Thorsten Strufe

Resilient Networking

Module 3: Routing Security

Disclaimer: This module prepared in cooperation with Mathias Fischer, Michael Roßberg, and Günter Schäfer

Dresden, SS 18
Course Overview

Introduction

Background
 — Graphs and graph theory
 — Crypto basics (Symmetric/Asymmetric/MACs)

Resilient Routing (Attacks on BGP, SBGP)

IPsec

TLS

DNS Security

DDoS and Countermeasures

Resilient Overlay Networks / Darknets

Intrusion Detection and Response
Module Outline

How does routing work in the first place?

Routing protocols

Threats to routing

Attacks on routing protocols

Defense: S-BGP / SIDR

Pretty good BGP

Topology-based routing security
Recall: 4+ Layers of TCP/IP

http, ssh, scp, pop3, smtp

Distributed Systems/Applications

App

TCP/UDP

IP

Phys

End-to-End

Hop-by-Hop

transit network

App

TCP/UDP

IP

Phys

End-Host

Router

Router

End-Host

“Application”

“Transport”

“Internet”

“NW Interface”
Who to call, where to send my packet?
So where do I send this packet?
Who to call, where to send the packet? 😊
And where do I call???
Can it get worse? :-)

...it can!
But structure helps!?
These examples are already structured!
Network Layer Functions

Transport packet from sending to receiving hosts

Network layer protocols in every host and router

Three important functions:
• Path determination: route taken by packets from source to destination: Routing algorithms
• Forwarding: move packets from router’s input to appropriate router output
• Call setup: some network architectures require router call setup along path before data flows (the Internet does not!)
The Internet Network Layer

No call setup at network layer, no network-level concept of “connection”
Routers do not process or store state about end-to-end connections
Packets are typically routed using destination host ID
Packets between same source-destination pair may take different paths
Internet Names and Addresses

<table>
<thead>
<tr>
<th></th>
<th>Example</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host name</td>
<td>www.ietf.org</td>
<td>hierarchical</td>
</tr>
<tr>
<td>IP address</td>
<td>132.151.1.35</td>
<td>topological (mostly)</td>
</tr>
<tr>
<td>MAC address</td>
<td>8:0:20:72:93:18</td>
<td>flat, permanent</td>
</tr>
</tbody>
</table>

DNS: many-to-many

ARP: 1-to-1
IP Addressing (1)

IP Address:
32/128-bit identifier for host or router interface

Interface:
Connection between host, router and physical link
- Router’s typically have multiple interfaces
- Host may have multiple interfaces
- IP addresses associated with interface, not host or router

223.1.1.1 = 11011111 00000001 00000001 00000001

223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4
223.1.2.9
223.1.2.2
223.1.2.1
223.1.3.1
223.1.3.2
223.1.3.27
What Happens in the Routers?

- Intermediate Systems (routers) on the Internet have two main functions
- Routing: Determine which route to use
- Forwarding: What happens when a packet arrives?

Routing Table:

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Routing Algorithm:
- Fills & Updates

Forwarding Process:
- Uses & Looks up
- e.g. Topology, link utilization, etc. information
General Threats to Routing Protocols

Threats to routing can be characterized according to:

— Threat source:
 – Subverted link or subverted / rogue router

— Threat consequence (generic):
 – Disclosure of (routing) information
 – Deception of other routers (e.g. with forged messages)
 – Disruption of normal (router) operation
 – Usurpation (= gaining control over a routers operation, e.g. by “stealing” traffic originally to be routed by that router)

— Threat consequence zone:
 – Single node / part of a network / whole Internet

— Threat consequence period:
 – Only during attack / for a certain period of time
Routing Threats Consequences (1)

Network congestion: more traffic is routed through a specific part of the network than would usually be

“Blackhole”: packets go into a certain router/region and “disappear”

Looping: traffic is forwarded along a route that loops (this causes both traffic to disappear and congestion)

Partitioning: some portion of the network believes that it is partitioned from the rest of the network when in fact it is not

Frequent route changes: resulting in unnecessary routing processing and message exchanges as well as large variations in forwarding delay

Instability of the routing protocol: convergence towards a global forwarding state is not achieved

Routing overload: routing protocol messages become a significant part of the overall transported traffic the network carries
Routing Threats Consequences (1)

Network congestion

“Blackhole”:

Looping:

Partitioning:

Frequent route changes:

Instability of the routing protocol:

Routing overload
Routing Threats Consequences (2)

Consequences regarding a specific target host / network:

- **Delay**: traffic from / to a target host / network is routed along routes that are inferior to the route the traffic would otherwise take

- **Cut**: some part of the network believes that there is no route to the target host / network when, in fact, there is

- **Starvation**: the traffic destined for the target host/network is routed to a part of the network that can not deliver it

- **Eavesdropping**: traffic is routed through some router or network that would normally not “see” this traffic, so that an attacker can eavesdrop on the traffic or at least monitor the traffic pattern

- **Controlled delivery**: traffic is routed through a router / network so that an attacker can selectively delay, delete or modify packets destined to a target host / network
Routing Threats Consequences (2)

Consequences regarding a specific target host / network:

- Delay: traffic from / to a target host / network is routed along routes that are inferior to the route the traffic would otherwise take
- Cut: some part of the network believes that there is no route to the target host / network when, in fact, there is
- Starvation: the traffic destined for the target host / network is routed to a part of the network that can not deliver it
- Eavesdropping: traffic is routed through some router or network that would normally not "see" this traffic, so that an attacker can eavesdrop on the traffic or at least monitor the traffic pattern
- Controlled delivery: traffic is routed through a router / network so that an attacker can selectively delay, delete or modify packets destined to a target host / network
Generally Identifiable Routing Threats (1)

Disclosing routing information:
- Deliberate exposure of routing information: e.g., by a subverted router in order to disclose routing information
- Eavesdropping on routing exchanges: different attacking technique, also leading to disclosure of routing information
- Traffic analysis: by eavesdropping on forwarded data traffic, an attacker can gain insight about routing information

Masquerade:
- An entity claims the identity of a router (sometimes also called spoofing)
- Masquerade is usually performed in order to realize further attacks

Interference:
- An attacker inhibits the exchange of routing information between routers, e.g. by delaying or deleting routing messages or receipts, breaking synchronization, etc.
- The consequence is usually (partial) disruption of routing operations
Generally Identifiable Routing Threats (2)

Falsification of routing information:
- Either by an originator (forging) or a forwarder (modification)

Overclaiming:
- Announcing better routes / link capacity than available
- Goals can be to attract traffic to a certain area in order to control the traffic or to mislead the traffic so that it will not be delivered at all or with higher delay
- Consequences for the network are potential overload of single routers, increase of overall traffic load

Underclaiming:
- Announcing inferior routes / link capacities than actually exist
- Potential goals are to keep traffic out of certain areas of the network, e.g. in order to avoid forwarding of traffic at certain routers or to increase attractiveness of alternative routes
- Potential consequences are that certain destinations become unreachable, and the overall traffic load in the network increases (because packets take inferior routes)
Generally Identifiable Routing Threats (3)

Resource exhaustion:
- E.g. by an attacker that announces frequent changes in his routing information, or triggers a router to create an excessive amount of state information which can not be handled by other routers
- Sometimes also referred to as overload
- Goal is degradation / disruption of routing protocol operation

Resource destruction:
- Link destruction: either physically (“cutting”) or by strong interference
- Node destruction: e.g., physically or logically by exploiting weaknesses in the router software (OS, routing software)
- Depending on the network topology, the consequences can be either of local or global scope (single network / part of network unreachable or network partitioning)
Countermeasures: IP Fast Reroute

Link or node failures result in period of disruption to the delivery of traffic

IP Fast Reroute as restoration mechanism on network layer until network and its (Intra-AS) routing finally re-converges again

• Local backup computation without need of informing neighbors about failure

Variations of IP Fast Reroute mechanisms

• Equal Cost Multipath (ECMP)
• Loop-free Alternates
• U-Turn Alternates
• Tunnels
• Not-via Addresses
IP Fast Reroute - ECMP

Failover to detour shortest paths, so we need more paths...

Equal Cost Multi-Path (ECMP)

- Routers can reach destination by multiple preferably link-disjoint paths of same cost
- Alternate paths can be pre-computed and used in case of failure

\[cost(r_i, d) = cost(r_j, d), i \neq j \]
IP Fast Reroute – Loop-free Alternates (LFA)

Using pre-computed alternate next hop a in event of link failure that disrupts primary next hop p

$$\text{cost}(a, d) < \text{linkcost}(a, s) + \text{cost}(s, d), \quad \text{cost}(a, d) < \text{cost}(s, d)$$

While choosing loop-free alternates, micro loops need to be prevented:

In case of failure, traffic flow from source s to destination d is not disrupted

Network converges in background

Failure of link (r_0, r_2)
- Primary next hop $p = r_2$ of node r_0 not reachable
- Rerouting at $s = r_0$ by using r_1 as LFA

Failure of primary next hop $p = r_2$ of node r_0
- At $s = r_1$ rerouting via r_0 and via r_3 possible
- Rerouting via r_0 prevented as $\text{cost}(r_2, d) < \text{cost}(r_0, d)$
IP Fast Reroute – U-Turn Alternates

LFA is topology dependent, thus in certain scenarios no LFAs exist

U-Turn alternate: use neighbor a whose primary next hop to d is again s and that itself has loop free node protecting alternate that does not go through s

U-Turn selection criteria

• $\text{cost}(a, d) \geq \text{linkcost}(a, s) + \text{cost}(s, d)$

• s must always be primary next hop neighbor on all shortest paths from a to d that traverse s

• Node a has a loop free alternate

Identifying U-Turn traffic

• Implicit identification as traffic would be usually forwarded via neighbor

• Explicit identification via packet marking

Example: Failure of link (r_0, r_2) results in $s = r_0$ using r_1 as U-Turn alternate
IP Fast Reroute – Tunnels

When router s detects adjacent failure it uses pre-computed set of repair paths to bypass failed neighbor v or failed link e

Tunnel is used to carry traffic to a router (tunnel endpoint) at which loop free alternate paths exist via normal forwarding

• Packets are encapsulated by s and routed towards tunnel endpoint
• Tunnel endpoint decapsulated packets and forwards them according to shortest path table depending on final destination

Repair paths

• Must be created for all neighbors of v plus for v itself to provision for link failures
• Micro loop prevention necessary, e.g., tunnel endpoint on shortest path to d
IP Fast Reroute – Not-Via Addresses (1)

Not-Via Addresses are special addresses assigned to each interface

Once failure is detected, router needs to get packet to destination not via failure

tunnels traffic towards the Not-via address of the protected component

Packets addressed to a Not-via address must be delivered to router advertising address, not via component with which address is associated

Mechanism requires participation of intermediate routers on repair path

• Routers must be able to tell the link which they must avoid traversing from the semantics of the Not-via address

• Every router in repair path routes tunneled traffic using shortest paths obtained by running Dijkstra on graph where protected link is excluded
Example

- Node S routes traffic to D through B and via P
- When P has failed, S tunnels traffic towards Not-via address Bp of protected component, which is interpreted as shortest path from S to B not going via P

Drawbacks

- Each router needs pre-computed backup routes
- Each router has possibility of being in any shortest path of an initiated repair
- \(N-1 \) Dijkstra calculations required for each of the \(N \) routers in the topology
So far (within AS), so good...
The Growth of The Net, Users...
Growth: Example of Germany
Growth: Devices, Worldwide

Hobbes' Internet Timeline Copyright ©2015 Robert H Zakon
http://www.zakon.org/robert/internet/timeline/
http://www.isc.org/solutions/survey
Hierarchical Routing

Usual routing lectures are an idealization:

- All routers are assumed to be identical
- Network is assumed to be “flat”
- ==> Dijkstra.

... Real world, however, looks different

Scale (>1 billion destinations!):

- Can’t store all destinations in routing tables
- Routing table exchange would overload links

Administrative autonomy:

- Internet = network of networks
- Each network admin may want to control routing in its own network

Routing on the Internet

The Global Internet consists of Autonomous Systems (AS) interconnected with each other:

- **Stub AS**: small corporation (only one link to the Internet)
- **Multihomed AS**: large corporation (multiple links, but no transit)
- **Transit AS**: provider

On the Internet today we see many autonomous systems (~64454)

- Have different sizes
- Exchange services with each other as equals or as provider/customer
- Have different relations to each other

Every AS has a unique number

Every AS must know a route to every network
Routing on the Internet

The Global Internet consists of Autonomous Systems (AS) interconnected with each other:

- **Stub AS**: small corporation (only one link to the Internet)
- **Multihomed AS**: large corporation (multiple links, but no transit)
- **Transit AS**: provider

On the Internet today we see many autonomous systems (>64454):

- Have different sizes
- Exchange services with each other as equals or as provider/customer
- Have different relations to each other

Every AS has a unique number

Every AS must know a route to every network

http://www.cidr-report.org/as2.0/
Hierarchical Routing: Autonomous Systems

- Autonomous systems (AS) aggregate routers into regions,
- Routers in same AS run same routing protocol
 - “Intra-AS” routing protocol
 - Routers in different AS can run different intra-AS routing protocol

Gateway Routers

- Special routers in AS
- Run intra-AS routing protocol with all other routers in AS
- Also responsible for routing to destinations outside AS
 - Run *inter-AS routing* protocol with other gateway routers
Intra/Inter-AS routing

Two-level routing:
 — Intra-AS: administrator is responsible for choice
 • Intermediate System to Intermediate System (IS-IS): Link State
 • Open Shortest Path First (OSPF): Link State
 • Routing Information Protocol (RIP): Distance Vector
 • Interior Gateway Routing Protocol (IGRP): Distance Vector
 (Cisco proprietary)
 — Inter-AS: unique standard
 • Border Gateway Protocol (BGP): Path Vector
 (sort of distance vector, but with path information for loop avoidance)
Inter-AS and Intra-AS Routing

Gateways:
- Perform inter-AS routing amongst themselves
- Perform intra-AS routing with other routers in their AS

inter-AS, intra-AS routing in gateway A.c

<table>
<thead>
<tr>
<th></th>
<th>Intra-AS routing algorithm</th>
<th>Inter-AS routing algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>to/from A.b</td>
<td>DL</td>
<td>DL</td>
</tr>
<tr>
<td></td>
<td>PHY</td>
<td>PHY</td>
</tr>
<tr>
<td>to/from A.d</td>
<td>DL</td>
<td>DL</td>
</tr>
<tr>
<td></td>
<td>PHY</td>
<td>PHY</td>
</tr>
<tr>
<td>to/from B.a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why Different Inter- and Intra-Domain Routing?

Scale:
— Hierarchical routing saves table size, reduced update traffic

Policy:
— Inter-AS: admin wants control over how its traffic routed, who routes through its net.
— Intra-AS: single admin, so no policy decisions needed

Performance:
— Intra-AS: can focus on performance
— Inter-AS: policy may dominate over performance
Internet Inter-AS Routing: Border Gateway Protocol (1)

Border Gateway Protocol (BGP) is the current de facto standard

BGP is a path vector protocol:

• Similar to distance vector protocol, but path info allows to avoid loops
• Each border gateway broadcast to neighbors (peers) entire path (i.e., sequence of 16-bit AS identifiers) to destination
• E.g., Gateway X may (or may not!) send its path to dest. Z:
 — Path (X,Z) = X,Y1,Y2,Y3,....,Z

Suppose gateway X send its path to peer gateway W:

• W may or may not select path offered by X
• Cost, policy (don’t route via competitors AS), loop prevention reasons.
• If W selects path advertised by X, then:
 — Path (W,Z) = w, Path (X,Z)
• Note: X can control incoming traffic by controlling its route advertisements to peers:
 — e.g., don’t want to route traffic to Z ⇒ don’t advertise any routes to Z
BGP messages are exchanged using TCP:

- Simplifies BGP (no own error control / timeouts needed)
- Routes from a peer are kept until withdrawn or TCP connection to that peer breaks ⇒ allows for incremental updates

BGP messages (non exhaustive list):

- **OPEN**: opens TCP connection to peer and authenticates sender
- **UPDATE**: advertises new path (or withdraws old)
 - Network Layer Reachability Information (NLRI): a length and a prefix per UPDATE, may contain several AS paths (route aggregation)
- **KEEPALIVE**: keeps connection alive in absence of UPDATES; acknowledges OPEN request
- **NOTIFICATION**: reports errors in previous msg; also used to close connection
Hierarchical Addressing: Route Aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Organization 0
- 200.23.16.0/23

Organization 1
- 200.23.18.0/23

Organization 2
- 200.23.20.0/23

Organization 7
- 200.23.30.0/23

Fly-By-Night-ISP

"Send me anything with addresses beginning 200.23.16.0/20"

ISPs-R-Us

"Send me anything with addresses beginning 199.31.0.0/16"

Internet
Hierarchical Addressing: More Specific Routes

ISPs-R-Us has a more specific route to Organization 1:

```
Organization 0
  200.23.16.0/23

Organization 2
  200.23.20.0/23

Organization 7
  200.23.30.0/23

Organization 1
  200.23.18.0/23

Fly-By-Night-ISP
```

```
"Send me anything with addresses beginning 200.23.16.0/20"
```

```
ISPs-R-Us
```

```
"Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23"
```

```
Internet
```
Inter-AS Routing Threats in the Internet

Inter-AS routing threats mainly concern BGP operation

Attack Scenarios:

- Disabling parts of the Internet by disrupting Internet routing tables
- Forcing multi-homed AS to use alternate paths to / from an outside AS instead of the preferred path
- Disabling a single- or multi-homed AS
- Creating traffic “blackholes”

Such attack scenarios can e.g. be realized by:

- announcing to “host” IP addresses ranges for which no ownership exists
- inserting unauthorized “prefixes” into routing table (= announcing paths for networks for which no authorization to route exists)
- modifying or forging routing messages during transmission
- resource destruction
Examples from the real world...

Pakistan Telekom “vs.” youtube.com (Feb 24th 2008)
- PT (AS 17557) wanted to block traffic to youtube
- Mistakenly advertised routes to 208.65.153.0/24 (AS 36561, youtube)
- PCCW Global (upstream provider, AS 3491) forwarded announcement...

An example from the real world...
Examples from the real world…

Pakistan Telekom “vs.” youtube.com
- PT (AS 17557) wanted to block traffic to youtube
- Mistakenly advertised routes to 208.65.153.0/24 (AS 36561, youtube)
- PCCW Global (upstream provider, AS 3491) forwarded announcement…

“Fat-finger error” or not, malicious intent exists:
- Long term study by Symantec/QCRI (incl. SpamTracer)
- >2.5k IP blocks hijacked (~99% short-lived)
- 64 abused for spamming:

Vervier et al.: “Mind Your Blocks: On the Stealthiness of Malicious BGP Hijacks” NDSS ’15
https://www.nanog.org/sites/default/files/monday_general_bgp_toonk_63.18.pdf
Hijacking for Censorship [1]

Local elections in Turkey, March 2014
Goal: control „the Internet“ <- control DNS

Start: hard NULL route

Set up DNS servers and drop specific requests

Google public DNS servers at 8.8.8.8 (and 8.8.4.4)

...hijack 8.8.8.8/32

Hijacking for Censorship [1]

Local elections in Turkey, March 2014

Goal: control „the Internet“ <-

Start: hard NULL route

Youtube.com lookup at Google’s 8.8.8.8 DNS server 8.8.8.8 from Turk Telekom

;; ANSWER SECTION (1 record)
youtube.com. 86064 IN A 195.175.254.2

Not a real Youtube IP address

 Youtube.com lookup at Google’s 8.8.8.8 DNS server from The Netherlands

;; ANSWER SECTION:
299 IN A 74.125.136.93
299 IN A 74.125.136.91
299 IN A 74.125.136.136
299 IN A 74.125.136.190

Normal Youtube IP addresses
Examples – Traffic Diversion/MitM

Early 2013 a Belorussian provider attracted traffic from GlobalOneBel over an uplink to Moscow

Attacked networks changed daily but continued for a month
Attracted traffic was forwarded to an unaffected uplink to Frankfurt

Difficult to detect: hosts in US don’t see suspicious traceroutes

Details: http://www.renesys.com/2013/11/mitm-internet-hijacking
Where do Attacks take Place?

What is (mis)claimed?

- Identity
- Reachability
- Address ownership
Securing BGP Operation:
Verifying Peer Messages (1)

Assuming external adversaries:

Force routers to accept only protocol messages from directly connected peers (if direct links exist):

• Referred to as BGP TTL Security Hack (BTSH)

• Idea – directly connected peer routers:
 – send routing messages with IP TTL field set to 255, and
 – accept only routing messages with IP TTL field ≥ 254

• Messages from attackers which can only reach a target router over multiple hops will be discarded by router

• *Why can this mechanism not be implemented as follows?*
 – send routing messages with IP TTL set to 1, and
 – let routers in between automatically discard routing messages after one hop (so routing messages from attacker will not reach the target)
Securing BGP Operation:
Verifying Peer Messages (2)

More general approach:
- Generalized TTL Security Mechanism
- Standardized for IPv4 and IPv6 in RFC 5082
- Routers set TTL=255, but may be multiple hops away
- Packets are accepted depending on the distance, e.g., with TTL=253 when the router is two hops away
- More configuration overhead, may be less secure than BTSH

Better: authenticate routing messages between peers
- What do you need to authenticate?
- Signature (Hash) & PKI/CA (IPSec)
Securing BGP Operation: Verifying Peer Messages (3)

TCP MD5 Signature Option (RFC 2385):

• Goal: protect BGP exchanges between peers from spoofed TCP segments (attacker who eavesdrop/“guess” correct sequence number)

• Sender computes an MD5 hash value over each TCP segment and a secret shared with its peer entity

• The hash value is transported in an option field

• All options in TCP PDU must not exceed 40 bytes: use 16 Byte long MD5 hash values (plus two bytes for TCP option information; type and length)

• Problem: MD5 is not state of the art, no automatic key negotiation / update procedure defined → deployment difficulties
 (+ known vulnerabilities of manual key mgmt.)
Securing BGP Operation: Verifying Peer Messages (4)

TCP Authentication Option (RFC 5925):
- Successor to TCP MD5 Signature with different cryptographic algorithms
- Better replay protection (even when TCP seq. numbers roll over)
- Not (yet) widely deployed
- Still no automatic key negotiation / update procedure defined

Deployment of IPsec between peers:
- Provides authentication and replay protection for IP packets
- Allows for additional confidentiality
- Leverages key management protocol that may use certificates and private keys
- Potential problem: Low convergence speed when a router has many peers, e.g. > 1000, as key exchanges may take seconds per neighbor

Sometimes routers may still be contacted from outside WITHOUT any authentication!
Taking one step back

...but what is really the core of the problem?

Attacks are intentionally broken assumptions ->

What does the adversary lie (uhm, or: err) about?

Sender and/or content (BGP operations/parameters) of the message:

• Identity
• IP address (AS) ownership
• Reachability information

How could we solve this (using crypto)?
Certification of resource ownership and path...

However, fixed attestations render solutions inflexible...
Problems Beyond Simple Peer-to-Peer BGP Security

Address space “ownership” verification:
• Who has been assigned an IP address range and has thus the right to announce this range / delegate the announcement of this range?

Autonomous System (AS) authentication:
• To whom has a claimed AS-number actually been assigned?

Router authentication and authorization (relative to an AS):
• Are the entities pretending to belong to an autonomous system authentic?

Route and address advertisement authorization:
• Who is allowed to announce specific address ranges / routes

Route withdrawal authorization:
• Who is allowed to withdraw a route?

Need for further security measures, approaches are S-BGP/SIDR
The validity of a BGP UPDATE is based on four primary criteria:

1. The router that sent the UPDATE was authorized to act on behalf of the AS it claims to represent; that is, the AS at the front of the AS path.

2. The first AS in the AS path was authorized, by the owner of the set of prefixes that are represented in the UPDATE, to advertise those prefixes.

3. The AS from which the UPDATE emanates was authorized by the preceding AS in the AS path (in the UPDATE message) to advertise the prefixes in the UPDATE.

4. If the UPDATE withdraws one or more routes (specified by the prefixes for the routes), then the sender must have advertised each route prior to withdrawing it.
S-BGP/BGPsec: Combining Standards

Address Attestations:
• Authorization of subject (by issuer) to advertise specified prefixes/address blocks

Validation of BGP UPDATEs:
• New path attribute, using certificates and attestations, to prove authorizations

Distribution of security specific data:
• Certificates, certificate revocation lists (CRLs)

Public Key Infrastructures (PKIs):
• Secure identification of BGP speakers and of owners of AS’s and of address blocks

IPsec:
• Provides authentication and integrity of peer-to-peer communication with support for automated key management

Internet address space managed hierarchically with the Internet Assigned Numbers Authority (IANA) as root authority for assigning address ranges.
S-BGP: Certificates and Address Space Attestations

ICANN issues certificates for *address space ownership to regional authorities* and to entities that have direct address allocations (from IANA)

Each certificate contains extension specifying the *address space being delegated*, so that certificate validation is address-constrained

Holders of address space certificates can create an *address attestation*, authorizing an AS (or a router) to advertise the specified address space
S-BGP: Address Certificates

<table>
<thead>
<tr>
<th>Certificate Type</th>
<th>Issuer</th>
<th>Subject</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Certificate</td>
<td>IANA</td>
<td>IANA</td>
<td>all addr</td>
</tr>
<tr>
<td>Registry Certificate</td>
<td>IANA</td>
<td>Registry</td>
<td>addr blocks</td>
</tr>
<tr>
<td>ISP/DSP Certificate</td>
<td>Registry (or IANA)</td>
<td>ISP/DSP</td>
<td>addr blocks</td>
</tr>
<tr>
<td>Subscriber Certificate</td>
<td>ISP/DSP (or Registry, IANA)</td>
<td>Subscriber</td>
<td>addr blocks</td>
</tr>
</tbody>
</table>
S-BGP:
AS Ownership/Router Identification

ICANN issues certificates for AS ownership to:
• ISPs, DSPs, and organizations that run BGP

AS operators issue certificates to:
• Routers as AS representatives
S-BGP: AS and Router Certificates

<table>
<thead>
<tr>
<th>Certificate Type</th>
<th>Issuer</th>
<th>Subject</th>
<th>Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Certificate</td>
<td>IANA</td>
<td>IANA</td>
<td>all ASes</td>
</tr>
<tr>
<td>Registry Certificate</td>
<td>IANA</td>
<td>Registry</td>
<td>ASes</td>
</tr>
<tr>
<td>AS Owner Certificate</td>
<td>Registry (or IANA)</td>
<td>ISP/DSP or Subscriber</td>
<td>ASes</td>
</tr>
<tr>
<td>AS Certificate</td>
<td>ISP/DSP or Subscriber</td>
<td>AS</td>
<td></td>
</tr>
<tr>
<td>Router Certificate</td>
<td>ISP/DSP or Subscriber</td>
<td>Router*</td>
<td>AS, RtrId</td>
</tr>
</tbody>
</table>

* the subject name could be a fully-qualified DNS name
S-BGP: Overview of Attestations

Holders of AS (or router) certificates generate route attestations that:

- authorize the advertisement of a route by a specified next hop AS
- are used to express a secure route as a sequence of AS hops

Address Attestations:
- Used to validate that a destination address block is being originated by an authorized AS

Route Attestations:
- Used to validate that an AS is authorized to advertise an AS Path

Each UPDATE includes optional transitive path attribute ATTEST with:
- one or more Address Attestations, and
- a set of Route Attestations
S-BGP: Address Attestations

Address Attestations include identification of:

- address blocks,
- their owner's certificate,
- AS authorized to originate (advertise) the address blocks, and
- expiration date/time

Indicate that the AS listed in the attestation is authorized by the owner to originate/advertise the address blocks in an UPDATE

Digitally signed by owner of the address blocks, traceable up to the IANA via a certification path

Used to protect BGP from erroneous UPDATEs (authenticated but misbehaving or misconfigured BGP speakers)
S-BGP: Route Attestations

Include identification of:
• AS’s or BGP speaker’s certificate issued by the AS owner,
• the address blocks and the AS Path (ASes) in the UPDATE,
• the AS number of the receiving (next) neighbor, and
• expiration date/time

Indicate that the BGP speaker or its AS authorizes the receiver’s AS to use the AS Path & NLRI in the UPDATE

Digitally signed by owner of the BGP speaker (or its AS) distributing the UPDATE, traceable to IANA ...

Used to protect BGP from erroneous UPDATEs (authenticated but misbehaving or misconfigured BGP speakers)
S-BGP/BGPsec: Securing UPDATEs

Securing an UPDATE:

• A secure UPDATE consists of an UPDATE message with a new, optional, transitive path attribute for route authorization

• This attribute consists of a signed sequence of route attestations, nominally terminating in an address space attestation

• This attribute is structured to support both route aggregation and AS sets

• Validation of the attribute verifies that the route was authorized by each AS along the path and by the ultimate address space owner
S-BGP/BGPsec: Propagation of an S-BGP UPDATE

BGP UPDATE
Path Attributes:
AS Path: 8,8,8,5
Attestations:
RA:
 Signer: AS 8
 Sig: ...
 Target AS 2
RA:
 Signer: AS 5
 Sig: ...
 Target AS 8
AA: ...
NLRI: /14, 10.1

BGP UPDATE
Path Attributes:
AS Path: 5
Attestations:
RA:
 Signer: AS 5
 Sig: ...
 Target AS 8
AA: orga1
AA: orga2
NLRI: /14, 10.1

AS 2
r5
AS 8
r4
r3
r2
r1
AS 5

a 10.1.0.0/16
b 10.2.0.0/16
Origin AS
S-BGP/BGPsec: Propagation of an S-BGP UPDATE

seq:5432221 nlri:a,b

% seq:432221 nlri:a,b

$ seq:32221 nlri:a,b

= seq:21 nlri:a,b

AS 5
AS 4
AS 3
AS 2
AS 1
S-BGP: Encoding of Attestations

- **UPDATE**: BGP Header, Addr Blks of Rtes Being Withdrawn, BGP Path Attributes, Dest. Addr Blks (NLRI)

- **Path Attribute for Attestations**: Attribute Header, Route + Address Attestations

- **Attestation: Route or Address**: Attestation Header, Issuer, Cert ID, Algorithm ID & Signature, Signed Info

- **Signed Info**: Exp Date, Subject, AS Path Info *, Other protected Path Attributes *, NLRI Info *

explicit in the aggregation case, or if Path Attribute changes unpredictably
S-BGP:
Distributing Certificates, CRLs, & AAs

Putting certificates & CRLs in UPDATEs:
• would be redundant and make UPDATEs too big
• same is true for address attestations

Solution – use servers for these data items:
• replicate for redundancy & scalability
• locate at network access points (NAPs = points where multiple BGP speakers are interconnected with high speed LANs) for direct (non-routed) access

Download options:
• whole certificate/AA/CRL databases
• queries for specific certificates/AAs/CRLs

To minimize processing & storage overhead, network operations centers (NOCs) should validate certificates & AAs, and send processed extracts to routers
• However, in this case trust is delegated to the NOC!
S-BGP: Validating a Route

To validate a route from ASn, ASn+1 needs:

- 1 address attestation from each organization owning an address block(s) in the network layer reachability information (NLRI),

- 1 address allocation certificate from each organization owning address blocks in the NLRI,

- 1 route attestation from every AS along the path (AS1 to ASn), where the route attestation for ASk specifies the NLRI and the AS Path up to that point (AS1 through ASk+1),

- 1 certificate for each AS or router along the path (AS1 to ASn) to use to check signatures on the route attestations, and

- of course, all the relevant certificate revocation lists (CRLs) must have been verified (in case a private key was compromised and the corresponding certificate must be revoked)
S-BGP: Performance Issues – Resources

Certificates (generation and signing done offline):
- Disk space for storing certificates
- CPU resources for validating certificates

CRLs (generation and signing done offline):
- Disk space for storing CRLs
- CPU resources for validating CRLs

Attestations:
- Routing Information Base (RIB) memory space for storing attestations
- Disk space for faster recovery from router reboot (optional)
- CPU resources for signing and validating attestations
- Resources for transmitting attestations (to make this a dynamic system)

Size of the problem (May 2017):
- ~ 57,546 AS, ~ 670,590 owners of address prefixes
- Resulting certificate database size: > 330 Mbyte (~ 450 byte / certificate)
- CRLs would add to this (should not be too much)
Further S-BGP Issues

Remaining vulnerabilities:

• Failure to advertise route withdrawal
• Premature re-advertisement of withdrawn routes
• Erroneous application of local policy

(Non-)Deployment:

• The ideas of S-BGP are slowly seeping into reality through BGPsec – SIDR/RPKI
• S-BGP mainly
 – shows the tasks to be accomplished regarding certification of IP address ownership, AS# ownership, and authorization to advertise certain routes
 – gives an impression on the scale of the effort that has to be invested in order to secure a global-scale Inter-AS routing protocol
Secure Inter-Domain Routing
Standardization for approach based on simplified S-BGP principles

Several changes
- Split in **BGPsec** (*routing attestations* and mappings) RFC 8205 – 8211 and
- Resource Public Key Infrastructure (**RPKI**) RFC 6810, a directory for **Secure Origin Authentication**
- Certificate information is replicated among distributed servers
- Signatures are distributed by BGP UPDATES
- Allows for BGPsec negotiation between routers
- Support of “BGPsec islands”
- Several optimizations with regard to efficiency

Current status: RPKI is rolled out, but not widely used (yet)
- See http://rpki.surfnet.nl/global.html or https://rpki-monitor.antd.nist.gov/

No IANA root certificate
Securing BGP by state observation

Drawbacks of seen cryptographic approaches

- Computation and communication intensive
- Usually public-key infrastructures or central databases needed
- Incremental deployment with somewhat limited security gain

Idea: Use available information to check credibility of BGP Update messages

Interesting approaches:

- Pretty Good BGP: Cautiously Adopting Routes
- Topology-based Analysis
Pretty Good BGP: Cautiously Adopting Routes (1)

Observation: Almost half of bogus origin/prefix associations last less than 24 hours

Idea: Treat unfamiliar routes cautiously

- Time for a secondary validation process (manual, Internet Alert Registry, or by others)
- Exploits natural redundancy, as other older routes still exist

First step: identifying normal routes

- Routers store history of known origin/prefix pairs for h days (history period)
- Database defines normal behavior

Second step: detect anomalous routes

- Received route updates compared with database
- Updates altering the normal state
- Marked suspicious for s days (suspicious period)
- After s days, suspicious routes added to the history
Pretty Good BGP: Cautiously Adopting Routes (2)

Third step: avoiding suspicious routes

- Suspicious routes get lowest possible preference
- Routers select best trusted route (if possible)
- False positives possible (less desirable route)
 - However, routing operates normally

Drawbacks of approach: If new subprefixes are introduced (or generated by an attacker)

- Routers will use known route to the larger address block during suspicious period
- Leads to false positives: Potentially better path to new (valid) subprefix not used during suspicious period

All attacks persisting longer than suspicious period are successful, as new routes are not tested.
Observation: Internet exhibits certain structure
- Densely connected core nodes (backbone)
- Periphery nodes with connection to the core and at most a few direct neighbors

Connectivity graph
- Routers are nodes, direct links are edges
- Can be approximated with information from route updates (combine several routers)

Yellow and Red AS have many links (up to 1845), Blue AS have few links to other AS

Attacks commonly modify or truncate path through backbone
Topology-based Analysis (2)

Remove core nodes from Graph

• Clusters of periphery nodes

Routers with access to geographical data can determine the diameter of a cluster

• Maximum geographical distance between two systems within a cluster

• Diameter of most clusters is small (local networks connected to large providers)

• Kruegel at al. use preprocessed information from the whois databases to determine geographical positions

• Example excerpt of a whois record:

 inetnum: 141.30.0.0 - 141.30.255.255
 netname: TUDR
 descr: Technische Universitaet Dresden
 address: Helmholtzstr. 10
 address: 01069 Dresden
 country: DE
 admin-c: WW20
Topology-based Analysis (3) – Path modification attacks

Valid routes must satisfy constraints:

- A valid route has only one single subsequence of core nodes
- Identify “path modification attacks”
- In the example the sequence goes through core nodes before AS 43 and after AS 666, hence considered invalid

Cluster 1
AS 0
AS 6
AS 43
Cluster 2
AS 23
AS 7
AS 53
Cluster 3
AS 666
AS 255
AS 43
Core Nodes
Malicious Path announced by AS 666
Topology-based Analysis (3) – Path truncation attacks

Valid routes must satisfy constraints:

All consecutive pairs of periphery nodes in a route must be in a cluster or close geographical range (a 300km threshold proposed for the Internet)

- Identify “path truncation attacks”
- In the example the direct link between AS 6 and AS 43 is a violation of the constraint

Which types of adversaries seen above can/can’t this detect/prevent?

Valid routes must satisfy constraints:

All consecutive pairs of periphery nodes in a route must be in a cluster or close geographical range (a 300km threshold proposed for the Internet)

- Identify “path truncation attacks”
- In the example the direct link between AS 6 and AS 43 is a violation of the constraint

Which types of adversaries seen above can/can’t this detect/prevent?
Summary

Several general routing threats exist

Internet relies on Inter-AS routing

BGP has been designed without adversaries in mind

Plethora of problems arise, simple attacks possible

Potential solutions are
• Hacks
• Based on crypto (S-BGP, SIDR)
• ...more hacks ;-)