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Abstract. Ubiquitous systems and interaction concepts are increasingly finding
their way into public systems like shopping malls, airports, public transport or
information kiosks. At the same time, these user interfaces also undergo significant
changes. Technologies like multi-touch systems or voice-based interaction are now
available to the general public and widely used. In ubiquitous systems, these
modalities are often combined, sometimes even dynamically at runtime. This leads to
new challenges for the conceptualization and development of ubiquitous user
interfaces in public systems, especially where this implies adaptive behavior. We
present contexts that possibly influence the interaction with such public systems and
describe ways of modeling this interaction integrating context-adaptivity already in
the interaction models of public systems. Taking into account the context of the
public system and its users, we extend the concept of Interaction-Cases to contain
model aspects for different interaction contexts in public systems.

1 Introduction

Public systems represent a field of application for ubiquitous techniques that is
growing recently. Ubiquitous environments are integrated into public information
technology and socio-technical public systems like shopping malls, airports or public
transport [1,2]. Some of them have particular target groups, like tourists or
handicapped people [3,4]. Others are designed to serve the general public [5]. New
interaction technologies like multi-touch interfaces or gesture recognition facilitate
the construction of really pervasive computing environments for public systems.

In public places, computing environments must be as unobtrusive as possible. At
the same time, their usability and accessibility must be very high and designed to
support a variety of strongly different users without training. Combining multiple
interaction techniques in ubiquitous environments for public systems aims at
supporting both, pervasive and easily accessible computing that is optimized to the
situation of the user without the availability of concepts like personalization, profiles
etc. found in “classical” interactive systems like business software, home automation
or control environments. Ubiquitous systems offer new opportunities for public
settings, which will make them find their way into public systems, but also bring new
challenges with them, regarding their development and modeling.

Ubiquitous systems support many different interfaces and often need to be context-
aware to optimize their interactive behavior regarding context. They are characterized
by integrating several means of interaction and being highly adaptive. Here, a model-
based approach can lead to efficient development of ubiquitous systems and support
adaptive design of user interfaces in ubiquitous systems [6]. However, model-based
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design methods like Model-Driven Architecture (MDA) are often not flexible enough
to meet the needs of designing adaptive, context-aware ubiquitous systems [7]. They
also focus on design-time generative approaches, which are not applicable to non-
monolithic, modular systems with changes on runtime. Therefore, a modeling-
technique for interactive public systems is needed, which supports context-aware and
highly adaptive interactive ubiquitous systems, in order to facilitate the creation of
ubiquitous public systems that combine context-adaption as well as multiple and
multimodal interaction techniques.

In traditional software engineering, user and interaction models are specified at
design time, using persona, textual descriptions or just the mental models that user
interface designers and developers have about the future users of the system [8,9].
Based on these user models and the identified roles and actors, the whole system is
then designed [10,11]. In ubiquitous public systems, however, the users can often not
be associated with a specific user group. In public, all kinds of people are around and
can turn into users of the public system, often with different or unspecific needs not
covered with a dedicated task or system, making the user anonymous and
unpredictable at design-time. However, the context of the public system and its user
interface is known, can be specified and observed at runtime. Based on the context the
public system observes, such as location, time or input, the system can adapt, for
example, its interaction modalities. Therefore, especially in public systems, the
modeling of an interactive and ubiquitous system has to focus on system context.

The field of context-aware systems is very broad, being researched for several
years now. Especially the growth of interest in ubiquitous systems has pushed the
development of context-aware environments [12,13]. One of the first context-aware
systems was the active badge location system, developed by Want et al. in 1992 [14].
It observed the user’s location and redirected telephone calls concerning this location.
The early context-aware systems mainly considered location as the context of the
user, like many tourist guides, for example [3,15]. Later on, other contexts were
considered as well, which led to different approaches on modeling context. Dey et al.
for example, identified several popular categories of context such as “location,
identity, activity and time” [13]. The classification of context that is necessary for
building context-aware systems led to the development of several ontologies for
context, for example by Chen et al. and also by Moore et al. [16,17]. Many context-
aware ubiquitous systems emerged and this development led to the design of several
frameworks that facilitate the construction of context-aware systems [18,19].

The specifics of public systems were considered in some ubiquitous systems that
were designed for public environments, for example, systems that support
handicapped people in settings like public transport [4]. Other systems, like the
GUIDE project, focused on tourists, or on students on a campus, like the e-campus
project [2,3]. Some other projects involving public transport settings used ubiquitous
and context-aware technologies [15,20]. However, to our knowledge there is little
research about the properties and contexts of public systems that does not focus on
specific settings or user groups, like tourists, students, public transport etc. We
therefore define a general public system as a system that performs in public spaces
and does not target specific user groups but is available to all people, i.e. the public.

Concerning modeling techniques for interactive systems, there is extensive work
on MDA and model-driven interface design [6,7]. As noted above, some extensions of
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UML have led to modeling languages for web applications or web services, some of
them context-aware [21,22]. Most of this work, however, does not consider context-
awareness and adaptivity in ubiquitous public systems.

In this paper we therefore present an overview on possible contexts in public
systems and a basic taxonomy of these contexts. We then introduce a model-based
approach on designing context-adaptive interaction in ubiquitous public systems.

3 Dimensions of Context in Public Systems

Since in public systems, personalization often is impossible, they strongly depend on
context in order to adapt to user’s needs and the surroundings. Models of ubiquitous
public systems should be adaptive regarding these different contexts. As a basis for
adaptive modeling techniques, the possible contexts of public systems need to be
analyzed. We developed a classification of contexts of public systems for this
purpose, which is shown in figure 1. The context classification is still work in
progress and should not be too fine-grained for serving as a basis for different systems
and context ontologies. It shows our basic approach to modeling context and points
out the specific properties of public systems that must be taken into account while
modeling interactive ubiquitous systems for public settings. Ideally, context models
are defined in a domain-specific way for the specific public system, but rely on a
common basic ontology that allows for matching and integrating the context
ontologies on the top level of abstraction. The examples of context-adaptive
interaction models for ubiquitous public systems, which we describe in section 5,
show that already a coarse-grained and incomplete context classification can be
applied successfully to our modeling technique.

Most ubiquitous systems have a kind of Interaction Context (I), consisting of the
system’s Input Context (In), representing the possibilities of input, i.e. of entering,
selecting or editing information. The system also has a Processing Context (Proc) that
reflects the processing of input on part of the system, including capability models and
sensor fusion. Analogously, there also exists an Output Context (Out), which relates
to different output modalities. Especially in public areas, the context of interaction by
the user has to be considered as well, in particular as there are aspects that are known
to the system without specific knowledge about the user. A user not only perceives
and acts while interacting with a public system; he also processes what he has
perceived. This leads to the Perceptive, Cognitive and Acting Context (Per, Cog, Act)
of the user as important contextual aspects. In public, the user can be distracted by
noise, too much light (e.g. glare) as well as bad lighting, for example. These
conditions influence his Perceptive as well as his Cognitive Context, like being in a
hurry or looking for somebody else, which will reduce or divert his attention and
therefore will reduce his available cognitive and perceptive capacity.

Of course, the Spatial Context (Sp) must be considered, too. This concerns the
location of the user as well as the location of the system. Large public displays as well
as the mobile devices of users may be a component of a public system. The location
of the system therefore can be fixed (Fix) or moving (Mov), but can also influence size
and visibility of an available display. We furthermore identified the Temporal
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Context (Temp) with its sub-contexts Absolute Time (Abs) and Relative Time (Rel).
Relative time will occur, for example, where a distance separates the user from a
destination, leading to a relative time needed to get there depending on transportation,
or where interaction occurs relative to an event like the late arrival of a train.
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Fig. 1. Dimensions of Context in Public Systems
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A context specific to and of high interest in public systems is the Socio-Technical
Context (ST). In public systems, there is a Sociological Context (S), considering the
common use of resources by many people. There are social rules in public spaces that
are followed by most of the people there. These rules can affect the usage of public
ubiquitous systems. Concerning, for example, the interaction using a big public
display, the aspect of privacy has to be considered. A user should not be required to
enter or request personal data in such a way that might disclose it to others [23].

The Technical Context (Tech) is also a sub-context of the Socio-Technical Context
and describes the technical abilities of the system. In public transport this could be the
question whether a subsystem has fast and reliable access to an up-to-date timetable
data source, including delays or failures, or only to the regular timetable.

Another sub-context of the Socio-Technical Context of public systems is the
Operational Context (Op) of a system. This covers everything that goes on “behind
the scenes” and includes, in public transport for example, activities in the railway
control center. This context affects public systems, because many of them depend on
certain operational procedures and exhibit only a small part of the full socio-technical
system to the public.

The Organizational Context (Org) models the conditions and contexts of
organizations involved. In public spaces, these could be the operating company of
public transport as well as organizations running shops at airports or railway stations.
For services, the Organizational and the whole Process Context (P) are of high
importance. Process Context in public systems is defined upon user and system
actions and their structural and logical interdependencies (causality etc.). Many
actions exhibit dependencies or will trigger other actions necessary to accomplish a
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complete task with the desired result. Especially regarding service-oriented
architectures, the Process Context is of high value for service quality and many other
aspects like security and safety.

This also shows that many of the context types, like Organizational Context and
Technical Context are interconnected or may even be integrated to form, in this
example, the Socio-Technical Context. Therefore, one must consider the modeling of
contexts as well as their integration or even fusion.

4 Interaction-Cases

When software systems with interactive components are designed, often stakeholders
from different disciplines participate in the process. The design step therefore requires
techniques to be easily understandable as well as highly applicable in different phases
and aspects from informal requirements to formal processes, in order to be used by
technical as well as non-technical stakeholders. Paper-based prototypes, scenarios and
textual descriptions of a system’s behavior are non-technical and easily
understandable approaches for early design phases [10,24]. However, these artifacts
lack formalization and therefore cannot be linked to artifacts of later dewvelopment
stages like code. Often the early stage design artifacts become outdated and
inconsistent due to changes in later artifacts, which cannot be tracked back to the
descriptions in early specification artifacts.

The Unified Modeling Language (UML) provides a semi-formal way of modeling
and specifying software in several development stages, from informal Use Case
definitions to class diagrams and generated code stubs. Standard UML Use Cases
provide a non-technical means of specifying the behavior of a software system. Since
they are based on textual descriptions, they are easy to understand also for non-
technical participants of the design process. The Use Cases can then be used to create
more formal specifications, like class diagrams and could serve as a link to a
formalized system specification.

<<use case>> [AVUC1] >
Create Order
<< InteractionCase >> [AVIC1] E

Autenticate Consultant

<< InteractionCase >> [AVIC1.1]
Regular Authentification of Consultant K:
<<StringInput>> [AVS51.1.1] «u
Enter Login

<<HideStringInput>> [AV51.1.2] «u

Enter Password
<<Confirm=>> [AV51.1.3] «u

Confirm

<< >> [AVS1.1.4] 3=

Evaluate Data

Fig. 2. Part of the specification of an authentication process: Interaction-Case “Authenticate
Consultant” within the Use Case “Create Order”

Interactive components, however, are still characterized as plain textual
descriptions within Use Cases. In earlier work we therefore proposed Interaction-
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Cases as a technique based on Use Cases, designed to support an easily applicable
and at the same time formally strong means of specification of interaction procedures
[25]. Interaction-Cases were created to support incremental and iterative development
and to enable developers and designers to start modeling on paper, being able to
formalize and refine the Interaction-Cases in later stages of development and link
them to other artifacts of the development process.

An Interaction-Case consists of sequences of Interaction-Cases and/or (atomic)
Interaction-Steps. By nesting Interaction-Cases, a sequence of interactions can be
modeled coarse-grained in early design stages and can then be refined into more
detailed Interaction-Cases or, vice versa, a sequence of atomic Interaction-Steps can
be aggregated later on. Interaction-Cases and Interaction-Steps have an identity and
can therefore be referenced and reused by other Interaction-Cases using this identifier.
Interaction-Case components can inherit from other components, thus introducing
object-oriented type semantics and enabling powerful re-use. The parent class of an
Interaction-Case can be noted like an UML stereotype (<<type>>), as shown in figure
2.

Applying the object oriented paradigm further, abstract Meta Components are
introduced, identified by a “?” in front of their name. The concept of Meta
Components is similar to the concept of interfaces or abstract classes in object
oriented programming: A Meta Component specifies certain characteristics of an
Interaction-Case, but must later be realized by inheritance to form a concrete one.

The steps of an Interaction Case can be modeled to be executed sequentially, in
parallel or without a predefinition of the execution order at design time.

It is possible to direct the flow of Interaction-Cases in branches. There are three
possible types of branches. Conditional branching initiated by the user (?DECIDE),
initiated by the system (?ConditionalBranch) and unconditional branching by the
system (?GOTO). Conditions for conditional branches are followed by a question
mark. In parallel execution it is possible to execute all branches, m out of n and to
model options for the user to decide (at least one, not all or one out of n).

[ —— ] L —

<<InteractionCase>> <<InteractionCase>>
Enter User Data Enter User Data
Standard .String ‘ Standard .String ‘ Standard .String
<<InteractionCase>>
Enter Order Data

Sales.Order ‘

Fig. 3. Interaction-Cases with Input- and Output-Container

In addition to the concepts described in [25], we extended this basic definition of
Interaction-Cases by adding an Input and a n Output Container describing the data
type of the component’s input and output (ObjectType). The Containers are visualized
by boxes on top of and below an Interaction-Case, as shown in figure 3. The top box
describes the input consumed by a component, e.g. the data that is presented to the
user in the interactive step, while the box on the bottom of the Interaction-Case or
Interaction-Step describes its output, e.g. the information gathered from the user or
read from a sensor or database. The ObjectTypes of input and output of a component
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are inherited from its parent class. If no input or output is defined, the respective box
is crossed out (figure 3). The drawing also shows that the input ObjectType of a
successor has to match the output ObjectType of its predecessor. The visualization of
input and output-Containers easily ensures consistency of information objects even in
early sketching phases.

Also, an extension to the Microsoft Visual Studio 2010 Editor for UML Use Case
diagrams was developed, which facilitates the integrated modeling of Interaction-
Cases and Interaction-Steps within the development environment. Figure 4 shows a

screenshot of the editor extension that was develoBed.
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Fig. 4. Screenshot of the extension of the Visual Studio Use Case Editor

Types of Interaction-Steps or Interaction-Cases are defined by inheritance from a
parent Interaction-Step or Interaction-Case. Type definitions for Interaction-Step
types and Interaction-Case types can be stored in libraries and imported into other
projects as well, to facilitate reuse. Based on the present possibilities for modeling
Interaction-Case types, Interaction-Step types and ObjectTypes, the generation of
code stubs becomes possible, which would further increase the integration of
Interaction-Cases into the development of interactive systems.

5. Context-adaptive Interaction-Cases

In order to support ubiquitous public systems with context-based modeling, we
extended the Interaction-Case modeling technique so that Interaction-Cases can be
modified by certain Context Types. In early development stages it is possible to
denote Interaction-Cases without defining all Interaction-Steps, which supports
incremental modeling. Already in this phase, Interaction-Cases can be labeled with
Context Modifiers, to indicate that the refinement of this Interaction-Case depends on
certain types of context. In the visual representation of an Interaction-Case, a Context
Modifier is indicated by the abbreviation of the Context Type, written in a semi-circle
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shape that is placed on the left side of the Interaction-Case drawing, as shown in
figure 5 on the left.

Alternative Interaction-Cases can now be modeled for different instantiations of
the denoted Context Type. This allows to model different context-dependent forms of
system behavior. In order to allow Interaction-Cases to be substituted by their
context-modified equivalent, these equivalents should be specializations of a common
Interaction-Case super-type. Of an Interaction-Case that is modified by the
Perception Context (Per), alternative Interaction-Cases can be modeled, for example
for the Context Types Visual (Vis) and Non-Visual (NVis). This allows, for instance
the modeling of a ubiquitous public system that switches to non-visual (e.g. speech-
based) interaction, in case the Perception Context of the user is Non-Visual. This can
occur if the user is blind, visually impaired or maybe running towards a train, looking
for the right number.

Context-adaptive systems should of course not only adapt to one type of context at
a time. Therefore, it is possible to model Interaction-Cases that have multiple Context
Modifiers. In that case, the abbreviations of the different contexts that influence the
interaction component are noted within the semi-circle shape. For different
combinations of Context Types, different modified Interaction-Cases can be modeled.
However, since many different combinations of Context Types are possible if there is
more than one Context Modifier, not all combinations must be modeled as separate
Interaction-Cases. The system or the developer can choose the most specialized
context-modified Interaction-Case available that fits the context currently observed.

An example would be an Interaction-Case that has a Context Modifier based on
Perception Context (Per) and also a Context Modifier based on Output Context
(Out). It is now possible to model several kinds of Interaction-Cases. One Interaction-
Case could be specified for Non-Visual (NVis) as sub-context of Perception Context
and Loud-Surrounding (LS) as sub-context of Output Context. If a blind or visually
impaired person would have to use a public system in a loud surrounding, this system
then could adapt by not only choosing speech-based interaction, but also by
increasing the volume of its speech output as well as the sensitivity and noise
reduction of the microphone. Another kind of Interaction-Case could be modeled for
Visual (Vis) as sub-context of Perception Context and for Inadequate-Lighting (IL) as
sub-context for Output Context. Instead of switching to speech-based interaction, this
Interaction-Case could be realized using enhanced screen brightness.

Exploring the combination of sub-contexts further led us to introduce rule-based
sub-contexts. These contexts refine Context Types like Inadequate Lighting or Loud
Surroundings, by introducing the parameters that concern these Context Types. It is
then possible to define a sub-context of Inadequate Lightning that states “brightness <
threshold”. Using such a rule-based sub-context, the abovementioned scenario can be
modeled more precisely. The second Interaction-Case can be specialized for
“brightness >= threshold”, when enhancing the screen brightness is still effective. An
additional Interaction-Case using “brightness < threshold” could then switch the
interaction to speech-based.
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ObjectType Input N ObjectType Input

N
<<InteractionCaseType>> [ID] V <<InteractionCaseType>> [ID]
Per Name notVisible = brightness notVisible Name

E < threshold OR
ObjectType ObjectType
Output Output

Non-Visual
Fig. 5. Context-adaptive Interaction-Case and usage of rule-based sub-context

The combination of contexts so far included combinations using AND logic of
multiple inheritance. With the use of rule-based contexts, context combinations can be
extended to rule-based sub-contexts like “contextl OR context2”, using logical
operators different from AND. The logical operators permitted here are
OR/NOT/XOR, further logical operators would complicate the modeling too much. In
our modeling technique, rules like that are modeled as separate contexts and also used
as separate contexts, too. However, they still are modeled as specializations of the
basic context types seamlessly integrating them in the taxonomy of context available.

This way, the aforementioned example Interaction-Cases can be expanded, using
the rule-based context notVisible = “((brightness < threshold) OR Non-Visual)”. Both
context conditions then lead to speech-based interaction. This example is also shown
in figure 5.

5 Discussion and Future Work

In this paper we have presented context-adaptive Interaction-Cases as a modeling
technique that supports the modeling of interactive context-aware and adaptive
systems. Using our classification of context in public systems, this modeling
technique can be used for supporting the development of ubiquitous public systems,
as they emerge in many different public areas, like airports or shopping malls. The
modeling technique of Interaction-Cases can already be used in the very early stages
of system design and can be applied only using pen and paper. Its design, however,
supports the transfer of paper-based models to more formal descriptions. In order to
demonstrate this, an extension for the Microsoft Visual Studio 2010 Editor for UML
Use Case diagrams, that enables the modeling of Interaction-Cases and Use-Cases in
the development environment, has been developed. The modeling technique also
supports the iterative development of the interaction model by providing inheritance
and specialization of types, incorporating the powerful object oriented paradigm.

We are planning on refining our context classification of public systems in order to
better support the development of ubiquitous and context-aware public systems. Our
Microsoft Visual Studio 2010 Editor extension is planned to be extended to include
our context-adaptive enhancement of Interaction-Cases. We are also planning on
studying earlier development phases and to integrate even less formal
conceptualization and prototyping techniques into a model-based design process that
allows the easy but also powerful construction of ubiquitous interactive systems.
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