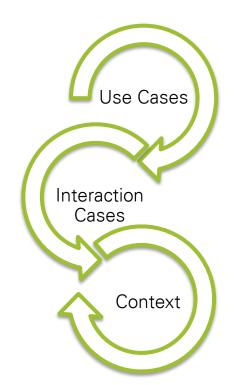
SESS

Faculty of Computer Science Institute of Software and Multimedia Technology Junior Professorship for Software Engineering of Ubiquitous Systems Germany

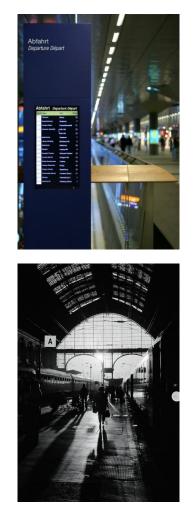
MODEL-BASED UBIQUITOUS INTERACTION CONCEPTS AND CONTEXTS IN PUBLIC SYSTEMS


THOMAS SCHLEGEL & CHRISTINE KELLER

Orlando, July 14, 2011

AGENDA

- What are ubiquitous systems?
- What are public systems and how are they special?
- Which are important dimensions of context in public systems?
- Model-based design of interaction in ubiquitous public systems: of Use Cases and Interaction-Cases
- Interaction-Cases as modeling technique allow:
 - Context-sensitive modeling of interaction
 - Iterative modeling process



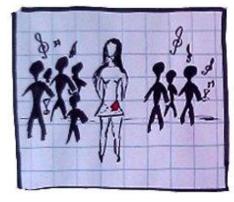
SCENARIO: UBIQUITOUS PUBLIC TRANSPORT SYSTEM

- Your train just arrived at Berlin Central Station late in the evening
- You have to catch a suburban train to get to your hotel
 - Where does it leave?
 - Where am I?
 - Interact using your cell phone and public displays
- You have to change in order to reach your destination
 - Small station
 - Some street lamps are broken
 - The Display on the station adjust its brightness

UBIQUITOUS SYSTEMS

Ubiquitous systems:

- Computing everywhere & anytime
- Devices fade into the background
- Focus on user's tasks
- Ubiquitous systems are contextaware systems:


. . .

INTERACTION IN UBIQUITOUS SYSTEMS

- New user interfaces are evolving rapidly
- Multimodal interaction: using and switching modalities as necessary
 - Speech
 - Gestures
 - (Multi-) Touch Surfaces
 - Ubiquitous environments benefit from different interaction modalities
 - Interaction can adapt to the user's context

Picture: part of a storyboard describing a context-adaptive cell phone application

UBIQUITOUS PUBLIC SYSTEMS

- Ubiquitous systems increasingly find their way into public settings:
 - Airports

. . .

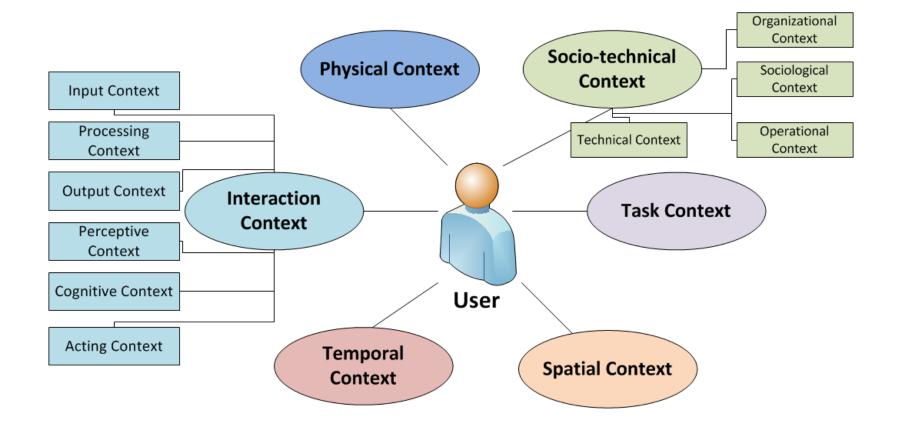
- Museums or Libraries
- Public Transport
 - Considered in the course of our project "IP-KOM-ÖV",

A public system is a system that performs in public spaces and does not target specific user groups but is available to all people, i.e. the public. "

CHARACTERISTICS OF PUBLIC SYSTEMS

- Great variety of information needs and situations can occur
 - User is anonymous
 - Highly adaptive systems necessary
 - → Context-awareness supports adaptivity
- Public systems are combined of many different components
 - High complexity, high flexibility
 - Heterogeneous devices must be integrated
 - System of Systems
 - → Model-based design supports high adaptivity, complexity and flexibility

			I.
			Ε.
-	0		
	0		
1	2 ABC	3 DEF	
1 == 4 GHI 7 PQRS	5 JKL	3 DEF 6 MNO 9 WXYZ	



CONTEXT-DIMENSIONS IN UBIQUITOUS PUBLIC SYSTEMS

S

K

K

←U

←U

<< InteractionCase >> [AVIC1]

Autenticate Consultant

<< InteractionCase >> [AVIC1.1]

Regular Authentification of Consultant

<<StringInput>> [AVS1.1.1]


Enter Login

<<HideStringInput>> [AVS1.1.2]

Enter Password

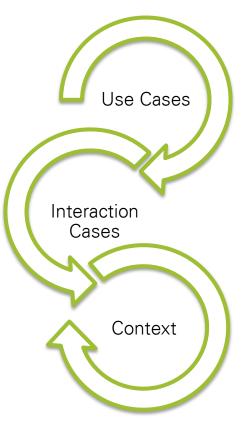
MODEL-BASED DESIGN OF UBIQUITOUS PUBLIC SYSTEMS

- Use Cases do not model
 - Context-adaptive interaction
 - Detailed interaction steps
- Interaction-Cases ^[1]
 - Derived from Use Cases structure interaction between user and system
 - Context-Modifier show context-sensitivity
 - Composed of Interaction-Cases or atomic Interaction-Steps

[1] Schlegel, T. & Raschke, M.: Interaction-Cases: Model-Based Description of Complex Interactions in Use Cases *Proceedings of IADIS International Conference Interfaces and Human Computer Interaction,* 2010

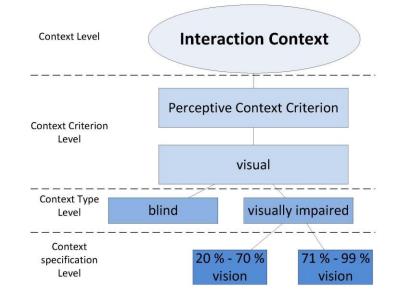
CONTEXT-SENSITIVE INTERACTION CASES

- Interaction-Cases can be modeled context-sensitive
- Context-Modifier shows adaptation of the Interaction-Case in the given context
- While defining the Interaction-Case: define different courses of interaction for different types of this specific context


(blind enter departure information	visual enter departure information
<< Auclio Input>>> K enter departure location Handard String] << Auclio Input>>> K	«StringKeyboard Input»> K enter deposture location Standard. String << Number Keyboard Input»> K enter deposture time
enter deporture time StandardTime << Confirm>> K Confirm	standard. Time K (confirm >> K Confirm
Departure.information	Departure information

S

ITERATIVE MODELING OF CONTEXT-AWARE UBIQUITOUS SYSTEMS


- Iterative modeling method
 - Define initial Use Cases or Interaction-Cases
 - Define coarse-grained tailored version of context taxonomy
 - Define context-sensitive Interaction-Cases
 - Refine context
 - Refine Interaction-Cases up to single Interaction-Steps

FUTURE WORK

- Automatically generate Interaction-Case derivatives for different contexts
 - rule-based
- Embedding context-sensitive Interaction-Cases in a software engineering process for ubiquitous systems
- Further refining the context hierarchy
- Applying Interaction-Cases in our project "IP-KOM-ÖV"

Model-based Ubiquitous Interaction Concepts and Contexts in Public Systems

THANK YOU. ANY QUESTIONS?

Dipl.-Inf. Christine Keller Junior Professorship for Software Engineering of Ubiquitous Systems TU Dresden

Christine.Keller@tu-dresden.de

Part of this work has been executed under the project IP-KOMÖV funded by the German Federal Ministry of Economics and Technology (BMWi).

Federal Ministry of Economics and Technology

Dipl.-Inf. Christine Keller | Junior Professorship for Software Engineering of Ubiquitous Systems