Resilient Networking

Thorsten Strufe

Module 2: Background (Graph Analysis and Crypto)

Disclaimer

Dresden, SS 18
Module Outline

Graph Analysis
• Why bother with theory?
• Graphs and their representations
• Important graph metrics
• On robustness and resilience

Crypto
• Stream ciphers and the OTP
• Block ciphers and their operation modes
• Key agreement
• Asymmetric Crypto
• Integrity
Some questions...

- How robust is the Internet?

- Why do darknets work?

- What do the existing networks look like?

- What would an ideal computer network look like?

Gnutella snapshot, 2000
Scalability of Gnutella: quick answer

How (well) does Gnutella work?

Bandwidth generated in Bytes (Message 83 bytes)

- Searching for a 18 byte string

<table>
<thead>
<tr>
<th></th>
<th>T=2</th>
<th>T=3</th>
<th>T=4</th>
<th>T=5</th>
<th>T=6</th>
<th>T=7</th>
<th>T=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=2</td>
<td>332</td>
<td>498</td>
<td>664</td>
<td>830</td>
<td>996</td>
<td>1,162</td>
<td>1,328</td>
</tr>
<tr>
<td>N=3</td>
<td>747</td>
<td>1,743</td>
<td>3,735</td>
<td>7,719</td>
<td>15,687</td>
<td>31,623</td>
<td>63,495</td>
</tr>
<tr>
<td>N=4</td>
<td>1,328</td>
<td>4,316</td>
<td>13,280</td>
<td>40,172</td>
<td>120,848</td>
<td>362,876</td>
<td>1,088,960</td>
</tr>
<tr>
<td>N=5</td>
<td>2,075</td>
<td>8,715</td>
<td>35,275</td>
<td>141,515</td>
<td>566,475</td>
<td>2,266,315</td>
<td>9,065,675</td>
</tr>
<tr>
<td>N=6</td>
<td>2,988</td>
<td>15,438</td>
<td>77,688</td>
<td>388,938</td>
<td>1,945,188</td>
<td>9,726,438</td>
<td>48,632,688</td>
</tr>
<tr>
<td>N=7</td>
<td>4,067</td>
<td>24,983</td>
<td>150,479</td>
<td>903,455</td>
<td>5,421,311</td>
<td>35,528,447</td>
<td>192,171,263</td>
</tr>
<tr>
<td>N=8</td>
<td>5,312</td>
<td>37,848</td>
<td>262,600</td>
<td>1,859,864</td>
<td>13,019,712</td>
<td>91,138,648</td>
<td>637,971,200</td>
</tr>
</tbody>
</table>

- N = number of connections, T = number of hops (TTL)

* [SIC]: Error already in source, orders of magnitude are important, here ;)
Source: Jordan Ritter: Why Gnutella Can't Scale. No, Really.
Rigorous analysis of networks: based on graph theory

- Refresher of graph theory needed

Graph families and models

- Random graphs
- Small world graphs
- Scale-free graphs

Graph theory and real computer networks

- How are the graph properties reflected in real systems?
 - Users/nodes are represented by vertices in the graph
 - Edges represent connections in overlay / routing table entries

Concept of self-organization (how/why do they evolve?)

- Network structures emerge from simple rules
- E.g. also in social networks, www, actors playing together in movies
What Is a Graph?

Definition of a graph:

Graph $G = (V, E)$ consists of two finite sets, set V of vertices (nodes) and set E of edges (arcs, links) for which the following apply:

1. If $e \in E$, then exists $(v, u) \in V \times V$, such that $v \in e$ and $u \in e$
2. If $e \in E$ and above (v, u) exists, and further for $(x, y) \in V \times V$ applies $x \in e$ and $y \in e$, then $\{v, u\} = \{x, y\}$

Example graph with 4 vertices and 5 edges

Side note:

Edges can have (multiple) “weights” $w : E \rightarrow \mathbb{R}$
How are Graphs Implemented?

- Adjacency/Incidence Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Adjacency/Incidence List

(Plus specialized others..)

(1,2) 1:2
(2,1),(2,3) 2:1,3
(3,2) 3:2

VERY good book is: Sedgewick: Algorithms in C, part 3 (Graph Algorithms)
Some Examples of Computer Networks

Early Computer Networks Aloha (or WSN, for that matters)

Network Layers 1,2
Examples: The Internet

Globally internetworked computers (Layer 3)
Examples: Overlays (Layer 7 (?))

A **CLIQUE** is a graph that is fully connected \((u,v) \in E \mid \text{for all } u \in V \text{ and } v \in V, \ u \neq v\)

A (P2P) Overlay \((V_o,E_o)\) (in general) is a subgraph such that \(V_o = V\) and \(E_o \subseteq E\) (edges are selected edges from a CLIQUE graph)

Why? Considering the nodes to be on the Internet, they all can create connections between each other...
In graph $G = (V, E)$, the **degree** of vertex $v \in V$ is the total number of edges $(v, u) \in E$ and $(u, v) \in E$

- Degree is the number of edges which touch a vertex

For directed graph, we distinguish between **in-degree** and **out-degree**

- In-degree is number of edges coming to a vertex
- Out-degree is number of edges going away from a vertex

The degree of a vertex can be obtained as:

- Sum of the elements in its row in the incidence matrix
- Length of its vertex incidence list

The **degree distribution** is the distribution over all node degrees (given as a frequency distribution or (often) complementary cumulative distribution function CCDF (Komplement der Verteilungsfunktion))
Graph Metrics: Degree Distribution (Examples)

Human Protein Interaction [biomedcentral.com]
The Internet (AS-level) [pacm.princeton.edu]
Online Social Network (xing crawl) [strufe10popularity]
Graph Metrics on Path Length

All pairs shortest paths (APSP): \(d(v, u) \mid \) all \(v, u \in V \)

Hop Plot: Distance distribution over all distances \(\text{Hist}(\text{APSP}(G)) \)

Average/characteristic path length (CPL): Sum of the distances over all pairs of nodes divided by the number of pairs

For defined routings (usually greedy) on directed graphs:
Characterisic Routing Length (CRL): average length of paths found (potentially stochastic...)

Sanity Check:

APSP:
A: 1,1,1,2,2
B: 1,1,1,2,2
C: 1,1,1,1,1
D: 1,1,1,1,2
E: 1,1,1,2,2
F: 1,1,2,2,2

HopPlot:
1: 20
2: 10

CPL: 40/30 = 1.333

CRL (CHORD): 2
Important Graph Metrics: Connectivity

Edge connectivity: is the minimum number of edges that have to be removed to separate the graph into at least two components.

Vertex connectivity: the minimum number of nodes.

How can we calculate them?
Which of both is higher?
In which cases are they the same?
So where do you attack? ;-)

Recall: maxflow, Menger‘s Theorem
Graph Metrics: Network Clustering

Clustering coefficient: number of edges between neighbors divided by maximum number of edges between them

- k neighbors: $k(k-1)/2$ possible edges between them

$$C(i) = \frac{2E(N(i))}{d(i)(d(i)-1)}$$

$E(N(i)) = $ number of edges between neighbors of i

$d(i) = $ degree of i

What if: a node has only one neighbor? 😊

Variations exist: *local, average, global CC*

Classes of Graphs

Regular graphs
Random graphs
Graphs with Small-World characteristic
Scale-free graphs

...Graphs with plenty more characteristics
 – (dis-) assortativity
 – Rich-club connectivity
 – ...

Regular graphs have traditionally been used to model networks, they have

• constant node degree (discrete degree distribution of a single value)

• potentially different topologies

However, the model does not reflect reality very well
Random graphs are first widely studied graph family
 • Many overlay networks choose neighbors more or less randomly

Two different generators generally used:
 • Erdös and Renyi
 • Gilbert

Gilbert’s definition: Graph $G_{n,p}$ (with n nodes) is a graph where the probability of an edge $e = (v, w)$ is p

Construction algorithm:
For each possible edge, draw a random number in (0,1)
If the number is smaller than p, then the edge exists
(p can be function of n or constant)
Basic Properties of Random Graphs

Giant Connected Component

Let \(c > 0 \) be a constant and \(p = c/n \).

If \(c < 1 \) every component of \(G_{n,p} \) has order \(O(\log N) \) with high probability.

If \(c > 1 \) then there is one component of order \(n^* (f(c) + O(1)) \) where \(f(c) > 0 \), with high probability. All other components have order \(O(\log N) \).

English: Giant connected component emerges with high probability when average degree is about 1.

Node degree distribution

If we take a random node, how high is the probability \(P(k) \) that it has degree \(k \)?

Node degree is Poisson distributed

- Parameter \(c = \) expected number of occurrences

\[
P(k, c) = \frac{c^k e^{-c}}{k!}
\]

Clustering coefficient

Clustering coefficient of a random graph is asymptotically equal to \(p \) with high probability.
Recall: Poisson! ;-)

\[P(k, c) = \frac{\lambda^k e^{-c}}{k!} \]

\[\lambda < -c \]

Milgram's Small World Experiment

We need your help in an unusual scientific study carried out at Harvard University. We are studying the nature of social interest in American society. Could you, as an active American, contact another American citizen regarding the following? If the name of an American citizen were picked out at a lottery, could you get to know this person using only your network of friends and acquaintances? Just how open are we in what we call society? To answer these questions, which are very important to our research, we ask for your help.

You will notice that a letter has been typed for you. This letter was sent by sending these cards to you. We hope that you will help the study by forwarding this letter to someone else. The name of the person who sent you this letter is signed on the bottom of the bottom of this sheet.

In the box at the right you will find the name and address of an American citizen who has agreed to serve as the "target person" in this study. The idea of the study is to transmit this letter to the target person using only a chain of friends and acquaintances.

HOW TO TAKE PART IN THIS STUDY

1. ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS SHEET, so that the name of the person who sends this letter will know who sent it.

2. DETACH ONE POSTCARD, FILL IT OUT AND RETURN IT TO HARVARD UNIVERSITY.

3. IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, MAIL YOUR POSTCARD DIRECTLY TO HIM (HER). Be sure to include your name and a personal message with your data.

4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL BASIS, DO NOT SEND YOUR POSTCARD DIRECTLY. INSTEAD, MAIL THIS POSTCARD AS AN ADDRESSED POSTCARD TO A PERSONAL ACQUAINTANCE WHO IS MORE LIKELY TO KNOW THE TARGET PERSON. You may need the following information to use it:

- ADDRESS
- PHONE NUMBER
- THE PERSON'S PREVIOUS ADDRESS
- THE PERSON'S EMPLOYER
- THE PERSON'S RELATIONSHIP TO YOU

Please fill in the following information about the person to whom you are sending this letter:

NAME:
ADDRESS:
PHONE NUMBER:
EMPLOYER:
RELATIONSHIP:
PREVIOUS ADDRESS:

SIGN YOUR NAME HERE.

PLEASE FILL OUT THE FOLLOWING INFORMATION ABOUT THE PERSON TO WHOM YOU ARE SENDING THIS LETTER.

NAME:
ADDRESS:
PHONE NUMBER:
EMPLOYER:
RELATIONSHIP:
PREVIOUS ADDRESS:

DETACH ONE POSTCARD. FILL IT OUT AND RETURN IT TO HARVARD UNIVERSITY.
Six Degrees of Separation

Famous experiment from 1960’s (S. Milgram)

Send a letter to random people in Kansas and Nebraska and ask people to forward letter to a person in Boston
 • Person identified by name, profession, and city

Rule: Give letter only to people you know by first name and ask them to pass it on according to same rule
 • Note: *Some* letters reached their goal

Letter needed *six steps* on average to reach the destination

Graph theoretically: Social networks have dense local structure, but (apparently) small diameter
 • Generally referred to as “small world effect”
 • Usually, small number of persons act as “hubs”
Small-World Network Model

Developed/discovered by Watts and Strogatz (1998)

• Over 30 years after Milgram’s experiment!

Watts and Strogatz looked at three networks

• Film collaboration between actors, US power grid, Neural network of worm Caenorhabditis elegans ("C. elegans")

Measured characteristics:

• Clustering coefficient as a measure for ‘regularity’, or ‘locality’ of the network
 – If it is high, short edges are more likely to exist than long edges
• The average path length between vertices

Results:

• Grid-like networks:
 – High clustering coefficient ⇒ high average path length
 (edges are not ‘random’, but rather ‘local’)
• Most real-world (natural) networks have a high clustering coefficient
 (0.3-0.4), but nevertheless a low average path length
Small-World Graph Generator (W&S)

Put all n nodes on a ring, number them consecutively from 1 to n.
Connect each node with its k clockwise neighbors.
Traverse ring in clockwise order.

For every edge:
- Draw random number r.
- If $r < p$, then re-wire edge by selecting a random target node from the set of all nodes (no duplicates).
- Otherwise keep old edge.

Different values of p give different graphs:
- If p is close to 0, then original structure mostly preserved.
- If p is close to 1, then new graph is random.
- Interesting things happen when p is somewhere in-between.
Regular, Small-World, Random

Regular

Small-World

Random

p = 0

p = 1
Kleinberg’s Small-World Navigability Model

Small-world model explains why short paths exist

Missing piece in the puzzle: why can we find these paths?

- Each node has only local information
- Even if a short cut exists, how do people know about it?
- Milgram’s experiment:
 - Some additional information (profession, address, hobbies etc.) is used to decide which neighbor is “closest” to recipient
 - Results showed that first steps were the largest

Kleinberg’s Small-World Model

- Set of points in an $n \times n$ grid
- Distance is the number of “steps” separating points
 - $d(i, j) = |x_i - x_j| + |y_i - y_j|$
Kleinberg’s Topologies

Take d-dimensional grid in which all nodes are connected to all neighbors along each axis

Additionally connect nodes in higher distance with probability decreasing with distance

iow: the probability that node j is selected as neighbor for i is proportional to $d(i, j)^{-r}$, with clustering exponent r
Simple greedy routing: nodes only know local links and target position, always use the link that brings message closest to target

- If \(r=2 \), expected lookup time is \(O(\log^2 n) \)
- If \(r\neq 2 \), expected lookup time is \(O(n^\varepsilon) \), where \(\varepsilon \) depends on \(r \)

Kleinberg has shown: Number of messages needed is proportional to \(O(\log^2 n) \) *iff* \(r=s \) (\(s = \) number of dimensions)

- Idea behind proof: for any \(r > s \) there are too few long edges to make paths short
- For \(r < s \) there are too many random edges \(\Rightarrow \) too many choices for passing message, greedy may not deterministically converge to destination
 - The message will make a (long) random walk through the network
Btw: What if... ...Distorted Configuration?

ID (or: edge) assignment distorted

• How/where can this happen?
• What is the problem?

„Distance-directed depth first search“ (freenet)
1. Forward to neighbor closest to t that has not received the message before
2. Backtrack when no neighbor left
3. „On backtrack“: next closest neighbor
• Not polylog, diverges from t

„Next best once“
1. Revisit nodes until all neighbors closer to t visited
• polylog (asymptotic result)

“A contribution to analyzing and enhancing Darknet routing”, S Roos, T Strufe - INFOCOM, 2013
Problems with Small-World Graphs

Small-world graphs explain why:
Highly clustered graphs can have short average path lengths ("short cuts")

Small-world graphs do NOT explain why:
This property emerges in real networks
 • Real networks are practically never ring-like

Further problem with small-world graphs:
Nearly all nodes have same degree
Not true for random graphs
What about real networks?
Links between documents in the World Wide Web

- 800 Mio. documents investigated (S. Lawrence, 1999)

What was expected so far?

- Number of links per web page: $\langle k \rangle \sim 6$
- Number of pages in the WWW: $N_{WWW} \sim 10^9$

- Probability “page has 500 links”: $P(k=500) \sim 10^{-99}$
- Number of pages with 500 links: $N(k=500) \sim 10^{-90}$
WWW: result of investigation

\[P(\text{page has } k \text{ links}) \sim k^{-\gamma_{\text{out}}} \]

\[P_{\text{out}}(k) \sim k^{-\gamma_{\text{out}}} \]

\[\gamma_{\text{out}} = 2.45 \]

\[P_{\text{in}}(k) \sim k^{-\gamma_{\text{in}}} \]

\[\gamma_{\text{in}} = 2.1 \]

\[P(k=500) \sim 10^{-6} \quad N_{\text{WWW}} \sim 10^9 \quad \rightarrow N(k=500) \sim 10^3 \]
Faloutsos et al. study from 99: Internet topology examined in 1998
• AS-level topology, during 1998 Internet grew by 45%

Motivation:
• What does the Internet look like?
• Are there any topological properties that don’t change over time?
• How to generate Internet-like graphs for simulations?

4 key properties found, each follows a power-law;
Sort nodes according to their (out)degree
1. *Out degree* of a node is proportional to its rank to the *power of a constant*
2. Number of *nodes with same out degree* is proportional to the out degree to the *power of a constant*
3. *Eigenvalues* of a graph are proportional to the order to the *power of a constant*
4. Total *number of pairs* of nodes within a distance d is proportional to d to the *power of a constant*
“Power Law” relationships

- For the Internet...
- For Web pages
 - The probability $P(k)$ that a page has k links (or k other pages link to this page) is proportional to the number of links k to the power of y

General ”Power Law” Relationships

- A certain property k is – independent of the growth of the system – always proportional to k^{-a}, where a is a constant (often $2 < a < 4$)

Power laws very common (“natural”)

- power law networks exhibit small-world-effect (always?)
- E.g. WWW: 19 degrees of separation

 (R. Albert et al., Nature (99); S. Lawrence et al., Nature (99))

Also termed: *scale-free* networks
How do power law networks emerge?

In a network where new vertices (nodes) are added and new nodes tend to connect to well-connected nodes, the vertex connectivities follow a power-law.

Barabasi-Albert-Model: power-law network is constructed with two rules

1. Network grows in time
2. New node has preferences to whom it wants to connect

Preferential connectivity modeled as

Each new node wants to connect to m other nodes

Probability that an existing node j gets one of the m connections is proportional to its degree $d(j)$

New nodes tend to connect to well-connected nodes

Another way of saying this: “the rich get richer”

$$\prod_{i} \left(\frac{\deg_{i}}{\sum_{j} \deg_{j}} \right)$$
Recall: „Easy“ to find paths in small world networks

How about robustness and resilience?

Further robustness/resilience metrics, classified as:

- Worst-case connectivity
- Worst-case distance
- Average robustness
- Probabilistic robustness
Worst-Case Connectivity Metrics

Balanced (vertex) cut
- Minimum number of edges (vertices) removed to achieve a network fragmentation into two equal components

Maximum Isolated Component Size

Average Isolated Component Size

„Point of Rupture“
- Minimum number of nodes the removal of which causes the network to fragment into components, with \(|\text{giant component}| < 0.5*|V|\)
Worst-Case Connectivity Metrics

Cohesiveness

\[c(v) = \kappa(G) - \kappa(G - v) \]

- Defines for each vertex of network to what extent it contributes to connectivity

Minimum m-Degree

- Reflects state of the network after disconnection
- Minimum m-degree \(\text{fi}(m) \) is smallest number of edges that must be removed to disconnect the network into two connected components \(G_1 \) and \(G_2 \) where \(G_1 \) contains exactly \(m \) vertices

<table>
<thead>
<tr>
<th>1-degree</th>
<th>2-degree</th>
<th>3-degree</th>
<th>4-degree</th>
<th>5-degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Worst-Case Connectivity Metrics

Toughness

Let S be a subset of vertices of G and let $K(G - S)$ be the number of internally connected components that G is split into by the removal of S. The toughness of G is then defined as follows

$$t(G) = \min_{S \subseteq V, K(G - S) > 1} \frac{|S|}{K(G - S)}$$

- Number of internally connected components that the graph is broken into by failure of a number of vertices.

- **Toughness is high if even removal of large number of vertices splits network only in few components**.
Average Connected Distance

- Characteristic Path Length (CPL) under failure of nodes
- Recall CPL: Sum of distances over all pairs of nodes divided by number of pairs
- Example
 - Before attack: $40/30 = 1.3$
 - After attack: $34/20 = 1.7$

Edge Persistence

- Minimum number of deleted edges that increase network diameter
- Example: Edge Persistence of 1 as diameter increases to 2 when deleting long-range link
Resilience of Scale-Free Networks

Random failures vs. directed attacks

Random Graph

„Power Law“ Graph
Resilience of Scale Free Networks

Experiment: take network of 10000 nodes (random and power-law) and remove nodes randomly

Random graph:
- Take out 5% of nodes: Biggest component 9000 nodes
- Take out 18% of nodes: No biggest component, all components between 1 and 100 nodes
- Take out 45% of nodes: Only groups of 1 or 2 survive

Power-law graph:
- Take out 5% of nodes: Only isolated nodes break off
- Take out 18% of nodes: Biggest component 8000 nodes
- Take out 45% of nodes: Large cluster persists, fragments small

Networks with power law exponent < 3 are very robust against random node failures
- ONLY true for random failures!
The consequence...

\[L: \text{"Average Connected Distance"} \]
The network structure of a network influences:
- average necessary number of hops (path length)
- possibility of greedy, decentralized routing algorithms
- stability against random failures
- sensitivity against attacks
- redundancy of routing table entries (edges)
- many other properties of the system build onto this network

Important measures of a network structure are:
- average path length
- the degree distribution
- clustering coefficient
- Various resilience metrics (with differing foci)
Module Outline

Some background

Symmetric crypto:
• Stream ciphers and the OTP
• Block ciphers and their operation modes

Key agreement

Asymmetric Crypto

Integrity
Cryptology:

- Science concerned with communications in secure and usually secret form
- Derived from the Greek
 - kryptós (hidden) and
 - lógos (word)

- Cryptology encompasses:
 - Cryptography (grάphein = to write): principles and techniques by which information can be concealed in ciphertext and later revealed by legitimate users employing a secret key
 - Cryptanalysis (analύein = to loosen, to untie): recovering information from ciphers without knowledge of the key
Cipher (Chiffren):

- Method of transforming a message (plaintext) to conceal its meaning (and to transform it back)

- Ciphers are one class of cryptographic algorithms (E,D)
- The transformation usually takes the message and a *(secret)* key as input

- Unfortunately: sometimes also used as synonym for the concealed *ciphertext (Chiffren)*
Achieving the security goals

Recall CIA:
• **Confidentiality**: only authorized access to information
• **Integrity**: detection of message modification
• **Availability**: services are live and work correctly

Where crypto can (trivially) help:
• Confidentiality: Encryption transforms plaintext to conceal it
• Integrity: Append signature that proves legit sender’s knowledge

• Immediate:
 • Hide content or properties (*content, parties, parameters*)
 • Prove a claim (*message/entity authentication, commitments, ZKP*)

• Secondary:
 • Generate (shared) randomness
 • (Enforce) collaboration (*key agreement, secret sharing, threshold crypto*)
The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.

i.o.w: E, and D will inevitably be discovered at some stage
→ All algorithms should be public
→ security must rely on secrecy of the key only
Confidential Communication

Spaces

\(\mathcal{M} \) plaintext space (e.g. words over an alphabet)

\(\mathcal{C} \) space of ciphertexts

\(\mathcal{K} \) space of keys

Algorithms of a private-key (symmetric) encryption scheme

\(KGen \) generates some (usually random) key \(k \)

\(E \) encrypts a plaintext \(m \) using key \(k \) and outputs the ciphertext \(c \)

\(D \) decrypts a ciphertext \(c \) using key \(k \) and outputs the plaintext \(m \)

Correctness for all \(k \in \mathcal{K}, m \in \mathcal{M} \) : \(\text{Dec}(k, \text{Enc}(k, m)) = m \)
Classifying Encryption Algorithms

Type of operation
- *Substitution*: substitute letters by other letters (or symbols)
- *Transposition*: permute letters according to some scheme

Number of keys
- *Symmetric*: secret key
- *Asymmetric*: „public key“, pair of public and private key

Processing of plaintext
- *Stream ciphers*: operate on streams of bits
- *Block ciphers*: operate on b-bit blocks
Constructing a Stream Cipher

Idealized OTP:

Premise:
• PRNG is a function $G: \{0,1\}^s \rightarrow \{0,1\}^n$
 • Deterministic algorithm from seed space to key space (looking random)

Idea:
• OTP: $E(k,m): c = m \oplus k$ $D(k,c): m = c \oplus k$ with random k
• In reality: stream of key bits from PRNG (seeded with „k“)
Semantic Security

- An „efficient“ algorithm cannot find any information in the CT (the CT is polynomially indistinguishable from a CT with PS)

Provable Security

- Reduction of construction to some mathematical problem which is assumed to be hard (then so is breaking the construction)

Perfect Secrecy

- The ciphertext does not reveal any information about the PT
- Caveat: *Key must be random and as long as the message*
Shannon (1949): „CT should not reveal any information about PT“

Definition: A cipher \((E, D)\) over \((\mathcal{K}, \mathcal{M}, \mathcal{C})\) has perfect secrecy if

\[
\forall m_0, m_1 \in \mathcal{M} \quad \text{(with } \text{len}(m_0) = \text{len}(m_1)\text{)}
\]
\[
\forall c \in \mathcal{C} \quad \text{and} \quad k \leftarrow \mathcal{K}:
\]

\[
\Pr[E(k, m_0) = c] = \Pr[E(k, m_1) = c]
\]

So being an attacker, what do I learn?

No CT attack can tell if msg is \(m_0, m_1\) (or any other message)

→ No CT only attacks
Semantic Security

For \(b=0,1 \) define experiments \(\text{EXP}(0) \) and \(\text{EXP}(1) \) as:

\[
\text{Adv}_{SS}[A,E] := | \Pr[\text{EXP}(1) = 1] - \Pr[\text{EXP}(0) = 1] | \in [0,1]
\]

(i.o.w.: \[| \Pr[b' = b] - \Pr[b' \neq b] | \])

\(E \) is called semantically secure if for all eff. \(A \), \(\text{Adv}_{SS}[A,E] \) is negligible

We define „efficient“ to be PPT, we also talk of „PPT adversaries“
A little refresher on functions...

\[f: X \rightarrow Y \]

\[X = \{a, b, c\} \quad Y = \{1, 2, 3, 4\} \]

\[y = f(x) \]

\[\text{Im}(f) = \{1, 2, 4\} \]
$X = \{1, 2, 3, \ldots, 10\}$ \quad $f(x) = x^2 \mod 11$

$f: X \rightarrow Y$ \quad $Y = \{1, 3, 4, 5, 9\}$

f is called

“onto” (surjective): $Y = \text{Im}(f)$ or: $\forall y \in Y \quad \exists x \in X: y = f(x)$

“one-to-one” (injective): $\forall x_1, x_2 \in X: f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

bijection: $f(x)$ is $1-1$ and $\text{Im}(f) = Y$

For bijection f there is an inverse: $g = f^{-1}$: $g(y) = x \quad (= f(g(x))$
Hint: (Trapdoor) One-way Functions

Finding the inverse f^{-1} is not always „easy“

One way functions:

A function $f: X \rightarrow Y$ is called a one-way-function, if $f(x)$ is „easy“ to compute for all $x \in X$, but for “essentially all” elements $y \in \text{Im}(f)$ it is computationally infeasible to find the preimage x.

Trapdoor one-way functions:

A trapdoor one-way function is a one-way function that, given some additional trapdoor information, is feasible to invert.
Permutations and Involutions:

A permutation π is a bijective function from a domain to itself:

$$\pi: X \rightarrow X \quad \text{Im}(f) = X$$

A permutation π with: $\pi = \pi^{-1}$ (or: $\pi(\pi(x)) = x$) is called an involution.

Pseudo Random Functions (PRF):

$$F: K \times X \rightarrow Y$$
on „domain“ X and „range“ K, with „efficient“ algorithm to evaluate $F(k,x)$

Pseudo Random Permutation (PRP):

Permutation $E: K \times X \rightarrow X$

has efficient deterministic algorithm to evaluate $E(k,x)$ and efficient inversion algorithm $D(k,x) = E^{-1}$
Goal:

Build a secure PRP for b-bit blocks

Examples:

3DES: \(n = 64, k = 168 \)

AES: \(n = 128, k = 128,192,256 \)
The Advanced Encryption Standard

1997: NIST publishes request for proposal

1998: 15 submissions

1999: NIST chooses 5 finalists

2000: NIST chooses Rijndael as AES

Key sizes: 128, 192, 256 bits Block size: 128 bits

Best known (theoretical) attacks in time $\approx 2^{99}$
AES Substitution-Permutation Network

Not a Feistel network:

input \[\oplus \]

substitution layer

permuted layer

output \[\oplus \]
AES-128 scheme

- **Input:** 4
- **Output:** 4
- **Key:** 16 bytes
- **Key Expansion:** 16 bytes → 176 bytes
- **Rounds:** 10
- **Operations:**
 1. ByteSub
 2. ShiftRow
 3. MixColumn

14.05.2018
So far we have seen PRFs and PRPs (3DES, AES)

Goal:

Use secure PRPs

Build „secure“ encryption of arbitrarily long message
Electronic Code Book Mode (insecure!)

Encrypt each block with the keyed PRP:

\[
\begin{array}{cccc}
m[0] & m[1] & \ldots & m[L] \\
\downarrow & \downarrow & \downarrow & \downarrow \\
F(k) & F(k) & \ldots & F(k) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
c[0] & c[1] & \ldots & c[L]
\end{array}
\]

ECB encryption is deterministic
⇒ identical PT is encrypted to identical CT:

*Is this “secure” (how)?
Let $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF.

$E(k,m):$ choose a random $IV \in \{0,1\}^n$ and do:

<table>
<thead>
<tr>
<th>IV</th>
<th>m[0]</th>
<th>m[1]</th>
<th>...</th>
<th>m[L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(k,IV)</td>
<td>F(k,IV+1)</td>
<td>...</td>
<td>F(k,IV+L)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV</th>
<th>c[0]</th>
<th>c[1]</th>
<th>...</th>
<th>c[L]</th>
</tr>
</thead>
</table>

ciphertext

Variation: Choose 128 bit IV as: nonce || counter, to avoid repetition

Remarks:

- E, D can be parallelized and $F(k,IV+i)$ can be precomputed
- R-CTR allows random access, any block can be decrypted on its own
- Again: F can be any PRF, no need to invert
Intermediate Summary

You know the different classes of encryption algorithms

You understand Kerckhoff’s principle

You’ve been introduced to the idea of the OTP and stream ciphers

You know semantic security and the difference to perfect secrecy

You recall properties of functions

You can explain what (Trapdoor) One-way functions are

You can explain AES

You saw different modes of operation and know their properties
Key Agreement (/ Authentication)

„Key Distribution“:
- Secure Channel

How many keys have to be exchanged in a system with N participants?
Mallory has full control over the communication channel

- Intercept/eavesdrop on messages (passive)
- Relay messages
- Suppress message delivery
- Replay messages
- Manipulate messages
- Exchange messages
- Forge messages

But:

- Mallory \textit{can’t} break (secure) cryptographic primitives!

\textit{e.g.} reverse a secure hash, find collisions, break AES...
Attacks on Key Agreement

- Man-in-the-middle attack

- Replay attack
Simple Key Exchange:
- TTP knows / generates all keys
- Eve won’t break encryption, but Mallory may actively interfere
 - ...
Impersonation / MitM – Step 1

AB \rightarrow \{K\}_{Kd}, \{K\}_{Ka}

AD \rightarrow \{K\}_{Kd}, \{K\}_{Ka}

A, \{K\}_{Kd}
Impersonation / MitM – Step 2

B, D → {K'}_k, {K'}_b

A" → {K'}_b

Privacy and Security
• Hence: Prevent MitM/replay -> authenticated key exchange
• -> Authenticate both parties (requires trust in KDC)
• -> ensure „freshness“ of messages
• (and exchange a key...)
Schroeder-Needham Key Exchange

- Impersonation/MitM prevented by explicit addressing (Alice and Bob)
- Replay prevented by Nonce
- If Malory has broken old key, she can impersonate Alice (prevented by timestamps for „freshness“)
Key Agreement

Don’t exchange keys, calculate them!

Goal:
Exchanged information should be public

Initial idea (due to Merkle, ’74):
• Alice creates 2^{32} puzzles (containing index P_i and key) (O(n))
• Bob selects random puzzle, „calculates“ index P_j and key (O(n))
• Bob informs Alice of P_j, both know key.

What is the complexity for Mallory?
Let's generate keys: Diffie-Hellman

Consider \mathbb{Z}_p^* generated by g, and $\varphi(p) = p-1$

Alice chooses $a \leftarrow \{1, \ldots, (p-1)\}$, Bob chooses $b \leftarrow \{1, \ldots, (p-1)\}$

Alice can calculate: $(g^b)^a = g^{ab} = $ Bob calculates: $(g^a)^b$

Computational Diffie Hellmann Problem (CDH (ECDH)):
• Given p, g, g^a, g^b
• Output g^{ab}
A public-key encryption system is a triple of algorithms \((G, E, D)\):

- **G()**: randomized alg. outputs a key pair \((pk, sk)\)
- **E(pk, m)**: randomized alg. that takes \(m \in M\) and outputs \(c \in C\)
- **D(sk, c)**: det. alg. that takes \(c \in C\) and outputs \(m \in M\) or \(\perp\)

Correctness: \(\forall (pk, sk)\) output by \(G\) :

\[
\forall m \in M : \quad D(sk, E(pk, m)) = m
\]
Observation 1:
• For large primes p and q, $n = p \cdot q$ is simple
• Factoring n to p and q is hard

Observation 2:
• Given p, q, finding e, d, such that $x^{ed} = x^{e \cdot d} = x^1$ is simple
• Extracting the e-th root in \mathbb{Z}_n is hard
RSA – Key Generation

Each participant

• Chooses two independent, large random primes p, q
• Calculates $N = p \cdot q$ and $\varphi(N) = N-p-q+1 = (p-1)(q-1)$
• Chooses random e, with $2 < e < \varphi(N)$, $gcd(e, \varphi(N)) = 1$
• And calculates d such that $e \cdot d = 1 \mod (\varphi(N))$

Subsequently:

Store (p,q,d) (as secret key sk)
Publish (N,e) (as public key pk)
Encryption

Given $pk = (N,e)$:

RSA $(pk, m) : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^* ; \quad c = RSA(e,m) = m^e \quad \text{(in } \mathbb{Z}_N)\\

Decryption

Given $sk (p,q,d)$:

$m = RSA^{-1} (pk, c) = c^{1/e} = c^d = RSA(d,c) \quad \text{(in } \mathbb{Z}_N)\\
Public key encryption using S-TDF (ISO)

- \((G, F, F^{-1})\): secure TDF \(X \rightarrow Y\)
- \((E_s, D_s)\): symmetric auth. encryption defined over \((K,M,C)\)
- \(H: X \rightarrow K\) a hash function

\[
\begin{align*}
E(pk, m) & : \\
& \begin{align*}
x & \leftarrow^R X, \\
y & \leftarrow F(pk, x) \\
k & \leftarrow H(x), \\
c & \leftarrow E_s(k, m) \\
\end{align*} \\
& \text{output } (y, c)
\end{align*}
\]

\[
\begin{align*}
D(sk, (y,c)) & : \\
& \begin{align*}
x & \leftarrow F^{-1}(sk, y), \\
k & \leftarrow H(x), \\
m & \leftarrow D_s(k, c) \\
\end{align*} \\
& \text{output } m
\end{align*}
\]
You recall the key exchange problem

You understand the idea of key agreement

The Diffie-Helman key agreement is easy for you

You know RSA and you can explain asymmetric and hybrid crypto
Integrity and Authenticity

So far messages can be kept confidential

Integrity of messages not given

From: Bob

\[E: (m \oplus k) \]

\[c_1 = m \oplus k \]

From: Eve

\[D: (c \oplus k) \]

File1' → File2

File2

HDD
Message Integrity

Algorithms:
Tag $S: M \rightarrow T$ \quad $M = \{0,1\}^n$; \quad $S = \{0,1\}^t$ \quad with $n \gg t$
Verify $V: M \times T \rightarrow \{\text{yes, no}\}$

Consider your problem:
• MDC: Transmission error (bit flips)
• MAC: Strategic adversary
Goal:

Map a message of arbitrary length to a (short!) characteristic digest (fingerprint)

Hash \(H : M \to S \) with \(M = \{0,1\}^* \) and \(S = \{0,1\}^s \)

- has an efficient algorithm to evaluate \(H(x) \)
- is an „onto“ function (surjective, \(\text{Im}(H) = S \))
- maps uniformly to \(S \)
- creates chaos (slight changes in \(m \) yield large differences in \(s \))
Hash functions and security:
- Compression is irreversible

We require:
- Collision resistance
We require (ctd.)

- Pre-image resistance

- 2nd pre-image resistance
The Merkle-Damgard construction

Given a compression function \(h : \{0,1\}^{2s} \rightarrow \{0,1\}^s \) and
Input \(m \in \{0,1\}^* \) of length \(L \) and \(PB = \) 1000...0 || L
Construct \(H \) of \(B = \lceil L/s \rceil \) iterations of \(h \):

If \(h \) is a fixed length CRHF, then \(H \) is an arbitrary length CRHF

Proof: either \(M = M' \), or \(H_{B-i}(m[B-i]) = H_{B-i}(m'[B-i]) \)

- no collision
- collision on \(h \)
Nested MAC

Let $F: K \times X \rightarrow X$ be a PRF, define new PRF $F_{\text{NMAC}}: K^2 \times X^{\leq L} \rightarrow X$

Cascade:

Why the last encryption with second key?
Otherwise: $\text{cascade}(k, m \mid m') = \text{cascade}(\text{cascade}(k,m) \mid m')$
The HMAC (RFC 2104)

Hashing is fast, but \(H(k \| m) \) insecure

Solution: encase message with keys!

\[
S(k, m) = H(k \oplus \text{opad} \| H(k \oplus \text{ipad} \| m))
\]

(used in TLS, IPsec,...)
Keccak – SHA3

Specification of two modes:
• SHA-2 replacement: fixed length output of 224, 256, 384, 512 bits
• Variable length output: output of arbitrary length
• Keccak[r,c] with internal permutation Keccak-f[b]

Construction of two phases
• Absorb: block-wise input of message
• Squeeze: output of required bits as hash value
Keccak State – the Sponge

Keccak$[r,c]$ parameters:

- bit rate r, capacity c
- word length $w = 2^l$, $l=0,1,...,6$

\[
b = r+c = 5 \times 5 \times w\]
\[
\begin{align*}
&= 25, 50, 100 \\
&= 100, 200, 400 \\
&= 800, 1600
\end{align*}
\]

(c = 256,512)
(6 for 64 bit systems)
Keccak permutes state in 12 + 2l rounds

- **32 bit processor** -> Keccak-\(f[800]\) -> 22 rounds
- **64 bit processor** -> Keccak-\(f[1600]\) -> 24 rounds
- **(Keccak-\(f[25]\) -> 12 rounds)**

Five operations for each round:

1. \(r\)
2. \(c\)
3. \(s\)
4. \(\theta\)
5. \(\chi\)
6. \(\pi\)
7. \(\rho\)
8. \(l\)
Can we implement a secure MAC as:

SHA-3(k || m)?

How?

Why?
Stream ciphers are malleable... Can we achieve authenticated encryption with SHA3?

How?
Concluding: Security through MACs

MACs verify integrity of messages
\[S(k,m) ; V(k,m,t) \rightarrow \text{secret key must be used, known to verifier} \]

MAC hard to forge without secret key, but \textit{integrity purely mutual}:
- Once key is disclosed, receiver can create arbitrary new tags!
- \(\Rightarrow \) Proof of origin not towards third parties (no non-repudiation!)

How can we achieve \textit{non-repudiation}?
- Signature construction from asymmetric crypto
 \[\Rightarrow \] only party in possession of private key can “sign”
- e.g.:
 \[\text{tag} = \text{RSA (pk, h(m))} = h(m)^d \quad (\text{in } \mathbb{Z}_N) \]
You can explain the goals and ideas of message integrity

You can explain the Merkle-Damgard construction

You can construct and explain the details of NMAC, and HMAC