
Model-based Ubiquitous Interaction Concepts and 
Contexts in Public Systems 

Thomas Schlegel, Christine Keller 

Abstract. Ubiquitous systems and interaction concepts are increasingly finding 
their way into public systems like shopping malls, airports, public transport or 
information kiosks. At the same time, these user interfaces also undergo significant 
changes. Technologies like multi-touch systems or voice-based interaction are now 
available to the general public and widely used. In ubiquitous systems, these 
modalities are often combined, sometimes even dynamically at runtime. This leads to 
new challenges for the conceptualization and development of ubiquitous user 
interfaces in public systems, especially where this implies adaptive behavior. We 
present contexts that possibly influence the interaction with such public systems and 
describe ways of modeling this interaction integrating context-adaptivity already in 
the interaction models of public systems. Taking into account the context of the 
public system and its users, we extend the concept of Interaction-Cases to contain 
model aspects for different interaction contexts in public systems. 

1 Introduction  

Public systems represent a field of application for ubiquitous techniques that is 
growing recently. Ubiquitous environments are integrated into public information 
technology and socio-technical public systems like shopping malls, airports or public 
transport [1,2]. Some of them have particular target groups, like tourists or 
handicapped people [3,4].  Others are designed to serve the general public [5]. New 
interaction technologies like multi-touch interfaces or gesture recognition facilitate 
the construction of really pervasive computing environments for public systems.  

In public places, computing environments must be as unobtrusive as possible. At 
the same time, their usability and accessibility must be very high and designed to 
support a variety of strongly different users without training. Combining multiple 
interaction techniques in ubiquitous environments for public systems aims at 
supporting both, pervasive and easily accessible computing that is optimized to the 
situation of the user without the availability of concepts like personalization, profiles 
etc. found in “classical” interactive systems like business software, home automation 
or control environments. Ubiquitous systems offer new opportunities for public 
settings, which will make them find their way into public systems, but also bring new 
challenges with them, regarding their development and modeling. 

Ubiquitous systems support many different interfaces and often need to be context-
aware to optimize their interactive behavior regarding context. They are characterized 
by integrating several means of interaction and being highly adaptive. Here, a model-
based approach can lead to efficient development of ubiquitous systems and support 
adaptive design of user interfaces in ubiquitous systems [6]. However, model-based 



2      Thomas Schlegel, Christine Keller 

design methods like Model-Driven Architecture (MDA) are often not flexible enough 
to meet the needs of designing adaptive, context-aware ubiquitous systems [7]. They 
also focus on design-time generative approaches, which are not applicable to non-
monolithic, modular systems with changes on runtime. Therefore, a modeling-
technique for interactive public systems is needed, which supports context-aware and 
highly adaptive interactive ubiquitous systems, in order to facilitate the creation of 
ubiquitous public systems that combine context-adaption as well as multiple and 
multimodal interaction techniques. 

In traditional software engineering, user and interaction models are specified at 
design time, using persona, textual descriptions or just the mental models that user 
interface designers and developers have about the future users of the system [8,9]. 
Based on these user models and the identified roles and actors, the whole system is 
then designed [10,11]. In ubiquitous public systems, however, the users can often not 
be associated with a specific user group. In public, all kinds of people are around and 
can turn into users of the public system, often with different or unspecific needs not 
covered with a dedicated task or system, making the user anonymous and 
unpredictable at design-time. However, the context of the public system and its user 
interface is known, can be specified and observed at runtime. Based on the context the 
public system observes, such as location, time or input, the system can adapt, for 
example, its interaction modalities. Therefore, especially in public systems, the 
modeling of an interactive and ubiquitous system has to focus on system context. 

The field of context-aware systems is very broad, being researched for several 
years now. Especially the growth of interest in ubiquitous systems has pushed the 
development of context-aware environments [12,13]. One of the first context-aware 
systems was the active badge location system, developed by Want et al. in 1992 [14]. 
It observed the user’s location and redirected telephone calls concerning this location. 
The early context-aware systems mainly considered location as the context of the 
user, like many tourist guides, for example [3,15]. Later on, other contexts were 
considered as well, which led to different approaches on modeling context. Dey et al. 
for example, identified several popular categories of context such as “location, 
identity, activity and time” [13]. The classification of context that is necessary for 
building context-aware systems led to the development of several ontologies for 
context, for example by Chen et al. and also by Moore et al. [16,17]. Many context-
aware ubiquitous systems emerged and this development led to the design of several 
frameworks that facilitate the construction of context-aware systems [18,19].  

The specifics of public systems were considered in some ubiquitous systems that 
were designed for public environments, for example, systems that support 
handicapped people in settings like public transport [4]. Other systems, like the 
GUIDE project, focused on tourists, or on students on a campus, like the e-campus 
project [2,3]. Some other projects involving public transport settings used ubiquitous 
and context-aware technologies [15,20]. However, to our knowledge there is little 
research about the properties and contexts of public systems that does not focus on 
specific settings or user groups, like tourists, students, public transport etc. We 
therefore define a general public system as a system that performs in public spaces 
and does not target specific user groups but is available to all people, i.e. the public.  

Concerning modeling techniques for interactive systems, there is extensive work 
on MDA and model-driven interface design [6,7]. As noted above, some extensions of 



Model-based Ubiquitous Interaction Concepts and Contexts in Public Systems      3 

UML have led to modeling languages for web applications or web services, some of 
them context-aware [21,22]. Most of this work, however, does not consider context-
awareness and adaptivity in ubiquitous public systems. 

In this paper we therefore present an overview on possible contexts in public 
systems and a basic taxonomy of these contexts. We then introduce a model-based 
approach on designing context-adaptive interaction in ubiquitous public systems. 

3 Dimensions of Context in Public Systems 

Since in public systems, personalization often is impossible, they strongly depend on 
context in order to adapt to user’s needs and the surroundings. Models of ubiquitous 
public systems should be adaptive regarding these different contexts. As a basis for 
adaptive modeling techniques, the possible contexts of public systems need to be 
analyzed. We developed a classification of contexts of public systems for this 
purpose, which is shown in figure 1. The context classification is still work in 
progress and should not be too fine-grained for serving as a basis for different systems 
and context ontologies. It shows our basic approach to modeling context and points 
out the specific properties of public systems that must be taken into account while 
modeling interactive ubiquitous systems for public settings. Ideally, context models 
are defined in a domain-specific way for the specific public system, but rely on a 
common basic ontology that allows for matching and integrating the context 
ontologies on the top level of abstraction. The examples of context-adaptive 
interaction models for ubiquitous public systems, which we describe in section 5, 
show that already a coarse-grained and incomplete context classification can be 
applied successfully to our modeling technique.  

Most ubiquitous systems have a kind of Interaction Context (I), consisting of the 
system’s Input Context (In), representing the possibilities of input, i.e. of entering, 
selecting or editing information. The system also has a Processing Context (Proc) that 
reflects the processing of input on part of the system, including capability models and 
sensor fusion. Analogously, there also exists an Output Context (Out), which relates 
to different output modalities. Especially in public areas, the context of interaction by 
the user has to be considered as well, in particular as there are aspects that are known 
to the system without specific knowledge about the user. A user not only perceives 
and acts while interacting with a public system; he also processes what he has 
perceived. This leads to the Perceptive, Cognitive and Acting Context (Per, Cog, Act) 
of the user as important contextual aspects. In public, the user can be distracted by 
noise, too much light (e.g. glare) as well as bad lighting, for example. These 
conditions influence his Perceptive as well as his Cognitive Context, like being in a 
hurry or looking for somebody else, which will reduce or divert his attention and 
therefore will reduce his available cognitive and perceptive capacity.  

Of course, the Spatial Context (Sp) must be considered, too. This concerns the 
location of the user as well as the location of the system. Large public displays as well 
as the mobile devices of users may be a component of a public system. The location 
of the system therefore can be fixed (Fix) or moving (Mov), but can also influence size 
and visibility of an available display. We furthermore identified the Temporal 



4      Thomas Schlegel, Christine Keller 

Context (Temp) with its sub-contexts Absolute Time (Abs) and Relative Time (Rel). 
Relative time will occur, for example, where a distance separates the user from a 
destination, leading to a relative time needed to get there depending on transportation, 
or where interaction occurs relative to an event like the late arrival of a train. 

 

Fig. 1. Dimensions of Context in Public Systems 

A context specific to and of high interest in public systems is the Socio-Technical 
Context (ST). In public systems, there is a Sociological Context (S), considering the 
common use of resources by many people. There are social rules in public spaces that 
are followed by most of the people there. These rules can affect the usage of public 
ubiquitous systems. Concerning, for example, the interaction using a big public 
display, the aspect of privacy has to be considered. A user should not be required to 
enter or request personal data in such a way that might disclose it to others [23].  

The Technical Context (Tech) is also a sub-context of the Socio-Technical Context 
and describes the technical abilities of the system. In public transport this could be the 
question whether a subsystem has fast and reliable access to an up-to-date timetable 
data source, including delays or failures, or only to the regular timetable. 

Another sub-context of the Socio-Technical Context of public systems is the 
Operational Context (Op) of a system. This covers everything that goes on “behind 
the scenes” and includes, in public transport for example, activities in the railway 
control center. This context affects public systems, because many of them depend on 
certain operational procedures and exhibit only a small part of the full socio-technical 
system to the public.  

The Organizational Context (Org) models the conditions and contexts of 
organizations involved. In public spaces, these could be the operating company of 
public transport as well as organizations running shops at airports or railway stations. 
For services, the Organizational and the whole Process Context (P) are of high 
importance. Process Context in public systems is defined upon user and system 
actions and their structural and logical interdependencies (causality etc.). Many 
actions exhibit dependencies or will trigger other actions necessary to accomplish a 



M

complete
architectu
aspects li

This a
Technica
example, 
contexts a

4 Intera

When sof
from diff
technique
and aspec
technical 
textual 
understan
lack form
stages li
inconsiste
descriptio

The U
and spec
definition
provide a
they are 
technical 
more for
formalize

Fig. 2. Pa
Consultan

Interac
descriptio

odel-based Ub

 task with 
ures, the Proc
ike security an
also shows tha
al Context are
 the Socio-Te
as well as thei

action-Case

ftware system
ferent disciplin
es to be easily
cts from infor
 as well as no
descriptions 

ndable approa
malization and
ke code. Of
ent due to ch
ons in early sp

Unified Modeli
cifying softwa
ns to class di
a non-technica
 based on tex
 participants o
rmal specifica
ed system spec

art of the speci
t” within the U

ctive compon
ons within Us

biquitous Intera

the desired
ess Context is

nd safety. 
at many of th
e interconnec
echnical Conte
ir integration o

es 

ms with interac
nes participate
y understandab
rmal requirem
n-technical st
of a syste

aches for early
d therefore ca
ften the early
hanges in late
pecification ar
ing Language
are in severa
iagrams and g
al means of sp
xtual descript
of the design p
ations, like c
cification.  

ification of an 
se Case “Create

nents, howev
se Cases. In 

action Concep

d result. Esp
s of high valu

he context typ
cted or may e
ext. Therefore
or even fusion

ctive compone
e in the proces
ble as well as 

ments to form
takeholders. P
em’s behavio
y design phas
annot be link
y stage desi
er artifacts, w
rtifacts.  
e (UML) prov
al developmen
generated cod
pecifying the b
tions, they ar
process. The U
class diagram

authentication 
e Order” 

ver, are sti
earlier work 

pts and Contex

pecially rega
ue for service 

pes, like Orga
even be integ
e, one must co
n. 

ents are desig
ss. The design
 highly applic

mal processes, 
Paper-based pr
or are non-
ses [10,24]. H

ked to artifact
gn artifacts 

which cannot b

vides a semi-fo
nt stages, fro
de stubs. Stan
behavior of a 
re easy to un
Use Cases can

ms and could 

 process: Intera

ll characteriz
we therefore 

ts in Public Sy

arding service
quality and m

anizational Co
grated to form
onsider the mo

gned, often sta
n step therefor
able in differe
 in order to b
rototypes, scen
-technical an

However, thes
s of later dev
become outd
be tracked ba

ormal way of 
om informal 
ndard UML U
 software syst
derstand also
n then be used
 serve as a 

 

action-Case “A

zed as plain
 proposed Int

ystems      5 

e-oriented 
many other 

ontext and 
m, in this 
odeling of 

akeholders 
re requires 
ent phases 

be used by 
narios and 
nd easily 
se artifacts 
velopment 
dated and 
ack to the 

f modeling 
Use Case 

Use Cases 
tem. Since 
o for non-
d to create 
link to a 

Authenticate 

n textual 
teraction-



6      Thomas Schlegel, Christine Keller 

Cases as a technique based on Use Cases, designed to support an easily applicable 
and at the same time formally strong means of specification of interaction procedures 
[25]. Interaction-Cases were created to support incremental and iterative development 
and to enable developers and designers to start modeling on paper, being able to 
formalize and refine the Interaction-Cases in later stages of development and link 
them to other artifacts of the development process. 

An Interaction-Case consists of sequences of Interaction-Cases and/or (atomic) 
Interaction-Steps. By nesting Interaction-Cases, a sequence of interactions can be 
modeled coarse-grained in early design stages and can then be refined into more 
detailed Interaction-Cases or, vice versa, a sequence of atomic Interaction-Steps can 
be aggregated later on. Interaction-Cases and Interaction-Steps have an identity and 
can therefore be referenced and reused by other Interaction-Cases using this identifier. 
Interaction-Case components can inherit from other components, thus introducing 
object-oriented type semantics and enabling powerful re-use. The parent class of an 
Interaction-Case can be noted like an UML stereotype (<<type>>), as shown in figure 
2.  

Applying the object oriented paradigm further, abstract Meta Components are 
introduced, identified by a “?” in front of their name. The concept of Meta 
Components is similar to the concept of interfaces or abstract classes in object 
oriented programming: A Meta Component specifies certain characteristics of an 
Interaction-Case, but must later be realized by inheritance to form a concrete one.  

The steps of an Interaction Case can be modeled to be executed sequentially, in 
parallel or without a predefinition of the execution order at design time. 

It is possible to direct the flow of Interaction-Cases in branches. There are three 
possible types of branches. Conditional branching initiated by the user (?DECIDE), 
initiated by the system (?ConditionalBranch) and unconditional branching by the 
system (?GOTO). Conditions for conditional branches are followed by a question 
mark. In parallel execution it is possible to execute all branches, m out of n and to 
model options for the user to decide (at least one, not all or one out of n).  

 

Fig. 3. Interaction-Cases with Input- and Output-Container 

In addition to the concepts described in [25], we extended this basic definition of 
Interaction-Cases by adding an Input and a n Output Container describing the data 
type of the component’s input and output (ObjectType). The Containers are visualized 
by boxes on top of and below an Interaction-Case, as shown in figure 3. The top box 
describes the input consumed by a component, e.g. the data that is presented to the 
user in the interactive step, while the box on the bottom of the Interaction-Case or 
Interaction-Step describes its output, e.g. the information gathered from the user or 
read from a sensor or database. The ObjectTypes of input and output of a component 

<<InteractionCase>>
Enter User Data

Standard.String

<<InteractionCase>>
Enter Order Data

Standard.String

Sales.Order

<<InteractionCase>>
Enter User Data

Standard .String



M

are inheri
is crossed
successor
input and
early sket

Also, a
diagrams
Cases an
screensho

Fig. 4. Scr

Types 
parent In
types and
projects a
Interactio
code stu
Interactio

5. Cont

In ord
extended 
modified 
denote I
incremen
Context M
certain ty
Modifier 

odel-based Ub

ited from its p
d out (figure 
r has to match
d output-Conta
tching phases
an extension t
 was develop
d Interaction-
ot of the edito

reenshot of the 

 of Interaction
nteraction-Step
d Interaction-
as well, to fa
on-Case types
ubs becomes 
on-Cases into 

text-adaptiv

der to support
 the Interacti
 by certain C
nteraction-Ca

ntal modeling.
Modifiers, to i
ypes of contex
 is indicated b

biquitous Intera

parent class. I
 3). The draw
h the output O
ainers easily e
. 
to the Micros
ped, which fa
-Steps within 
r extension th

 extension of th

n-Steps or Int
p or Interact
Case types ca

acilitate reuse.
s, Interaction-
possible, wh

the developm

ve Interact

t ubiquitous p
on-Case mod
Context Type
ases without 
. Already in t
indicate that t

xt. In the visua
by the abbrevi

action Concep

If no input or 
wing also sho

ObjectType of 
ensures consis

soft Visual Stu
acilitates the 
 the developm

hat was develo

he Visual Studio

teraction-Case
tion-Case. Ty
an be stored 
. Based on th
-Step types a
hich would f

ment of interac

tion-Cases 

public system
deling techniq
es. In early d

defining all 
this phase, In
the refinemen
al representati
iation of the C

pts and Contex

 output is defi
ows that the 
f its predecess
stency of infor

udio 2010 Edi
integrated m

ment environm
oped.  

o Use Case Edit

es are defined
ype definition
in libraries a

he present pos
and ObjectTy
further increa
tive systems. 

ms with conte
que so that In
development s
 Interaction-S

nteraction-Cas
t of this Intera
ion of an Inter

Context Type, 

ts in Public Sy

ined, the respe
input ObjectT
or. The visual
rmation objec

itor for UML 
odeling of In

ment. Figure 4

tor 

d by inheritan
ns for Interac
nd imported 
ssibilities for 

ypes, the gene
ase the integ
 

xt-based mod
nteraction-Cas
stages it is p
Steps, which 
es can be lab
action-Case de
raction-Case, 
 written in a se

ystems      7 

ective box 
Type of a 
lization of 
cts even in 

 Use Case 
nteraction-
4 shows a 

 

nce from a 
ction-Step 
into other 
 modeling 
eration of 
gration of 

deling, we 
ses can be 
possible to 
h supports 
beled with 
depends on 
 a Context 
emi-circle 



8      Thomas Schlegel, Christine Keller 

shape that is placed on the left side of the Interaction-Case drawing, as shown in 
figure 5 on the left.  

Alternative Interaction-Cases can now be modeled for different instantiations of 
the denoted Context Type. This allows to model different context-dependent forms of 
system behavior. In order to allow Interaction-Cases to be substituted by their 
context-modified equivalent, these equivalents should be specializations of a common 
Interaction-Case super-type.  Of an Interaction-Case that is modified by the 
Perception Context (Per), alternative Interaction-Cases can be modeled, for example 
for the Context Types Visual (Vis) and Non-Visual (NVis). This allows, for instance 
the modeling of a ubiquitous public system that switches to non-visual (e.g. speech-
based) interaction, in case the Perception Context of the user is Non-Visual. This can 
occur if the user is blind, visually impaired or maybe running towards a train, looking 
for the right number. 

Context-adaptive systems should of course not only adapt to one type of context at 
a time. Therefore, it is possible to model Interaction-Cases that have multiple Context 
Modifiers. In that case, the abbreviations of the different contexts that influence the 
interaction component are noted within the semi-circle shape. For different 
combinations of Context Types, different modified Interaction-Cases can be modeled. 
However, since many different combinations of Context Types are possible if there is 
more than one Context Modifier, not all combinations must be modeled as separate 
Interaction-Cases. The system or the developer can choose the most specialized 
context-modified Interaction-Case available that fits the context currently observed. 

An example would be an Interaction-Case that has a Context Modifier based on 
Perception Context (Per) and also a Context Modifier based on Output Context 
(Out). It is now possible to model several kinds of Interaction-Cases. One Interaction-
Case could be specified for Non-Visual (NVis) as sub-context of Perception Context 
and Loud-Surrounding (LS) as sub-context of Output Context. If a blind or visually 
impaired person would have to use a public system in a loud surrounding, this system 
then could adapt by not only choosing speech-based interaction, but also by 
increasing the volume of its speech output as well as the sensitivity and noise 
reduction of the microphone. Another kind of Interaction-Case could be modeled for 
Visual (Vis) as sub-context of Perception Context and for Inadequate-Lighting (IL) as 
sub-context for Output Context. Instead of switching to speech-based interaction, this 
Interaction-Case could be realized using enhanced screen brightness.  

Exploring the combination of sub-contexts further led us to introduce rule-based 
sub-contexts. These contexts refine Context Types like Inadequate Lighting or Loud 
Surroundings, by introducing the parameters that concern these Context Types. It is 
then possible to define a sub-context of Inadequate Lightning that states “brightness < 
threshold”. Using such a rule-based sub-context, the abovementioned scenario can be 
modeled more precisely. The second Interaction-Case can be specialized for 
“brightness >= threshold”, when enhancing the screen brightness is still effective. An 
additional Interaction-Case using “brightness < threshold” could then switch the 
interaction to speech-based. 



Model-based Ubiquitous Interaction Concepts and Contexts in Public Systems      9 

 

Fig. 5. Context-adaptive Interaction-Case and usage of rule-based sub-context 

The combination of contexts so far included combinations using AND logic of 
multiple inheritance. With the use of rule-based contexts, context combinations can be 
extended to rule-based sub-contexts like “context1 OR context2”, using logical 
operators different from AND. The logical operators permitted here are 
OR/NOT/XOR, further logical operators would complicate the modeling too much. In 
our modeling technique, rules like that are modeled as separate contexts and also used 
as separate contexts, too. However, they still are modeled as specializations of the 
basic context types seamlessly integrating them in the taxonomy of context available. 

This way, the aforementioned example Interaction-Cases can be expanded, using 
the rule-based context notVisible = “((brightness < threshold) OR Non-Visual)”. Both 
context conditions then lead to speech-based interaction. This example is also shown 
in figure 5. 

5 Discussion and Future Work 

In this paper we have presented context-adaptive Interaction-Cases as a modeling 
technique that supports the modeling of interactive context-aware and adaptive 
systems. Using our classification of context in public systems, this modeling 
technique can be used for supporting the development of ubiquitous public systems, 
as they emerge in many different public areas, like airports or shopping malls. The 
modeling technique of Interaction-Cases can already be used in the very early stages 
of system design and can be applied only using pen and paper. Its design, however, 
supports the transfer of paper-based models to more formal descriptions. In order to 
demonstrate this, an extension for the Microsoft Visual Studio 2010 Editor for UML 
Use Case diagrams, that enables the modeling of Interaction-Cases and Use-Cases in 
the development environment, has been developed. The modeling technique also 
supports the iterative development of the interaction model by providing inheritance 
and specialization of types, incorporating the powerful object oriented paradigm. 

We are planning on refining our context classification of public systems in order to 
better support the development of ubiquitous and context-aware public systems. Our 
Microsoft Visual Studio 2010 Editor extension is planned to be extended to include 
our context-adaptive enhancement of Interaction-Cases. We are also planning on 
studying earlier development phases and to integrate even less formal 
conceptualization and prototyping techniques into a model-based design process that 
allows the easy but also powerful construction of ubiquitous interactive systems.  

 



10      Thomas Schlegel, Christine Keller 

Acknowledgement: Part of this work has been executed under the project IP-KOM-
ÖV funded by the German Federal Ministry of Economics and Technology (BMWi). 
We wish to thank Tobias Grass for the contributions made by his thesis and the 
colleagues from the Institute for Visualization and interactive Systems (VIS) . 

References 

1. Peterson, M.: Pervasive and Ubiquitous Public Map Displays. (2004) 

2. Storz, O., Friday, A., Davies, N., Finney, J., Sas, C., Sheridan, J.: Public Ubiquitous 
Computing Systems: Lessons from the e-Campus Display Deployments. IEEE Pervasive 
Computing 5(3), 40-47 (2006) 

3. Cheverst, K., Davies, N., Mitchell, K., Friday, A.: Experiences of developing and 
deploying a context-aware tourist guide: the GUIDE project., pp.20-31 (2000) 

4. Klante, P., Krösche, J., Boll, S.: AccesSights – A Multimodal Location-Aware Mobile 
Tourist Information System. In Miesenberger, K., Klaus, J., Zagler, W., Burger, D., eds. 
: Computers Helping People with Special Needs 3118. Springer (2004) 627-627 

5. Bertolotto, M., P., G., Strahan, R., Brophy, A., Martin, A., McLoughlin, E.: Bus Catcher: a 
Context Sensitive Prototype System for Public Transportation Users., pp.64-72 (2002) 

6. Pérez-Medina, J.-L., Dupuy-Chessa, S., Front, A.: A Survey of Model Driven Engineering 
Tools for User Interface Design. In Winckler, M., Johnson, H., Palanque, P., eds. : Task 
Models and Diagrams for User Interface Design 4849. Springer (2007) 84-97 

7. Kruchten, P., Obbink, H., Stafford, J.: The Past, Present, and Future for Software 
Architecture. IEEE Software 23(2), 22-30 (2006) 

8. Pruitt, J., Grudin, J.: Personas: practice and theory., pp.1-15 (2003) 

9. Wasserman, A.: User Software Engineering and the design of interactive systems., pp.387-
393 (1981) 

10. Aoyama, M.: Persona-Scenario-Goal Methodology for User-Centered Requirements 
Engineering. Requirements Engineering, IEEE International Conference on 0, 185-194 
(2007) 

11. Kazman, R., Abowd, G., Bass, L., Clements, P.: Scenario-based analysis of software 
architecture. IEEE Software 13(6), 47-55 (1996) 

12. Prekop, P., Burnett, M.: Activities, context and ubiquitous computing. Computer 
Communications 26(11), 1168-1176 (2003) 

13. Dey, A., Abowd, G.: Towards a better understanding of context and context-awareness. 
(2000) 

14. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM 
Transactions on Information Systems 10(1), 91-102 (1992) 

15. Hristova, N.: Ad-Me: A ContextSensitive Advertising System., pp.10-12 (2001) 

16. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing 
environments. Knowl. Eng. Rev. 18(3), 197-207 (2003) 

17. Wang, X., Zhang, D., Gu, T., Pung, H.: Ontology Based Context Modeling and Reasoning 
using OWL., pp.18-- (2004) 

18. Salber, D., Dey, A., Abowd, G.: The context toolkit: aiding the development of context-
enabled applications., pp.434-441 (1999) 



Model-based Ubiquitous Interaction Concepts and Contexts in Public Systems      11 

19. Biegel, G., Cahill, V.: A Framework for Developing Mobile, Context-aware Applications., 
pp.361-- (2004) 

20. Banâtre, M., Couderc, P., Pauty, J., Becus, M.: Ubibus: Ubiquitous Computing to Help 
Blind People in Public Transport. In Brewster, S., Dunlop, M., eds. : Mobile Human-
Computer Interaction – MobileHCI 2004 3160. Springer (2004) 535-537 

21. Ceri, S., Daniel, F., Matera, M., Facca, F.: Model-driven development of context-aware 
Web applications. ACM Trans. Internet Technol. 7 (2007) 

22. Sheng, Q., Benatallah, B.: ContextUML: A UML-Based Modeling Language for Model-
Driven Development of Context-Aware Web Services Development., pp.206-212 (2005) 

23. Pernack, R.: Public space and transport : a sociotheoretical approach. 
Wissenschaftszentrum Berlin für Sozialforschung gGmbH (2005) 

24. Barbosa, S. D. J., Paula, M. G.: Interaction Modelling as a Binding Thread in the Software 
Development Process. (2003) 

25. Schlegel, T., Raschke, M.: Interaction-Cases: Model-Based Description of Complex 
Interactions in Use Cases. (2010) 

 


