

1

A Prototyping and Evaluation
Framework for Interactive
Ubiquitous Systems
Rapid prototyping of ubiquitous systems enables researchers and practitioners to
quickly test and implement new ideas, but is also necessary to ensure the user’s
acceptance. In the following we introduce a framework that supports rapid
prototyping and evaluation of ubiquitous interactive systems using a modular
approach, incorporating different interaction modes.

Ubiquitous Systems often come with innovative design ideas and interaction
concepts. The ultimate vision depicts intelligent and interactive environments,
where computing devices are pervasive but barely noticeable, as first envisioned
by Mark Weiser [1]. A ubiquitous environment optimally supports its users by
providing easy information and computing access as well as natural and usable
interfaces.

It is our understanding that ubiquitous computing not only comprises all kinds of
devices, but also needs innovative, multimodal and natural interaction concepts to
achieve usable pervasive user interfaces. It is necessary to test and evaluate
those interfaces in early design stages, in order to avoid design errors. In order to
develop and evaluate interaction concepts for ubiquitous environments,
prototypes are essential.

We therefore developed a prototyping and evaluation framework for ubiquitous
interactive systems designed to support rapid prototyping of interaction concepts
in ubiquitous environments. The framework focuses on interaction prototypes and
for this purpose provides an abstraction layer for the prototyping engineer that
encapsulates different interaction channels. The prototyping engineer therefore
doesn't have to implement several interaction techniques but can use the readily
implemented interaction components and easily plug them into his backend code.

Our goal is to facilitate the usage of different interaction channels without
limiting the flexibility of their application. The different interaction channels are
therefore made available through a graphical user interface that allows
customizing them, as shown in Figure 1. Each interaction channel can be adapted

2

for the usage in a new prototype. Once adapted, the interaction channels
generate events that can be used to trigger responses to the specific interaction
that have to be used in backend code. Prototypes that are realized within the
framework can be evaluated within the framework itself, using the very same
graphical user interface.

The framework is implemented in C# using the Microsoft Kinect sensor for the
Xbox 360 but it is not limited to the use of the Kinect sensor. Up to now, we
implemented four different interaction channels to support rapid prototyping of
interactive ubiquitous systems. These are:

- Postures
- Gestures
- Speech
- Interactive Surfaces

Figure 1: The graphical user interface of our framework.

The Posture Component can recognize designated positions of the skeleton the
Microsoft Kinect sensor detects. For Posture development there is a graphical
tool provided in the “Posture Creator” tab of the GUI, as shown in Figure 2. The
Postures can be saved in an XML file and instantly used in a new prototype.

3

Figure 2: The Posture Creator.

The gesture recognition is realized in the Gesture Component. The framework
comes with predefined gestures for easy use in a gesture library. Using the
gesture tab of the GUI, all gestures of the gesture library can be selected and a
picture of the postures that form the start and end of one gesture is displayed as
well as a textual description of the gesture, as shown in Figure 3.

Figure 3: Using gestures from the gesture library.

We also realized a Speech Component using the Windows Desktop Speech API
from Microsoft. In order to use speech recognition in a prototype, the prototype
engineer can add new words and phrases for the usage as commands by typing
them into the speech tab of our framework GUI.

4

The Surface Component is used to create interactive plane surfaces (any
polygons) or volumes (e.g. spheres) defined by their coordinates in space.
Interactions are triggered by collisions of a body-joint with these defined surfaces.
Interactive surfaces can be created by directly drawing them into the depth frame
of the Kinect sensor that is displayed in the GUI. Interactive surfaces can be
exported and saved to a file for reuse and import in other prototypes and of
course, they can also be deleted.

The graphical user interface also offers a view in which it is possible to record a
user test. This is the Evaluation Component. The recordings of a user test consist
of a log file which lists all recorded interactions that occurred during the test and a
video of the user interacting with the prototype.

The framework was tested in some first case studies. As test cases, a ubiquitous
music player was implemented, which only took four hours of work. An 3D
Twister game was also implemented in half a day. Both case studies showed the
practicability and acceptance of the approach.

[1] Mark Weiser. The computer for the 21st century. Scientific American, 265
p.94–104, 1991.

