

Security and Cryptography 1

Stefan Köpsell, Thorsten Strufe

Module 3: A little reminder on discrete probability

Disclaimer: Thanks to Günter Schäfer, large parts actually taken from Dan Boneh

Dresden, WS 17/18

Reprise from Module 1

You have been introduced to some *typical actors*

You understand what *threats* are ... and what this means

You can tell *security goals* (*CIA!*) from *security services*

You know adversary models and which aspects they define

26.10.2017 Privacy and Security Folie Nr. 2

Reprise from Module 2

You've learned the tuple (M,C,K,E,D)

You can tell the difference of

- Cryptology
- Cryptography
- Cryptanalysis

You know basic cryptanalysis (statistics/combinatorics)

You know transposition and substitution

You have learned the shift cipher

... Mono- and Polyalphabetic substitution ciphers

... Product ciphers

You know CT only attacks

And you have heard of the legends of Enigma and Alan Turing...

Module Outline

A few words on space and time

Probability distributions

Random variables

Independence

Randomized algorithms

Some characteristics of XOR

A few words on space and time

Recall shift cipher (Caesar)

How many combinations of possible keys?

25

random guessing, how long do you need on average?

Recall random permutation and Vigenère

How large were the key spaces? 288 **7**122

How many random trials? **7**121 **2**87

26,10,2017 Folie Nr. 5 Privacy and Security

How large is large? (Some context)

Reference Numbers Comparing Relative Magnitudes

Reference	Magnitude		
Seconds in a year		≈ 3	* 10 ⁷
Seconds since creation of solar system		≈ 2	* $10^{17} \approx 4.6 * 10^9 \text{ y}$
Clock cycles per year (50 MHz computer)		≈ 1.6	* 10 ¹⁵
Instructions per year (i7 @ 3.0 GHz)	$\approx 2^{63}$	$3 \approx 7.15$	* 10 ¹⁸
Binary strings of length 64	2 ⁶⁴	≈ 1.8	* 10 ¹⁹
Binary strings of length 128	2 ¹²⁸	≈ 3.4	* 10 ³⁸
Binary strings of length 256	2 ²⁵⁶	≈ 1.2	* 10 ⁷⁷
Number of 75-digit prime numbers		≈ 5.2	* 10 ⁷²
Number of 80-digit prime numbers		≈ 5.4	* 10 ⁷⁷
Electrons in the universe		≈ 8.37	* 10 ⁷⁷

Attacking Cryptography: Brute Force Attack

Brute force attack, try all keys until intelligible plaintext found:

- Every crypto algorithm (save: OTP) can be attacked by brute force
- On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search

Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10 ⁶ encryption / μs
32	$2^{32} = 4.3 * 10^9$	2 ³¹ μs = 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 * 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 * 10^{38}$	$2^{127} \mu s = 5.4 * 10^{24} \text{ years}$	5.4 * 10 ¹⁸ years
(Vigenère	$26! = 4 * 10^{26}$	$2^{88} \mu s = 6.4*10^{12} years$	6.4*10 ⁶ years)
26 chars		7.1.	manzee lines diverged:

i7 could get to around 10⁴ encryptions/µs GPU can perform around 7x10⁵ hashes

Time since human/chimpanzee lines diverged: 5×10⁶ years,

Homo sapiens: 5×10⁴ years

Recap: Discrete Probabilities

U: finite set (e.g. $U = \{0,1\}^n$)

Def: **Probability distribution** P over U is a function P: U $\longrightarrow \mathbb{R}^+$

more specifically $P(x) \in [0,1]$

such that $\sum P(x) = 1$

Examples:

- 1. Uniform distribution: for all $x \in U$: P(x) = 1/|U|
- 2. Point distribution at x_0 : $P(x_0) = 1$, $\forall x \neq x_0$: P(x) = 0

Examples

Fair coin:

$$U = \{H,T\}, P(H)=P(T) = \frac{1}{2}$$

Dice:

U=
$$\{1,...,6\}$$
, P(x) = $1/6$, $1 \le x \le 6$

Two dice (combined):

U=
$$\{1,...,6\}^2$$
 = $\{(x1,x2): 1 \le x_1, x_2 \le 6\}$
P(x_1, x_2) = 1/36 for all x_1, x_2

Uniform distributions for all of the above

Two dice (sum):

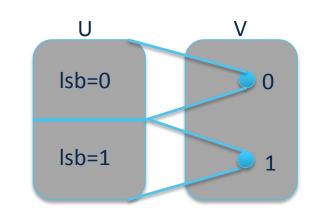
Random Variables

Def: a random variable X is a function $X:U \rightarrow V$

Example:
$$X: \{0,1\}^n \longrightarrow \{0,1\}$$
; $X(y) = Isb(y) \in \{0,1\}$

For the uniform distribution on U:

$$Pr[X=0] = 1/2$$
 , $Pr[X=1] = 1/2$



More generally:

rand. var. X induces a distribution on V: $Pr[X=v] := Pr[X^{-1}(v)]$

TECHNISCHE UNIFORM random variable

Let U be some set, e.g. $U = \{0,1\}^n$

We write $r \stackrel{\mathbb{R}}{\leftarrow} U$ to denote a <u>uniform random variable</u> over U for all $a \in U$: Pr[r = a] = 1/|U|

Let r be a uniform random variable on $\{0,1\}^2$ Define the random variable $X = r_1 + r_2$

TECHNISCHE UNIFORM random variable

Let U be some set, e.g. $U = \{0,1\}^n$

We write $r \stackrel{\mathbb{R}}{\leftarrow} U$ to denote a <u>uniform random variable</u> over U for all $a \in U$: Pr[r = a] = 1/|U|

Let r be a uniform random variable on $\{0,1\}^2$ Define the random variable $X = r_1 + r_2$

Then $Pr[X=2] = \frac{1}{4}$

Events

For a set
$$A \subseteq U$$
: $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

note: Pr[U]=1

The set A is called an event

Example:
$$U = \{0,1\}^8$$

$$A = \{ all x in U such that $lsb_2(x)=11 \} \subseteq U$$$

What about $U = \{0,1\}^n$ (with n>2)?

For a set
$$A \subseteq U$$
: $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

note: Pr[U]=1

The set A is called an event

Example: $U = \{0,1\}^8$

 $A = \{ all x in U such that <math>lsb_2(x)=11 \} \subseteq U$

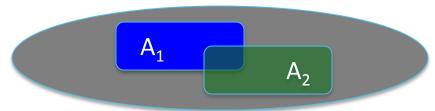
for the uniform distribution on $\{0,1\}^8$: Pr[A] = 1/4

What about $U = \{0,1\}^n$ (with n>2)?

Boole's Inequality / The Union Bound

For events A_1 and A_2

$$Pr[A_1 \cup A_2] \leq Pr[A_1] + Pr[A_2]$$



$$A_1 \cap A_2 = \emptyset \rightarrow \Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2]$$

Example:

$$A_1 = \{ all x in \{0,1\}^n s.t lsb_2(x)=11 \};$$

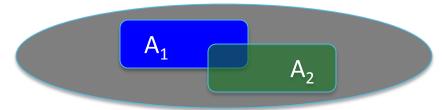
 $A_2 = \{ all x in \{0,1\}^n s.t. msb_2(x)=11 \}$

When is it less than 1/2?

Boole's Inequality / The Union Bound

For events A_1 and A_2

$$Pr[A_1 \cup A_2] \leq Pr[A_1] + Pr[A_2]$$



$$A_1 \cap A_2 = \emptyset \rightarrow \Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2]$$

Example:

$$A_1 = \{ all x in \{0,1\}^n s.t lsb_2(x)=11 \};$$

 $A_2 = \{ all x in \{0,1\}^n s.t. msb_2(x)=11 \}$

$$Pr[lsb_2(x)=11 \text{ or } msb_2(x)=11] = Pr[A_1UA_2] \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

When is it less than 1/2?

Conditional Probabilities

Suppose event $A \subseteq U$.

The *induced* probability P_A is defined as:

$$P_A(x) = \frac{P(x)}{P(A)}$$
 for $x \in A$

$$A_1 \qquad A_2$$

For two events, $A_1, A_2 \subseteq U$ we say that $P_{A_1}(A_2)$, or $P(A_2|A_1)$ is

$$P(A_2|A_1) = P_{A_1}(A_1 \cap A_2) = \frac{P(A_1 \cap A_2)}{P(A_1)}$$

Another Example

For events A_1 and A_2 :

$$A_1 = \{x \text{ in } \{0,1\}^3 : msb(x) = 1\}$$

 $A_2 = \{x \text{ in } \{0,1\}^3 : x < 110\}$

$$P(A_1 \cap A_2) = \{x \text{ in } \{0,1\}^3 : msb(x) = 1, x < 110\}$$

What if:

$$A_1 = \{x \text{ in } \{0,1\}^3 : lsb(x) = 1\}$$
? $P(A_1) = 1$
 $P(A_1 \cap A_2) = 1$

$$P(A_2|A_1) =$$

...we call A_1 and A_2 independent if $P(A_2|A_1) = P(A_2)$

Another Example

For events A_1 and A_2 :

$$A_1 = \{x \text{ in } \{0,1\}^3 : msb(x) = 1\}$$

 $A_2 = \{x \text{ in } \{0,1\}^3 : x < 110\}$

$$P(A_1 \cap A_2) = \{x \text{ in } \{0,1\}^3 : msb(x) = 1, x < 110\}$$

What if:
$$P(A_1) = 1/2$$

$$A_1 = \{x \text{ in } \{0,1\}^3 : lsb(x) = 1/4\}$$

$$P(A_1 \cap A_2) = 2/8 = 1/4$$

$$P(A_2|A_1) = \frac{1/4}{1/2} = 1/2$$

...we call A_1 and A_2 independent if $P(A_2|A_1) = P(A_2)$

Independence

Definition:

Events A_1 and A_2 are *independent*, if $Pr[A_1 \text{ and } A_2] = Pr[A_1] \times Pr[A_2]$

Random variables X,Y, both taking values in V are **independent** if $\forall a,b \in V$: $Pr[X=a \text{ and } Y=b] = Pr[X=a] \times Pr[Y=b]$

Example:

$$U = \{0,1\}^2 = \{00, 01, 10, 11\}$$
 and $r \stackrel{R}{\leftarrow} U$

Define random variables X and Y as: X = lsb(r), Y = msb(r)

Independence

Definition:

Events A_1 and A_2 are *independent*, if $Pr[A_1 \text{ and } A_2] = Pr[A_1] \times Pr[A_2]$

Random variables X,Y, both taking values in V are **independent** if $\forall a,b \in V$: $Pr[X=a \text{ and } Y=b] = Pr[X=a] \times Pr[Y=b]$

Example:

$$U = \{0,1\}^2 = \{00, 01, 10, 11\}$$
 and $r \stackrel{R}{\leftarrow} U$

Define random variables X and Y as: X = lsb(r), Y = msb(r)

$$Pr[X=0 \text{ and } Y=0] = Pr[r=00] = \frac{1}{4} = Pr[X=0] \times Pr[Y=0]$$