x,,;, with the tube segment is found by minimizing
x with respect to z.

When using the cubic position and radius curves of the segment as
is, g will become a polynomial of degree 6. If we use the quadratic
sub-segment curves instead, we can get g down to degree 4. We
could now analytically calculate all real roots of g by applying the
quartic equation. However, due to the large number of arithmetic
operations involved, we opted to use the same fast iterative approach
we apply to f’.

Root finding. In the following, we describe the strategy we use
for solving all root finding problems posed by our method. Let u(x)
be a polynomial. We bracket the real roots we are interested in by
some isolating interval [x4,x,] such that u(x,) and u(x;) evaluate to
opposite signs. We then use the bisection method [3] to approximate
them. We believe bisection to be a reasonable choice for our use
case because of its low per-iteration cost and fixed convergence rate,
but investigating methods with faster theoretical convergence is a
promising avenue for future work.

Since every real root of u within some interval [a, b] of interest lies
in between two subsequent extrema that evaluate to opposite signs,
its extrema provide all the information needed to form isolating
intervals (in this context, the interval borders can be extrema as
well). Determining the extrema of u is equivalent to finding the roots
of its derivative. Therefore, starting with some derivative for which
it is known that only a single root inside [a, b] exists, it is possible to
recursively apply bisection to determine the isolating intervals for
all lower derivatives of u up to the original polynomial.

If u is of degree n, the roots of n derivatives need to be found.
Additionally, the number of potential real roots of each derivative
equals its degree. Consequently, the worst-case complexity of this
algorithm is O((n*+n)/2). However, some root searches can be saved
by analytic computation as soon as the derivative is of sufficiently
low degree. For our g of degree 4, we chose to analytically compute
the real roots of g’ (which is quadratic), necessitating 7 numerical
root searches in the worst case.

f is not a polynomial, so we cannot stop at some derivative for
which a closed-form solution exists. However, we observed from
empirical study of f that the number of roots consistently decreases
with every differentiation, and that f’ has a maximum of 3 roots per
real interval (we would like to follow up with a formal proof for
these claims in future work). This means that starting from f G), 6
numerical root searches per interval are required in the worst case to
find all real roots of f’. Also, we observed that in every real interval
where f has 3 real roots, the middle one always corresponds to a
local maximum of f and can thus be ignored, bringing down the
worst-case number of root searches per interval to 5. For some
illustrative plots of f and its companions, see Fig. 4.



— 1)

--- h(t)
1)

— 1"
1O

0 0.7 0.1

(b) ' ©

Figure 4: Example plots of f. Every interval where f is real corre-
sponds to an intersection with the tube. Most configurations will result
in just one such interval (examples (a) and (b)). Several disjunct in-
tervals are possible if the ray leaves and enters the tube several times
(example (c)).

Finally, we evaluate f at the roots of f’ and chose the smallest value
as the ray parameter corresponding to the closest intersection.

Shading. For demonstration purposes, we apply simple local light-
ing with diffuse Lambertian reflectance and a Blinn-Phong specular
term to the tube surface. The surface normal required for lighting
calculations equals the normal of the sphere at the curve parame-
ter # corresponding to the closest intersection, i.e. /A = #/|#| with
i =7(f(ty)) — p(to)-

Currently, we use just the color obtained from ¢ (¢) to determine
surface albedo. Adding texture would be possible by adopting a
suitable surface parameterization.

4 RESULTS

For example renderings of the five test datasets using our method, see
Fig. 1 and Fig. 5. These datasets are characterized by the following
statistics:

Fibers  HotRoom  Bundle Brain  Furball
tubes 241 722 1250 1701 10000
segments 3530 30948 105640 114489 787327

We compare the performance of our method against a tessellation-
based strategy with comparable capabilities that employs dynamic
hardware tessellation for view-dependent level-of-detail, similar in
spirit to the method proposed by Nunes et al. [10]. In contrast to
our raycasting method, the tube surface model of the tessellation
approach results from sweeping a planar circle along the position
spline instead of a sphere. The cross section at every sample is made
up of 6 vertices at the base tessellation level and may get refined
to up to 30 vertices to enable a visual fidelity comparable to our
method. The tessellator is also allowed to insert up to 5 additional
samples along the spline.

For measuring rendering performance, we rendered each dataset
in a 1920x1080, 45° vertical FoV viewport from two different view-
ing configurations, which we call close and far. The view was then
rotated in an orbit around the center of the dataset for 1000 frames.
For the far configuration, we chose a distance from the center such
that the whole dataset fits the viewport, for the close configuration
we chose the distance to be 1/3 of that. To estimate the impact of
generating the silhouette geometry, we also performed these tests
with an empty fragment shader that discards all fragments. For ren-
der time measurements, performed on a Geforce RTX 2080 Ti GPU,
see Fig. 5. Our experiments confirmed that our method becomes

ms M ours (far)  tess. (far) triangles
7( | 77/ ours (close) . tess. (close) © :"} 1010
—0— triangles (ours) —@— triangles (tess.) 8 ©
60
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Fibers HotRoom Bundle Brain Furball

Figure 5: Top: Procedurally generated datasets Bundle (left) and
Furball (right). Bottom: Comparison of average render times (in
milliseconds) and triangle count for each test dataset and view con-
figuration. For our method, the hatched area represents the average
render time without any fragment shading performed. The triangle
count measured for tessellation is the average over all camera orbits
performed on a given dataset.

competitive with and finally surpasses tessellation as datasets in-
crease in size, in line with the findings reported for other raycasting
techniques [7, 11]. Zooming in on a dataset incurs a noticeable
performance penalty for our method as it is highly fillrate-bound.
In general, performance of tessellation is more strongly coupled
to dataset size. Our method scales favorably in this regard, but over-
draw is a major performance factor even for smaller-sized data, as
evidenced by the anomaly exposed by dataset HotRoom, which is
made up of segments much smaller in length than their average tube
radius, causing significant silhouette overlap within a tube (even the
spheres at the bottom consist of dozens of segments each). In addi-
tion, we noticed a considerable impact of the geometry stages for
very large datasets, suggesting alternative means of generating sil-
houettes are worth investigating. Irrespective of these considerations,
our method achieved fully interactive frame rates for all five datasets.

5 CONCLUSION AND OUTLOOK

‘We presented an efficient algorithm for raycasting Hermite spline
tubes. While initial results are promising, we identified many possi-
ble improvements and directions for further research.

For one, cubics are a third-order approximant, opening up the
opportunity for drastic data reduction. We envision a pre-processor
that automatically merges segments, observing a user-defined error
bound. GPU-side tessellation could then be used to generate more
complex silhouette geometry if overall curvature of a segment makes
tight fitting with a single box impossible.

Complex datasets incur a lot of overdraw due to occlusion. While
existing strategies can be used to tackle this problem in a rasterizer
system, we think that with an efficient intersection routine avail-
able, realtime raytracing (e.g. using NVIDIA RTX) is a promising
alternative for rendering large numbers of Hermite spline tubes.
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