

Security and Cryptography 1

Stefan Köpsell, Thorsten Strufe

Module 3: A little reminder on discrete probability

Disclaimer: Thanks to Günter Schäfer, large parts actually taken from Dan Boneh

Dresden, WS 17/18

You have been introduced to some *typical actors*

You understand what *threats* are ... and what this means

You can tell *security goals* (CIA!) from *security services*

You know *adversary models* and which aspects they define

You've learned the tuple (M,C,K,E,D)

You can tell the difference of

- Cryptology
- Cryptography
- Cryptanalysis

You know basic cryptanalysis (statistics/combinatorics)

You know transposition and substitution

You have learned the shift cipher

- ... Mono- and Polyalphabetic substitution ciphers
- ... Product ciphers

You know CT only attacks

And you have heard of the legends of Enigma and Alan Turing...

A few words on space and time

Probability distributions

Random variables

Independence

Randomized algorithms

Some characteristics of XOR

Recall shift cipher (Caesar)

• How many combinations of possible keys?

2⁵

random guessing, how long do you need on average?
 2⁴

Recall random permutation and Vigenère

- How large were the key spaces? 2^{88} 2^{122}
- How many random trials? 2^{87} 2^{121}

Reference Numbers Comparing Relative Magnitudes

Reference	Magnitude		
Seconds in a year	≈ 3	* 10 ⁷	
Seconds since creation of solar system	≈ 2	* $10^{17} \approx 4.6* \ 10^9 y$	
Clock cycles per year (50 MHz computer)	≈ 1.6	* 10 ¹⁵	
Instructions per year (i7 @ 3.0 GHz)	$pprox 2^{63} pprox 7.15$	* 10 ¹⁸	
Binary strings of length 64	$2^{64} \approx 1.8$	* 10 ¹⁹	
Binary strings of length 128	$2^{128} \approx 3.4$	* 10 ³⁸	
Binary strings of length 256	$2^{256} \approx 1.2$	* 10 ⁷⁷	
Number of 75-digit prime numbers	≈ 5.2	* 10 ⁷²	
Number of 80-digit prime numbers	≈ 5.4	* 10 ⁷⁷	
Electrons in the universe	≈ 8.37	* 10 ⁷⁷	

Brute force attack, try all keys until intelligible plaintext found:

- Every crypto algorithm (save: OTP) can be attacked by brute force
- On average, half of all possible keys will have to be tried

Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10 ⁶ encryption / μs
32	$2^{32} = 4.3 * 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	2^{56} = 7.2 * 10 ¹⁶	$2^{55} \mu s$ = 1142 years	10.01 hours
128	$2^{128} = 3.4 * 10^{38}$	$2^{127} \mu s = 5.4 * 10^{24} \text{ years}$	s 5.4 * 10^{18} years
(Vigenère	$26! = 4 * 10^{26}$	$2^{88} \mu s = 6.4^{*}10^{12}$ years	6.4*10 ⁶ years)
26 chars		Time since human/c	himpanzee lines diverged:
Time since name 5×10^6 years, 5×10 ⁶ years,			_0 ⁶ years, ens: 5×10 ⁴ years

Average Time Required for Exhaustive Key Search

Folie Nr. 7

U: finite set (e.g. $U = \{0,1\}^n$)

Def: **Probability distribution** P over U is a function $P: U \longrightarrow \mathbb{R}^+$

more specifically
$$P(x) \in [0, 1]$$

such that $\sum P(x) = 1$

Examples:

- 1. Uniform distribution: for all $x \in U$: P(x) = 1/|U|
- 2. Point distribution at x_0 : $P(x_0) = 1$, $\forall x \neq x_0$: P(x) = 0

Fair coin: U = {H,T}, P(H)=P(T) = ¹/₂

Dice: U= {1,...,6}, P(x) = 1/6, $1 \le x \le 6$

Two dice (combined): U= $\{1,..,6\}^2 = \{(x1,x2): 1 \le x_1, x_2 \le 6\}$ P(x_1, x_2) = 1/36 for all x_1, x_2

Uniform distributions for all of the above

Two dice (sum): U= {2,3,...,12} P(2)= 1/36, P(3)=2/36,...,P(12)=1/36

Def: a random variable X is a function $X:U \rightarrow V$

Example: X: $\{0,1\}^n \longrightarrow \{0,1\}$; X(y) = lsb(y) $\in \{0,1\}$

For the uniform distribution on U:

Pr[X=0] = 1/2 , Pr[X=1] = 1/2

More generally:

rand. var. X induces a distribution on V: Pr[X=v] := Pr[X⁻¹(v)]

Let U be some set, e.g.
$$U = \{0,1\}^n$$

We write $r \stackrel{R}{\leftarrow} U$ to denote a uniform random variable over U
for all $a \in U$: $Pr[r = a] = 1/|U|$

Let r be a uniform random variable on $\{0,1\}^2$ Define the random variable $X = r_1 + r_2$

Then Pr[X=2] =

Let U be some set, e.g.
$$U = \{0,1\}^n$$

We write $r \stackrel{R}{\leftarrow} U$ to denote a uniform random variable over U
for all $a \in U$: $Pr[r = a] = 1/|U|$

Let r be a uniform random variable on $\{0,1\}^2$ Define the random variable $X = r_1 + r_2$

Then $Pr[X=2] = \frac{1}{4}$

For a set $A \subseteq U$: $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

note: Pr[U]=1

The set A is called an event

Example: $U = \{0,1\}^8$ A = $\{ all x in U such that <math>lsb_2(x)=11 \} \subseteq U$ for the uniform distribution on $\{0,1\}^8$: Pr[A]

What about $U = \{0, 1\}^n$ (with n > 2)?

For a set $A \subseteq U$: $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

note: Pr[U]=1

The set A is called an event

Example: $U = \{0,1\}^8$ A = $\{ all x in U such that <math>lsb_2(x)=11 \} \subseteq U$ for the uniform distribution on $\{0,1\}^8$: Pr[A] = 1/4

What about $U = \{0, 1\}^n$ (with n > 2)?

 $A_1 \cap A_2 = \emptyset \rightarrow \Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2]$

Example:

$$A_{1} = \{ all x in \{0,1\}^{n} s.t \ lsb_{2}(x)=11 \}; \\ A_{2} = \{ all x in \{0,1\}^{n} s.t. \ msb_{2}(x)=11 \} \}$$

$$\Pr\left[Isb_{2}(x)=11 \text{ or } msb_{2}(x)=11\right] = \Pr\left[A_{1}UA_{2}\right] \leq$$
When is it less than 1/2?

Folie Nr. 15

 $A_1 \cap A_2 = \emptyset \rightarrow \Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2]$

Example:

$$A_{1} = \{ all x in \{0,1\}^{n} s.t lsb_{2}(x)=11 \}; \\ A_{2} = \{ all x in \{0,1\}^{n} s.t. msb_{2}(x)=11 \} \}$$

 $\Pr\left[lsb_{2}(x) = 11 \text{ or } msb_{2}(x) = 11 \right] = \Pr\left[A_{1}UA_{2}\right] \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

Folie Nr. 16

Suppose event $A \subseteq U$. The *induced* probability P_A is defined as: $P_A(x) = \frac{P(x)}{P(A)}$ for $x \in A$ $A_1 \quad A_2$ For two events, $A_1, A_2 \subseteq U$ we say that $P_{A_1}(A_2)$, or $P(A_2|A_1)$ is

$$P(A_2|A_1) = P_{A_1}(A_1 \cap A_2) = \frac{P(A_1 \cap A_2)}{P(A_1)}$$

For events
$$A_1$$
 and A_2 :
 $A_1 = \{x \text{ in } \{0,1\}^3 : msb(x) = 1\}$
 $A_2 = \{x \text{ in } \{0,1\}^3 : x < 110\}$
 $P(A_1 \cap A_2) = \{x \text{ in } \{0,1\}^3 : msb(x) = 1, x < 110\}$
What if:
 $A_1 = \{x \text{ in } \{0,1\}^3 : lsb(x) = 1\}^2$
 $P(A_1 \cap A_2) =$
 $P(A_1 \cap A_2) =$
 $P(A_1 \cap A_2) =$

...we call A_1 and A_2 *independent* if $P(A_2|A_1) = P(A_2)$

For events
$$A_1$$
 and A_2 :
 $A_1 = \{x \text{ in } \{0,1\}^3 : msb(x) = 1\}$
 $A_2 = \{x \text{ in } \{0,1\}^3 : x < 110\}$
 $P(A_1 \cap A_2) = \{x \text{ in } \{0,1\}^3 : msb(x) = 1, x < 110\}$
 $P(A_1 \cap A_2) = \{x \text{ in } \{0,1\}^3 : msb(x) = 1, x < 110\}$
What if:
 $A_1 = \{x \text{ in } \{0,1\}^3 : lsb(x) = 1\}$?
 $P(A_1 \cap A_2) = 2/8 = 1/4$
 $P(A_2|A_1) = \frac{1/4}{1/2} = 1/2$

...we call A_1 and A_2 *independent* if $P(A_2|A_1) = P(A_2)$

Definition:

Events A_1 and A_2 are *independent*, if $Pr[A_1 \text{ and } A_2] = Pr[A_1] \times Pr[A_2]$

Random variables X,Y, both taking values in V are *independent* if $\forall a,b \in V$: Pr[X=a and Y=b] = Pr[X=a] x Pr[Y=b]

Example:

 $U = \{0,1\}^2 = \{00, 01, 10, 11\}$ and $r \stackrel{R}{\leftarrow} U$

Define random variables X and Y as: X = lsb(r) , Y = msb(r)

Pr[X=0 and Y=0] =

Definition:

Events A_1 and A_2 are *independent*, if $Pr[A_1 \text{ and } A_2] = Pr[A_1] \times Pr[A_2]$

Random variables X,Y, both taking values in V are *independent* if $\forall a,b \in V$: Pr[X=a and Y=b] = Pr[X=a] x Pr[Y=b]

Example:

 $U = \{0,1\}^2 = \{00, 01, 10, 11\}$ and $r \stackrel{R}{\leftarrow} U$

Define random variables X and Y as: X = lsb(r) , Y = msb(r)

 $Pr[X=0 \text{ and } Y=0] = Pr[r=00] = \frac{1}{4} = Pr[X=0] \times Pr[Y=0]$

Deterministic algorithm: $y \leftarrow A(m)$

Randomized algorithm $y \leftarrow A(m; r)$ where $r \leftarrow {R - {0,1}^n}$

output is a random variable

Example: A(m; k) = E(k, m), $y \stackrel{R}{\leftarrow} A(m)$

XOR of two strings in {0,1}ⁿ is their bitwise addition mod 2:

Theorem:

Let Y be a random variable over $\{0,1\}^n$

Let X be an independent uniform variable on $\{0,1\}^n$

```
Then Z := Y \bigoplus X is uniform var. on \{0,1\}^n:
```

Pr[Z=0]

```
= Pr[(x,y)=(0,0) or (x,y)=(1,1)]
```

```
= Pr[(x,y)=(0,0)] + Pr[(x,y)=(1,1)] =
```

x	у	Pr
0	0	p ₀ /2
0	1	p ₀ /2
1	0	p ₁ /2
1	1	p ₁ /2

XOR of two strings in {0,1}ⁿ is their bitwise addition mod 2:

Theorem:

Let Y be a random variable over $\{0,1\}^n$

Let X be an independent uniform variable on {0,1}ⁿ

Then $Z := Y \bigoplus X$ is uniform var. on $\{0,1\}^n$:

Pr[Z=0]

 $= \Pr[(x,y)=(0,0) \text{ or } (x,y)=(1,1)]$

= $Pr[(x,y)=(0,0)] + Pr[(x,y)=(1,1)] = p_0/2 + p_1/2 = 1/2$

x	у	Pr
0	0	p ₀ /2
0	1	p ₀ /2
1	0	p ₁ /2
1	1	p ₁ /2

You now recall:

probability distributions, random variables, randomized algorithms, independence – and the beauty of XOR! ;-)