

Management of Interactive Business Processes
in Decentralized Service Infrastructures

through Event Processing

 T. Schlegela, K. Vidačkovićb, S. Dusch, R. Seigera

 a SEUS Group, Technische Universitaet Dresden, Noethnitzer Str. 46, 01062 Dresden, Germany
 b Fraunhofer IAO, Competence Center Electronic Business, Nobelstr. 12, 70569 Stuttgart, Germany

c Institute VIS, Universitaet Stuttgart, Universitaetsstr. 38, 70569 Stuttgart, Germany

Abstract: Several independent service providers often form decentralized service
infrastructures. However, efficient management and collaboration is impossible, if the
execution engines are not properly connected. The decentralized approach requires an
infrastructure that connects the engines and additionally provides management access to
the infrastructure and processes executed. When business processes are executed using
multiple process execution engines, monitoring and management of these processes
become impossible using standard tools. Therefore, management by an organization
providing a common platform integrating the different service providers is required. In
this paper, we present an approach and an implementation of such a service platform,
using a complex event processing (CEP) engine to integrate different process execution
engines and other applications. In such a setting, it becomes even irrelevant if process
execution is based on the web service business process execution language (WS-BPEL)
or the executable business process model and notation (BPMN). As being able to
interact with such processes and running services is crucial in such an infrastructure, we
provide a concept for creating ad-hoc user interactions on a monitoring dashboard,
which allows platform managers as well as stakeholders in the processes to interact with
the platform and the processes executed – independent of their execution context.

Keywords: Service Platform Management; Complex Event Processing; Decentralized
Processes; Web-Service Orchestration; Business Process Monitoring; Multi-Engine
Environments

1 Introduction

1.1 A New Complexity in Service Infrastructures

Service infrastructures become more and more complex, as different services emerge each day, which are again
incorporated in processes that use them in order to achieve their goals building on the services’ functionalities. For
example, insurance companies relying on a service-oriented architecture (SOA) will need to monitor their cross-
company processes and events that occur in their infrastructure. In virtual enterprises or even fully decentralized
service platforms, monitoring and management of activities, processes and exceptions becomes a key problem.

In such a scenario, a suitable architecture has to support the exchange of information and triggers between
different processes as well as a management platform that is capable of monitoring a process and service landscape,
also generating interactions with users in different roles (e.g. platform managers and process participants). We present
an architectural approach and implementation of such a system, using a complex event processing (CEP) engine to
integrate different process execution engines and other applications.

The rest of this work is structured as follows: section 1.2 introduces a practical use case scenario which will be
used throughout the whole paper. Section 2 discusses some basic concepts in the field of process modeling and
execution, complex events and interactive control that have been used in our system architecture. Sections 3 and 4
describe our approach and implementation in more detail. Section 5 talks about related work in the field of complex
event processing and business process monitoring. Section 6 discusses and evaluates our results and shows starting
points for further research.

1.2 Use Case Scenario

Throughout this paper we will be using a scenario from the insurance domain consisting of simple automated
processes to illustrate and explain our concepts and practical implementations. In this context, we assume the
existence of a service platform where several providers offer their electronic and humanly executed services for
different insurance companies who integrate them into their cross-company business processes. An example is the
claim settlement process of property insurances regulating storm damages on roofs of insured houses. The service
providers in this case are various roofers, but also providers of electronic services, e.g., a weather information service
as well as a fraud detection service using the former to check the notification of a claim. Other electronic services
could be a price information service and a checking service which checks the bills of roofers for appropriateness. A
simplified claims settlement process contains the following steps:

1. Customer informs insurance company about the storm damage,
2. Insurance company uses fraud detection service to check the notification of claim for fraud,
3. Insurance company searches roofer over the platform,
4. Roofer interacts with the platform by accepting the job,
5. Roofer repairs storm damage and sends bill to insurance company,
6. Insurance company uses checking service to check the bill for appropriateness and pays the bill.

In such cross-company business processes, there are several monitoring tasks to perform in order to make sure that
the process is passed through in the desired way. In addition, several explicit and implicit interactions between the
process and the participants are required as well. Therefore, such a process is an adequate test scenario for our event-
based concept and system implementation.

2 Process Execution, Events and Interactive Control

2.1 Process Modeling and Execution

Where automatable IT-based business processes are concerned, commonly the workflows are modeled and executed
using the Web Services Business Process Execution Language (WS-BPEL) (Alves et al., 2007) or recently the current
version 2.0 of the Business Process Model and Notation (BPMN) (OMG, 2011), which now includes all the
necessary means to not only model, but also to execute service-based processes as well (Silver, 2010). WS-BPEL and
BPMN 2.0 processes have the advantage of being executable and using web service calls directly within the
processes.
 Unfortunately, monitoring of processes is not easy, even on only one engine instance running. It currently
becomes nearly impossible, if multiple processes are executed on different servers or engines. Therefore, it is crucial
to achieve monitoring of decentralized processes in order to manage complex service infrastructures.

2.2 Complex Event Processing

A suitable way to monitor decentralized processes in complex service infrastructures is the application of an event-
driven approach where events from different event sources are analyzed and processed by an event processing engine
(Vidačković et al., 2009). In this setting, an event represents any meaningful happening from an internal or external
event source (Luckham and Schulte, 2008). These events are routed to the engine either using data streams, e.g. in
Stream1, or the engine is embedded into an application and receives events directly from an API, e.g. in Esper2.
 When event aggregations and abstractions are applied on a multitude of events from a so-called event cloud in
order to detect hidden and complex relations between them represented by event patterns, the term complex event
processing (CEP) is used (Luckham, 2002). Event patterns could contain, for example, temporal, causal or spatial
relations between events, conjunctions, disjunctions or negations of events and much more. If such defined event
patterns are detected within the incoming event cloud, the CEP engine immediately emits an event as a real-time
reaction on this detection (Etzion and Niblett, 2010). Hence, CEP is an appropriate technology for the real-time
monitoring of distributed systems or processes with complex relations.

Event-driven architecture (EDA) is an architecture pattern (Chandy and Schulte, 2010) that is often applied in
software development, if events are produced and consumed in different parts of a software product. One big
advantage of EDA in dynamic and decentralized systems is the fact that producers of events do not need to know the
consumers of a produced event and vice versa, so that highly loose coupling is accomplished. The event-driven
concept is often implemented using publish-subscribe mechanisms (Mühl et al., 2006). The architecture pattern
consists of three parts: an event source produces events, while event channels transmit them to subscribed event sinks.
Components in an event-driven architecture may take the role of event sinks and event sources at the same time. This
is especially the case, when a CEP engine is involved which processes received events from different event sources

1 http://infolab.stanford.edu/stream
2 http://esper.codehaus.org

and reacts on identified event patterns by sending new events to downstream components as a real-time reaction
(Bruns and Dunkel, 2010).

Therefore, we are using a CEP engine to enable routing and rule-based interpretation of events between different
processes and execution engines. In that way, relevant events from within the processes only need to be sent by the
process execution engine to the CEP engine for analysis, while the technology used for process execution itself is not
relevant for monitoring purposes. This may hence be any WS-BPEL or BPMN 2.0 engine, if it is only able to send
the required types of events to the CEP engine. With regards to service and process infrastructures, complex event
processing offers a valuable approach to dispatch information, status changes and actions across multiple processes
and platforms (Vidačković et al., 2009).
Figure 1 shows the graphical illustration of the WS-BPEL process of the fraud detection service described in section
1.2 as an example. The same process can also be realized in BPMN 2.0 and executed on a BPMN 2.0 engine with the
same web service calls and event generations which are transmitted to the CEP engine and analyzed for further
processing.

Figure 1: WS-BPEL process of the fraud detection service as an example

2.3 Interaction with Service and Process Infrastructures

Approaches to integrate human activities explicitly in the process have been led to the specification of BPEL4People
(Agrawal et al., 2009), which aims at including human actions into a WS-BPEL process. In conjunction with
BPEL4People, WS-Human Task (WS-HT) (Agrawal et al., 2007) serves as a basis for including human tasks. WS-
HT is based on WSDL, which is used to describe service interfaces, making it possible to also describe human users
(roles, timeouts and interactions) as part of the process. In BPMN 2.0, human tasks in business processes are modeled
and executed using the user task element.

BPEL4People and WS-HT as well as the BPMN 2.0 user task element serve as a means for modeling and
integrating interactions and generally human tasks into a WS-BPEL process and a BPMN 2.0 process respectively,
executed in a process engine. We refer to this kind of interactions as explicit interactions (Schlegel, 2010). Explicit
interactions comprise all interactions that are foreseen in the process, i.e. they are expected to occur and have to be
accomplished to execute the process. Most approaches for model-based and generative user interfaces use their
modeling methods for describing explicit interactions in descriptive models. These models are then transformed to
user interfaces, e.g. through multiple model levels like the ones described by the Cameleon reference framework
(Calvary et al., 2003). As the semantics can be described on design time of the processes, powerful transformations
and mappings can be used to generate user interfaces either through model transformation or model interpretation.

However, not all interactions can be foreseen and modeled before process execution. Therefore, implicit
interactions (Schlegel, 2010) form a second category of interactions that is not modeled within the process, but
becomes necessary when unforeseen situations, interactions between processes or interactions outside the process
(e.g. management of the service or process platform) occur. As no upfront modeling is possible and therefore no
model is available, the execution engine has to deal with such interactions on runtime. Implicit interactions often
become necessary when data is missing in the process and therefore is requested from the CEP engine or when the
CEP engine itself identifies data missing from the events handled. For example, when a shipping process is triggered
for routing goods in a company to another place internally, while normally the service only handles shipping to
customers, it becomes necessary to specify the internal recipient and adapt the billing information. This can be

accomplished through implicit interactions generated by the CEP engine in order to fill the missing “customer”
information.

As the technology targets management and operation of a multi-tenant service platform, interactions are
generated for three different groups of stakeholders requiring different handling:

• Customers, who interact with the platform for using services and participating in processes, e.g. filling in
data to collaborate with a service or service provider,

• Service providers, who provide and manage their services and processes via the platform and therefore
trigger and control the processes through interaction and data delivered by the services, and

• Platform providers, who manage the platform and the processes executed on it and therefore have control
over a part of or the complete infrastructure and state of the platform, including triggering and evaluating
events and processes.

All the three categories of stakeholders require different access levels, functionalities and interactions, while they all
use implicit and explicit interactions for their work. From customers over service providers to platform providers,
more and more implicit interactions are used as new tasks and incomplete process settings arise.

2.4 Interaction by Events

We use events in the CEP engine not only for monitoring purposes, but also for triggering interactions and returning
results. A dashboard is used to show these events and to execute the interaction commands. In this way, the events
can be used to trigger implicit interactions as well as explicit interactions. Each process (back-end), and each
dashboard (control front-end) can trigger interactions by creating an interaction event (cf. section 3.1).

Each interaction event carries with it a model-based payload that is able to describe the interaction needed and
also the rules and structures of the data created by the interaction. Data consumed and created in an interaction can
vary from complex and rule-based entities to simple events without any data payload.

The system conceptually supports many different approaches for generating interactions, ranging from purely
client-sided concepts (1) that independently interpret the request to derive a specific interaction in the user interface
to a remotely managed interaction, (2) that receive a user interface description which is then only being displayed. For
our prototypical implementation we have used a more back-end oriented option, i.e. variant (2), which is based on
model fragments in XAML (eXtensible Application Markup Language). Figure 2 shows a screenshot of the graphical
user interface based on XAML. The dialog asking for acceptance of a task is generated from a specific event received
from the CEP engine.

Figure 2: Dialog interface of the client application

3 System Description
First, we present the basic model used to describe events and transmit them into the system. Then, we describe the
system architecture, which allows the usage of multiple WS-BPEL and BPMN 2.0 execution engines that transmit
events from within their processes to the complex event processing system. The client application used to monitor,
manage and interact with the processes receives events from and also transmits events to the CEP engine.

3.1 Event Model

The notion of events is the main concept that helps in distributing processes over multiple engines on a platform. It
also facilitates integration by enabling decentralized communication, i.e. clients and process engines do not have to
know each other, but will, nevertheless, be interconnected by the CEP engine. We use the W3C standard WS-
Eventing (Box et al., 2006) to define the contents (body) of a SOAP message that is used for subscribing and
unsubscribing to specific events. These events are then also sent to the recipient within the SOAP body. This makes it
possible to register applications on events generated by any process execution engine.

Our developed event schema consists of all the events that can be created by the different process execution

engines. It describes the properties of each type of event. To allow for an easy use and exchange of the event schema
and events, we have used XML schema as definition language. Each event has a specific event type. This allows
defining semantic queries and filtering also by users to receive and interpret only specific types of events.

3.1.1 Notification Events
The simplest event is a plain notification used for example to notify the CEP engine or interactive client about

status changes. It contains a timestamp, which is also used to order events and therefore of utter importance. These
timestamps are also necessary for additional timing issues, because not all the available WS-BPEL and BPMN 2.0
execution engines are capable of reliably sending events on a defined point in time. In addition, the time needed for
transmission of events may differ from process to process. To enable users to understand a message more easily, a
message text is included in the notification event, which can be displayed on the client for explanatory or debugging
purposes. Each event also contains a correlation, which relates it to the specific process and context it originated from
making it possible to return results to the source of an event.

Additionally, the event itself can contain a query, which is evaluated by the CEP engine. Only if this query
returns a result, the event is passed to the CEP. This offers developers of business processes the possibility to define
events also depending on the current context. A timeout defined for the queries ensures that queries finish in time and
do not block or invalidate events.

3.1.2 Time Events
The XML schema of time events with the properties described above, which is used for the monitoring of temporal
properties of processes or as a basis for other event types, can be found below:

<xs:complexType name="TimeEventType">
 <xs:sequence>
 <xs:element name="Message" type="xs:string" />
 <xs:element name="CorrelationID" type="xs:string" />
 <xs:element name="Timestamp" type="xs:dateTime" />
 </xs:sequence>
 <xs:attribute name="Type" type="xs:string" />
 <xs:attribute name="Query" type="xs:string" />
 <xs:attribute name="QueryTimeout" type="xs:duration" />
</xs:complexType>

If time durations of processes, process steps or service calls need to be calculated, the time duration event type can be
used, which specifies the start and the end of a temporal measurement:

<xs:complexType name="TimeDurationEventType">
 <xs:complexContent>
 <xs:extension base="mytns:TimeEventType">
 <xs:sequence>
 <xs:element name="ServiceInstanceID" type="xs:string" />
 <xs:element name="TimeDurationID" type="xs:string" />
 <xs:element name="TimeDurationType" type="mytns:TimeDurationEnum" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

3.1.3 Interaction Events
Interactions in most cases produce results. The inquiry event type is used to communicate these results or information
entered by a user back to the process execution engine(s). For the prototype, we have used a simple mechanism to
derive interactions from events: the client requires embedded interactions in the events, so it can directly display them
for gathering information from the user. This also offers the opportunity of providing an individual interface for each
type of event.

The event must also include a property that defines who is allowed to see and enter information or, more
generally, use the interactions provided with the event – according to the role selection in BPEL4People or the user
task in BPMN 2.0. Selection of the correct role has been implemented using XPath, so that the select-expression is
being evaluated for an XML document, which exists as a profile for each user who can connect to the client
application. This XML document specifies all the roles of the particular user. Its structure is also defined by an
appropriate XML schema.

If results have been requested by a specific stakeholder or by a part of the system (e.g. a WS-BPEL or a BPMN
2.0 engine), a URI (Uniform Resource Identifier) is used to indicate the intended recipient of the information. At this
URI, an application has to be available, which implements a defined interface for receiving the interaction results.
The user interaction follows this schema:

<xs:complexType name="InquiryEventType">
<xs:complexContent>

 <xs:extension base="mytns:TimeEventType">
 <xs:sequence>
 <xs:element name="InquiryForm" type="mytns:InquiryFormType"/>
 <xs:element name="ReplyToUrl" type="xs:string"/>
 <xs:element name="RoleQuery" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The user interface is defined in the inquiry form type, which contains the specification of the user interface and the
return values to be sent back as a result. The event can carry user interface descriptions in any kind of specification
language, which is identified by an additional attribute. As long as an interpreter, which generates the user interface
from this description, exists or is newly built for this purpose, any language can be used. In addition, the
parser/interpreter is responsible for reading the return values from the dialog or dashboard. These return values are
defined in a way that they also describe the dialog element and its properties. If none of these values are specified,
only the information contained within the inquiry is displayed to the user. The definition of the interactions reads as
follows:

<xs:complexType name="InquiryFormType" mixed="true">
 <xs:sequence>
 <xs:element name="Content">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any" processContents="skip" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ReturnControlNames" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ReturnControlName" type="xs:string" minOccurs="0"
 maxOccurs="unbounded" />

 </xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="lang" type="xs:string" />

</xs:complexType>

Further events have also been defined using XML schema.

3.2 System Architecture

Our implemented system consists of a server with a CEP engine collecting all the events generated by the different
process execution engines or by other applications integrated with the system. As already mentioned, any WS-BPEL
or BPMN 2.0 execution engine able to send events in the required form to the CEP engine may be used for process
execution. These events are collected and analyzed by the CEP engine for further processing. The server also handles
registration of new users and elements in the client application serving as a user interface as well as a dashboard. The
system architecture is illustrated in figure 3.

Figure 3: System architecture

The client application’s user interface allows the definition of queries for monitoring and managing the whole
platform. These queries are stored in the CEP engine which analyzes the incoming event cloud for the defined event
patterns. If a query returns results, the server also deals with transferring them as emitted events to the user interfaces
registered with it to achieve notifications in real-time.

From the user interface, input of users can be sent back to the process execution engines. These user inputs are
also transferred via the server, which establishes a connection with the receiving process execution engine and
transmits the data to it. Interactive sessions are stored by the user interface management and can be reloaded on login.
The server stores the user sessions independent of existing connections, as these are likely to change. One session is
also capable of supplying data to multiple user interfaces active at a certain point of time.

3.2.1 Server Architecture
The CEP engine is the core of the server, collecting events from the process execution engines and passing results on
to the client application. It also contains a session management component, which stores the sessions of users,
including the current connections to the different user interfaces used for input from and output to the user. The CEP
engine server contains interfaces to the process execution engines and other applications, which deliver events to it.
This interface consists of only one operation accepting events. A big part of the application collaborates with the
integrated CEP engine. The server offers a class that reacts on results of the CEP engine and passes these results on to
the client application registered with it. The server architecture with the CEP engine, its session management and the
mentioned interfaces is shown in figure 4.

Figure 4: Server architecture

3.2.2 Client Application
The client application provides the user with an interface for creating new sessions and queries within them. It also
displays output dialogs and accepts events from the process execution engines. The window management offers
elements for displaying queries in a window-like view. The query dispatcher accepts results and passes them to the
windows registered for the adjacent query, which are then displayed by the user interface in the form of visual
diagrams of arriving events. A screenshot of the client application’s dashboard displaying Time Event monitoring
data for one specific session is shown in figure 5.

Figure 5: Screenshot of the client application

4 Technology and Implementation
The architecture and implementation has to build on existing technologies in order to be applicable in practice.
Therefore, we analyzed current technologies to find the most appropriate ones for our purposes.

4.1 CEP Engine

Esper3 is a widely used CEP engine offering a runtime for Java and .NET. It can be integrated in any application by
transmitting information via a web service call or an Enterprise Service Bus (ESB) to the CEP engine – independent
of a specific process execution engine. This complies with the goal of offering a decentralized and product-
independent solution. Our server contains the CEP engine Esper providing a web service interface which can be used
by any process execution engine for the transmission of events.

4.2 Process Execution Engines

Apache ODE4 is the WS-BPEL engine of the Apache Software Foundation allowing the definition of processes in
WS-BPEL 2.0. It offers fast and easy installation and deployment of business processes, but lacks some stability in
the development environment. Nevertheless, it is a widely used and very useful engine for the execution of WS-BPEL
processes.
 Currently, two open source engines are able to natively execute BPMN 2.0, namely Activiti5 and JBoss jBPM6.
Both of them are still in development, but first stable versions with basic functionalities are already available and
useful for testing purposes.

4.3 Graphical User Interface Language

As already mentioned, the user interface and especially the event-driven interactions on it are defined within the
events transmitted and processed via the CEP engine. Therefore, they are already generated when an event is
triggered – depending on the type, context and origin of it. This means that after creation of the event, interactions are
already defined. Other solutions like the use of object-oriented or semantic models for describing them (Schlegel,
2009) are more flexible – especially regarding their interpretation by the client application – but introduce additional
complexity for software and process developers. Furthermore, they can cause unforeseen reactions of the user
interface. Hence, we chose to use an interface description language that is directly displayable and executable by a
runtime environment.

For this reason, the language had to be following standards and also allowing embedding it into the payload of an
event, i.e. being integrated into its XML structure. This requires the representation of the model, which does not need
to be compiled before execution in the runtime environment. Just as the well-known Hyper Text Markup Language
(HTML), the eXtensible Application Markup Language (XAML) can be interpreted in a runtime environment as well,
which, in this case, is based on Microsoft .NET and Silverlight.

5 Related Work
Current research in the field of business process monitoring focuses mainly on single instances of processing engines
and single sites as event sources. (Baresi and Guinea, 2005) proposed a system to dynamically monitor WS-BPEL
processes based on certain monitoring rules, which are executed by a dedicated monitoring server. This approach has
been further developed towards a unified framework for the monitoring and recovery of BPEL processes (Baresi et
al., 2008). (Hermosillo et al., 2010) talk about gathering data from business processes in order to improve them using
complex event processing and dynamic business process adaptation techniques.

In (Ammon et al., 2008) the authors detail the term “Event-Driven Business Process Management” (EDBM) as a
combination of Business Process Management (BPM) for modeling and management of business processes, and
Complex Event Processing (CEP). However, this approach is again limited to processes solely within one company.

Research considering monitoring cross-site processes executed by multiple WS-BPEL processors has been
conducted in (Kikuchi et al., 2007). (Wetzstein et al., 2010) developed an event-based system for monitoring of
business processes across organizational boundaries with the help of BPEL4Chor service choreography descriptions
(Decker et al., 2007). Here, a service choreography models the publicly visible processes and message exchanges
between participants from a global viewpoint. These choreographies act as a basis for the specification of so called
monitoring agreements between executing partners.

3 http://esper.codehaus.org
4 http://ode.apache.org/
5 http://www.activiti.org
6 http://www.jboss.org/jbpm

6 Discussion
We have successfully tested our implemented system prototype using simple automated processes from the insurance
domain, as they were described in section 1.2. Executing business processes by using mechanisms like multiple
process execution engines often makes it impossible to monitor and manage the execution of these processes as a
whole infrastructure. Therefore, we presented an approach and a system implementation that uses a complex event
processing (CEP) engine to integrate different, cross-organizational WS-BPEL and BPMN 2.0 engines as well as
other applications into a centralized common service platform, which differentiates our work from similar research
activities. With regard to interactions with the processes and services running in such an infrastructure, we provided
also a concept for creating ad-hoc user interactions on a monitoring dashboard, which allows platform managers and
stakeholders in the processes to interact with the platform and the processes executed – independent of their context
of execution.

In contrast to related work, we are independent of a specific process execution engine and even of the process
execution language (e.g. WS-BPEL or BPMN 2.0) as well as capable of using multiple engine instances. Our
approach benefits especially large and decentralized system structures, as they occur when different organizations and
infrastructures have to be integrated into one platform. In addition, we achieved the goal of being able to monitor
such a platform and support management tasks for platform providers as well as service and process owners involved.

The concept of using embedded XAML has many advantages with regards to simplicity of changes and reduction
of efforts for creating a running system. A dynamic user interface creation is not possible when using pure XAML.
Hence, we are currently evaluating HTML with JavaScript for dynamic changes on the client side.

However, from a research perspective, a model-based approach for the context-based creation of interfaces is a
goal for the future. Model-interpretation or transformation could then be integrated either on the server-side, i.e.
generating target code like HTML or XAML on the server, or on the client-side, i.e. sending model fragments
interpreted by the client application.

In the future, decentralized and multi-engine approaches will gain higher importance due to service
infrastructures spanning multiple organizations and integrating different process technologies.

References
Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D., Leymann, F., Müller, R., Pfau, G., Plösser,

K., Rangaswamy, R., Rickayzen, A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., Zeller, M., 2007. Web
Services Human Task (WS-HumanTask), Version 1.0. Retrieved from
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf.

Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König, D., Leymann, F., Müller, R., Pfau, G., Plösser,
K., Rangaswamy, R., Rickayzen, A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., Zeller, M., 2009. WS-BPEL
Extension for People (BPEL4People), Version 1.0. Retrieved from
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf.

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y., Guízar, A., Kartha, N., Liu, C.K.,
Khalaf, R., König, D., Marin, M., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A., 2007. Web Services
Business Process Execution Language Version 2.0. Retrieved from http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html.

Ammon, R. v., Emmersberger, C., Springer, F., Wolff, C., 2008. Event-Driven Business Process Management and ist Practical
Application Taking the Example of DHL. In: FIS 2008 / 1st International Workshop on Complex Event Processing
for Future Internet - Realizing Reactive Future Internet. September 28-30, 2008 Vienna, Austria

Box, D., Cabrera, L.F., Critchley, C., Curbera, F., Ferguson, D., Graham, S., Hull, D., Kakivaya, G., Lewis, A., Lovering, B.,
Niblett, P., Orchard, D., Samdarshi, S., Schlimmer, J., Sedukhin, I., Shewchuk, J., Weerawarana, S., Wortendyke,
D., 2006. Web Services Eventing (WS-Eventing). Retrieved from http://www.w3.org/Submission/2006/SUBM-
WS-Eventing-20060315.

Baresi, L., Guinea, S., 2005. Towards Dynamic Monitoring of WS-BPEL Processes. In: ICSOC 2005, Third International
Conference of Service-Oriented Computing, volume 3826 of Lecture Notes in Computer Science.

Baresi, L., Guinea, S., Pasquale, L., 2008. Towards a unified framework for the monitoring and recovery of BPEL processes. In:
TAV-WEB '08 Proceedings of the 2008 workshop on Testing, analysis, and verification of web services and
applications.

Decker, G., Kopp, O., Leymann, F., Weske, M., 2007. BPEL4Chor: Extending BPEL for Modeling Choreographies. In: Web
Services, 2007. ICWS 2007. IEEE International Conference on , vol., no., pp.296-303, 9-13 July 2007

http://www.fis2008.org/
http://www.fis2008.org/

Wetzstein, B., Karastoyanova, D., Kopp, O., Leymann, F., Zwink, D., 2010. Cross-organizational process monitoring based on
service choreographies. In: SAC '10 Proceedings of the 2010 ACM Symposium on Applied Computing.

Bruns, R., Dunkel, J., 2010. Event-Driven Architecture – Softwarearchitektur für ereignisgesteuerte Geschäftsprozesse. Springer,
Berlin, Heidelberg.

Calvary, G., Coutaz, J., Thevenin, D. Limbourg, Q., Bouillon, L. , Vanderdonckt, J., 2003. A unifying reference framework for
multi-target user interfaces. Interacting With Computers. 15, 3, 289-308.

Chandy, K.M., Schulte, W.R., 2010. Event Processing – Designing IT Systems for Agile Companies. McGraw-Hill, New York.

Etzion, O., Niblett, P., 2010. Event Processing in Action. Manning, Stamford, CT.

Hermosillo, G., Seinturier, L., Duchien, L., 2010. Using Complex Event Processing for Dynamic Business Process Adaptation.
In: Services Computing (SCC), 2010 IEEE International Conference on , vol., no., pp.466-473, 5-10 July 2010

Kikuchi, S., Shimamura, H., Kanna, Y., 2007. Monitoring Method of Cross-Sites’ Processes Executed by Multiple WS-BPEL
Processors. In: E-Commerce Technology and the 4th IEEE International Conference on Enterprise Computing, E-
Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE International Conference on , vol., no., pp.55-64,
23-26 July 2007.

Luckham, D., 2002. The Power of Events – An Introduction to Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley, Boston, London.

Luckham, D., Schulte, R, 2008. Event Processing Glossary – Version 1.1. Retrieved from http://www.ep-
ts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84 on 8.6.2011.

Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S., 2008. Advanced Event Processing and Notifications in Service Runtime
Environments. In: Proceedings of the Second International Conference on Distributed Event-Based Systems (DEBS
'08), pp.115-125.

Mühl, G., Fiege, L., Pietzuch, P., 2006. Distributed Event-based Systems. Springer, Berlin, Heidelberg.

OMG, 2011. Business Process Model and Notation (BPMN) - Version 2.0. Retrieved from
http://www.omg.org/spec/BPMN/2.0/PDF.

Schlegel, T., 2009. Object-Oriented Interactive Processes in Decentralized Production Systems. In: Proceedings of the 13th
International Conference on Human-Computer Interaction (HCI International 2009).

Schlegel, T., 2010. An Interactive Process Meta Model for Runtime User Interface Generation and Adaptation, In: Proceedings of
the Fifth International Workshop on Model-Driven Development of Advanced User Interfaces (MDDAUI 2010) at
the 28th ACM Conference on Human Factors in Computing Systems (CHI 2010).

Silver, B., 2010. BPMN Method and Style. Cody-Cassidy Press, Aptos, CA.

Vidačković, K., Kett, H., Renner, T., 2009. Event-Driven Service Chain Monitoring for the Internet of Services. In: Proceedings
of the eChallenges e-2009 Conference.

http://www.acm.org/conferences/sac/sac2010

	1 Introduction
	1.1 A New Complexity in Service Infrastructures
	1.2 Use Case Scenario

	2 Process Execution, Events and Interactive Control
	2.1 Process Modeling and Execution
	2.2 Complex Event Processing
	2.3 Interaction with Service and Process Infrastructures
	2.4 Interaction by Events

	3 System Description
	3.1 Event Model
	3.1.1 Notification Events
	3.1.2 Time Events
	3.1.3 Interaction Events

	3.2 System Architecture
	3.2.1 Server Architecture
	3.2.2 Client Application

	4 Technology and Implementation
	4.1 CEP Engine
	4.2 Process Execution Engines
	4.3 Graphical User Interface Language

	5 Related Work
	6 Discussion

