
Security and Cryptography 1

Stefan Köpsell, Thorsten Strufe

Dresden, WS 16/17

Module 5: Pseudo Random Permutations and Block Ciphers

Disclaimer: large parts from Mark Manulis and Dan Boneh

Privacy and Security Folie Nr. 2

Reprise from the last modules

You know CIA, perfect secrecy and semantic security

You know different classes of cryptographic algorithms

You can explain (and show) CTO, KPA, IND-CPA and IND-CCA adversary models

You can prove that the OTP has perfect secrecy

You understand when PRGs are secure, and you can explain stream ciphers

You can explain how semantic security of stream ciphers is proven

23.01.2017

Privacy and Security Folie Nr. 3

Module Outline

Mini function theory refresher

(Trapdoor) One-way functions

Pseudo Random Functions

Pseudo Random Permutations

Building PRPs:

Confusion – Diffusion Paradigm / Subst-Perm Networks

Feistel Networks and DES / 3DES

AES

Making it work: Modes of operation

23.01.2017

Privacy and Security Folie Nr. 4

A little refresher on functions…

f: X ⟶ Y y=f(x)

X = {a,b,c} Y={1,2,3,4} Im(f) = {1,2,4}

Properties of Functions

23.01.2017

a

domain / X codomain / Y

rule r /
mapping

b

c

1

2

3

4

inputs / preimage outputs / image

Privacy and Security Folie Nr. 5

X = {1,2,3,..10} f(x) = x² mod 11

f: X ⟶ Y Y = {1,3,4,5,9}

f is called

“onto” (surjective): Y = Im(f) or: ∀y ∈ Y ∃x ∈ X: y = f(x)

“one-to-one” (injective): ∀x1, x2 ∈ X : f(x1) = f(x2) ⇒ x1 = x2

bijection: f(x) is 1 – 1 and Im(f) = Y

For bijection f there is an inverse: g= f -1 : g(y) = x (= f(g(x))

Functions, Functions, Functions

23.01.2017

1

3

5

7

9

2

4

6

8

10

1

3

4

5

9

0

2

4

6

8

1

3

5

7

9

Privacy and Security Folie Nr. 6

Hint: (Trapdoor) One-way Functions

Finding the inverse f -1 is not always „easy“

One way functions:

A function f: X ⟶ Y is called a

one-way-function, if f(x) is „easy“ to compute

for all x ∈ X, but for “essentially all” elements

y ∈ Im(f) it is computationally hard to find the preimage x.

Trapdoor one-way functions:

A trapdoor one-way function is a one-way function that, given some
additional trapdoor information, is feasible to invert.

23.01.2017

0

2

4

6

8

1

3

5

7

9

X= {0,…,9}, Y = {0,…,9}
f(x) = (x+1)³ mod 10

Privacy and Security Folie Nr. 7

(Pseudo Random) Permutations, Involutions

Permutations and Involutions:

A permutation π is a bijective function from a domain to itself:

π: X ⟶ X Im(f) = X

A permutation π with: π = π -1 (or: π(π(x)) = x)

is called an involution.

Pseudo Random Functions (PRF):

F: K × X ⟶ Y

on „domain“ X and „range“ K, with „efficient“ algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP):

Permutation E: K × X ⟶ X

has efficient deterministic algorithm to evaluate E(k,x) and

efficient inversion algorithm D = E -1

23.01.2017

1

2

3

4

1

2

3

4

Privacy and Security Folie Nr. 8

Security of PRFs

A PRF is secure, if it is indistinguishable from a random function:

Consider

Funs[X,Y]: the set of all functions from X to Y

PRF Fk = {F(k, ·) s.t. k ∈ K } ⊆ Funs[X,Y]

23.01.2017

Funs[X,Y]
Challenger

kK

fFuns[X,Y]

x ∈ X

f(x) or Fk(x) ?

Fk

Size: |Y| |X|Size: |K|

Privacy and Security Folie Nr. 9

Security of PRPs

A PRP is secure, if it is indistinguishable from a random permutation:

Consider

Perms[X]: the set of all one-to-one functions from X to X

PRP Ek = {E(k, ·) s.t. k ∈ K } ⊆ Perms[X]

23.01.2017

Perms[X]
Challenger

kK

π Perms[X]

x ∈ X

π(x) or Ek(x) ?

Ek

Privacy and Security Folie Nr. 10

Goal:

Build a secure PRP for b-bit blocks

Examples:

3DES: n = 64, k = 168

AES: n = 128, k = 128,192,256

Stream Ciphers and Block Ciphers

23.01.2017

b i t s t r i n g

message

k (seed)

ciphertext

⊕

PRNG

running key

message blocks

key

ciphertext blocks

E

keys

b l o c kb l o c k # # # # ## # # # #

b bits

k bits

#

Privacy and Security Folie Nr. 11

Confusion – Diffusion Paradigm

Original idea:
Construct a random-looking permutation F with large block size using random-
looking permutations {fi} with smaller block sizes

Shannon, 1949
Create product cipher with confusion step (hide relation between CT and k) and
diffusion step (distribute redundancy of PT)

Construction:
Lets construct Fk : {0,1}128 ⟶ {0,1}128:
Combine f1,…,f16 random-looking permutations fi : {0,1}8 ⟶ {0,1}8 ,
defined by random keys ki derived from k

23.01.2017

x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15 | x16

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15 | x16

confusion

bitwise diffusion

repeat

rounds

Privacy and Security Folie Nr. 12

Interlude: Substitution – Permutation Nets

SPN implement the Confusion – Diffusion Paradigm:

• Round keys ki are derived from k, then usually ⨁-ed with
intermediate round output

• round functions fi are fixed, invertible substitution boxes (S-Box)

23.01.2017

64-bit input 64-bit round key

s1 | s2 | s3 | s4 | s5 | s6 | s7 | s8



substitution

bitwise permutation

64-bit value

64-bit value

ro
u

n
d

 lo
o

p

Privacy and Security Folie Nr. 13

Rounds and Round Keys: Key Expansion

Recall from stream ciphers:

Short key expanded to encrypt bitstream

Idea:

Perform several keyed permutations in rounds

Expand key to round keys as parameters for random permutations

23.01.2017

k

G(k)

G

m
⊕

c

G (key expansion)

R
(k

1
, 

)

R
(k

2
, 

)

R
(k

3
, 

)

R
(k

n
, 

)

m c

k

k1 k2 k3 kn…

Privacy and Security Folie Nr. 14

Feistel Networks

Goal:

Create a PRP from arbitrary (non-invertible) functions

Idea:

Ri = fi (Ri-1) ⊕ Li-1 Li = Ri-1

with round function fi (possibly non-invertible),

keyed with round key ki

Inverting is easy (basically identical, f1 to fd reversed):

Ri-1 = Li

Li-1 = Ri ⊕ fi(Li)

Luby-Rackoff ’85: a 3 round Feistel-Network

F: K3 × {0,1}2n ⟶ {0,1}2n , built using PRF, is a PRP

23.01.2017

Li-1 Ri-1

Li Ri

 fi

round i

β bits

Li-1 Ri-1

Li Ri

fi

round i

β bits

Horst Feistel

Privacy and Security Folie Nr. 15

Lucifer and the Data Encryption Standard

„Lucifer“ at DES challenge (16 rounds; b,k = 128 bit FN, IBM)

Standardized as DES after adaptation (b=64, k = 56,…, due to NSA)

23.01.2017 FP(block)

L1 R1

L15 R15

IP(block)

 f1

 f16

⋮

k1

k16

32 bits E 48 bits 48 bits

48 bits

s1 | s2 | s3 | s4 | s5 | s6 | s7 | s8

32 bits



RP

expansion

via replication

S-Boxes (substitution)

each si : {0,1}6 ⟶ {0,1}4

mixing round permutation (RP)

16, 7, 20, 21, …

Initial bit permutation

Ri-1 ki

Final bit permutation

Privacy and Security Folie Nr. 16

Exhaustive Search

Given a few input output pairs (mi, ci = E(k, mi)) i=1,..,3 , find key k.

DES challenge:
msg = “The unknown message is: XXXX … “
CT = c1 c2 c3 c4 …

DES broken by exhaustive search (DESCHALL) in 96 days in 1997
„The unknown message is: It's time to move to a longer key length.”

distributed.net: 39 days in 1998
„The secret message is: Many hands make light work.”

EFF „deep crack“ (250k$) breaks DES in 56h in 1998
„The secret message is: It's time for those 128-, 192-, and 256-bit keys.”

Combined search: 22h in 1999
„See you in Rome (second AES Conference, March 22-23, 1999)”

23.01.2017

Privacy and Security Folie Nr. 17

From DES to 3DES

Goal:

Strengthen DES by increasing key length

Let E : K × M ⟶ M be a block cipher (DES)

Define 3E: K3 × M ⟶ M as

3E((k1,k2,k3), m) =

For 3DES: key-size = 3×56 = 168 bits. 3×slower than DES.

Why not E(E(E(m)))? …

Simple attack feasible in time ≈2118

23.01.2017

E(k3,m)D(k2,)E(k1,)

What if: k1 = k2 = k3 ?

Privacy and Security Folie Nr. 18

Meet-in-the-middle attack (no double DES?)

Define 2E((k1,k2), m) = E(k1 , E(k2 , m))

Idea: test if E(m) = D(c)

Step 1: build table of encryptions E(k,m)

Step 2: for all k∈{0,1}56 do:

test if D(k, c) is in 2nd column.

23.01.2017

Fk1
F-1

k2
plaintext ciphertext

Fk’1

F-1
k’2

if c = 2Ek(m) then

Fk1
(m) = F-1

k2
(c)

k0 = 00…00
k1 = 00…01
k2 = 00…10

⋮
kN = 11…11

E(k0 , M)
E(k1 , M)
E(k2 , M)

⋮
E(kN , M)

256

entries

k0 = 00…00
k1 = 00…01
k2 = 00…10

⋮
kN = 11…11

E(k0 , M)
E(k1 , M)
E(k2 , M)

⋮
E(kN , M)

Privacy and Security Folie Nr. 19

Complexity of Meet-in-the-Middle

Time =

Same attack on 3DES: Time = 2118 , space ≈ 256

23.01.2017

m E(k2,⋅) E(k1,⋅) c

m E(k2,⋅) E(k1,⋅) cE(k3,⋅)

256log(256) + 256log(256) < 263 << 2112 , space ≈ 256

Privacy and Security Folie Nr. 20

Attacking the Implementation

1. Side channel attacks:

• Measure time to do enc/dec, measure power for enc/dec

2. Fault attacks:

• Computing errors in the last round expose the secret key k

23.01.2017

[Kocher, Jaffe, Jun, 1998] smartcard

Privacy and Security Folie Nr. 21

Quantum Attacks on Block Ciphers

Generic search problem:
Let f: X ⟶ {0,1} be a function.
Goal: find x∈X s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X|)

Quantum Algorithm (Grover):
Given m, c=E(k,m) define

Quantum computer can find k in time O(|K|1/2)
DES: time ≈228 (btw: AES-128: time ≈264)

Quantum adversary: 256-bits key ciphers (e.g. AES-256)

23.01.2017

1 if E(k,m) = c

0 otherwise

f(k) =

Privacy and Security Folie Nr. 22

Some Requirements for S-Boxes

When designing ciphers, we require four properties (of the S-Box):

• Completeness: each output bit has to depend on each input bit

• Avalanche: Changing one input bit should effect half of the output bits

• Correlation immunity: output should be statistically independent from
input

• Non-linearity: No output bit should be linear dependent on any input
bit

To avoid the analyst to learn anything (easily) about
• Plaintext
• Key
23.01.2017

Privacy and Security Folie Nr. 23

Some Words on the S-Boxes

Why do we require the S-Boxes to be non-linear?

• What is a bitwise permutation?

Ax = y

• What does it mean for a transformation to be linear?

f1(x) = A1x

f1(αx) = αx (homogeneity)

f1 (x+y) = f1 (x) + f1 (y) (additivity)

• What happens, when I combine linear transformations?

f1 (f2(x)) = A1A2x

23.01.2017

Privacy and Security Folie Nr. 24

Some Words on S-Boxes (ctd.)

• How do you multiply (matrices) in {0,1}?

Ax =

Let‘s put this together:

• One round of DES (simplified), is:

fi(ki,x) := π(Subst(x ⨁ ki))

• 16 rounds are

F(k,m) := f16 (k16,(f15 (k15,f14(k14,f13(…f1(ki,m))..)

23.01.2017

0 1 1 0 0 0
1 0 0 1 1 0
1 0 0 0 0 1
0 1 1 0 0 1

x1

x2

x3

x4

x5

x6

. =
x2⨁x3

x1⨁x4⨁x5

x1⨁x6

x2⨁x3⨁x6

Privacy and Security Folie Nr. 25

Linear S-Boxes…

Factoring out the constants:

Then:

F(k,m1) ⨁ F(k,m2) ⨁ F(k,m3)

𝐵
m1

k
⨁ 𝐵

m2

k
⨁ 𝐵

m3

k
= 𝐵

m1⨁m2⨁m3

k⨁k⨁k

= F(k, m1 ⨁ m2 ⨁ m3)

23.01.2017

B

m
k1

k2

k16

. = c

832

64

⋮
(mod 2)

Privacy and Security Folie Nr. 26

Some Last Words on S-Boxes

S-Boxes shall not be linear transformations

They should not even be similar to linear transformations

(if you chose them at random, they would be too easy to
break -> key recovery after ≈224 outputs) [BS’89]

They should also not be “easy to analyze”

-> as close to a PRF as possible

(equal output probabilities -> 4-to-1 maps (6->4bits))

etc….

(message: do not invent or implement crypto…)

23.01.2017

Privacy and Security Folie Nr. 27

The Advanced Encryption Standard

1997: NIST publishes request for proposal

1998: 15 submissions

1999: NIST chooses 5 finalists

(Mars: IBM, RC6: RSA, Rijndael: Rijmen/Daemen – Belgium, Serpent:
Anderson/Biham/Knudsen, Twofish: Bruce Schneier et al.)

2000: NIST chooses Rijndael as AES

Key sizes: 128, 192, 256 bits Block size: 128 bits

Best known (theoretical) attacks in time ≈299

23.01.2017

Joan Daemen / Vincent Rijmen

Privacy and Security Folie Nr. 28

AES Substitution-Permutation Network

23.01.2017

in
p

u
t

⨁

S1

S2

S3

S16

⋯

o
u

tp
u

t

subs.
layer

perm.
layer Not a Feistel network:

inversion

k1

⨁

S1

S2

S3

S16

⋯

k2
S1

S2

S3

S16

⋯

⨁⋯

kn

Privacy and Security Folie Nr. 29

AES-128 scheme

23.01.2017

input

4

4

10 rounds

(1) ByteSub
(2) ShiftRow
(3) MixColumn

⨁

k2

⋯

k9

⨁

(1) ByteSub
(2) ShiftRow
(3) MixColumn

⨁
k1

⨁

k0

(1) ByteSub
(2) ShiftRow

output

4

4

⨁

k10

key

16 bytes

key expansion:

invertible

16 bytes ⟶176 bytes

Privacy and Security Folie Nr. 30

AES round functions

ByteSub: a 1 byte S-box. 256 byte table (easily computable)

ShiftRows:

MixColumns:

23.01.2017

Privacy and Security Folie Nr. 31

AES is Secure and Efficient

For the Web:

• JavaScript implementation (6.4KB)

• ByteSub tables not transmitted, but precomputed on client

Implementation in Hardware (Intel, similar on AMD)

• aesenc, aesenclast: do one round of AES

• 128-bit registers: xmm1=state, xmm2=round key

• aesenc xmm1, xmm2 ; puts result in xmm1

• aeskeygenassist: performs AES key expansion

Claim: 14 x speed-up over OpenSSL on same hardware

23.01.2017

Privacy and Security Folie Nr. 32

Performance of Ciphers

Block ciphers are much slower than stream ciphers (Why?)

Comparison (AMD Opteron, 2.2 GHz, Linux, Crypto++ 5.6.0)

Cipher Block/key size Speed (MB/sec)

3DES 64/168 13

AES-128 128/128 109

RC4 126

Salsa20/12 643

Sosemanuk 727

23.01.2017

St
re

am
B

lo
ck

Privacy and Security Folie Nr. 33

Performance of Ciphers

Block ciphers are much slower than stream ciphers (Why?)

Comparison (AMD Opteron, 2.2 GHz, Linux, Crypto++ 5.6.0)

Cipher Block/key size Speed (MB/sec)

3DES 64/168 13

AES-128 128/128 109

RC4 126

Salsa20/12 643

Sosemanuk 727

23.01.2017

St
re

am
B

lo
ck

Privacy and Security Folie Nr. 34

Intermediate question:

Considering (E,D), PRF and PRP, what are AES/3DES?

23.01.2017

Privacy and Security Folie Nr. 35

Building Block Ciphers (Modes of Operation)

So far we have seen PRFs and PRPs (3DES, AES)

Goal:

Build „secure“ encryption from secure PRPs

Only one-time keys for the moment:

• Adversary can submit only two messages

• Sees only one ciphertext

• Aims at learning about PT/k from CT (semantic security)

23.01.2017

Privacy and Security Folie Nr. 36

Electronic Code Book Mode (insecure!)

Encrypt each block with the keyed PRP:

ECB encryption is deterministic

⇒ identical PT is encrypted to identical CT:

Is this “secure” (how)?

23.01.2017

m[0] m[1] …

F(k) F(k) …

m[L]

F(k)

c[0] c[1] … c[L]

Privacy and Security Folie Nr. 37

Semantic Security (One Time Key)

23.01.2017

AdvSS[A,ECB] = | Pr[EXP(0)=1] − Pr[EXP(1)=1] | should be “neg.”

Chal. Adv. A

kK

m0 , m1 M : |m0| = |m1|

c  E(k,m0) b’  {0,1}

EXP(0):

Chal. Adv. A

kK

m0 , m1 M : |m0| = |m1|

c  E(k,m1) b’  {0,1}
EXP(1):

one time key ⇒ adversary sees only one ciphertext

Privacy and Security Folie Nr. 38

ECB not semantically secure

ECB is not semantically secure for messages of more than one block.

23.01.2017

Two blocks

Chal.

b{0,1}

Adv. A

kK

(c1,c2)  E(k, mb)

m0 = “Hello World”

m1 = “Hello Hello”

If c1=c2 output 1, else output 0
Then AdvSS [A, ECB] = 1

Privacy and Security Folie Nr. 39

ECB not semantically secure

ECB is not semantically secure for messages of more than one block.

23.01.2017

Two blocks

Chal.

b{0,1}

Adv. A

kK

(c1,c2)  E(k, mb)

m0 = “Hello World”

m1 = “Hello Hello”

If c1=c2 output 1, else output 0
Then AdvSS [A, ECB] = 1

Privacy and Security Folie Nr. 40

Deterministic Counter Mode

XOR each block with changing keys:

Encrypt key and counter, take a PRF F: K × {0,1}n ⟶ {0,1}n

EDETCTR(k,m) =

DDETCTR(k,m) = ?

Proof of semantic security:

AdvSS[A, EDETCTR] ≤ ε

Note: PRF (pot. non-invertible)

23.01.2017

m[0] m[1] …

F(k,0) F(k,1) …

m[L]

F(k,L)


c[0] c[1] … c[L]

chal. adv. A

kK

m0 , m1

c 

b’≟1

chal. adv. A

kK

m0 , m1

c 

b’≟1

≈p

≈p

≈p


m0

F(k,0) … F(k,L)


m1

F(k,0) … F(k,L)

chal. adv. A

fFuns

m0 , m1

c 

b’≟1


m0

f(0) … f(L)

chal. adv. A

r{0,1}n

m0 , m1

c 

b’≟1


m1

f(0) … f(L)

≈p

Privacy and Security Folie Nr. 41

CPA and Many Time Keys

Assumption:

Keys are used more than once ⇒ adv. sees many CTs with same key

Extension to one-time key:

• Adversary can obtain the encryption of arbitrary messages of his
choice (conservative modeling of real life)

• Aims at breaking semantic security (learn anything about PT)

23.01.2017

Privacy and Security Folie Nr. 42

CPA Security (SS for many time key)

E = (E,D) a cipher defined over (K,M,C).

E is sem. sec. under CPA if for all “efficient” A:
AdvCPA [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | ≤ ε

23.01.2017

Chal.b Adv.

kK

b’  {0,1}

mi,0 , mi,1  M : |mi,0| = |mi,1|

ci  E(k, mi,b)

for i=1,…,q:

Privacy and Security Folie Nr. 43

Deterministic Ciphers aren‘t IND-CPA

Suppose E(k,m) always outputs same ciphertext for msg m.

An attacker can learn that two encrypted files are the same, two
encrypted packets are the same, etc.

⇒ Leads to significant attacks when message space M is small

If secret key is to be used multiple times:

If repetition of plaintext possible, E must produce different outputs!

23.01.2017

Chal. Adv.

kK
m0 , m1  M

c  E(k, mb)

m0 , m0  M

c0 E(k, m0)

output 0
if c = c0

Privacy and Security Folie Nr. 44

Random / Nonce-based Encryption

E(k,m) maps identical m to different c:

Ei (k,ml) = Ej (k,ml) ⇒ i=j

Transmission is longer than plaintext (transmit nonce)

• Use counter as nonce (shared state, never same nonce and k!)

• Choose random nonce n N

23.01.2017

m1

m0

enc
m0

dec

m1

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

kk

Privacy and Security Folie Nr. 45

Output Feedback Mode

Let (E,D) be a PRF EOFB(k,m): choose random IV∈X and do:

Remarks:

Dependency between subsequent packets

E and D cannot be parallelized, but

E(k,E(k,E(k,…E(k,IV))) can be precomputed

23.01.2017

E(k,)

m[0]

IV



c[0] c[1] c[2] c[3]IV

E(k,)

m[1] 

E(k,)

m[2] 

E(k,)

m[3] 

ciphertext

Privacy and Security Folie Nr. 46

CBC with random IV

Let (E,D) be a PRP. ECBC(k,m): choose random IV∈X and do:

Decrypt?

Dependency between subsequent packets, D can be parallelized

23.01.2017

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]IV

 

E(k,)



c[0] c[1] c[2] c[3]IV

ciphertext

D(k,) D(k,) D(k,)

m[0] m[1] m[2] m[3]

 

D(k,)



c[0] c[1] c[2] c[3]IV

Privacy and Security Folie Nr. 47

Warning: Attacking CBC with Random IV

CBC where attacker can predict the IV is not CPA-secure

Suppose given c ⟵ ECBC(k,m) can predict IV for next message

Chal. Adv.

kK
m0=IV⨁IV1 , m1 ≠ m0

c  [IV, E(k, IV1)] or

0  X

c1  [IV1, E(k, 0⨁IV1)]

output 0
if c[1] = c1[1]

predict IV

Bug in SSL/TLS 1.0: IV for record #i is last CT block of record #(i-1)

c  [IV, E(k, m1⨁IV)]

Privacy and Security Folie Nr. 48

Randomized Counter Mode R-CTR

Let F: K × {0,1}n ⟶ {0,1}n be a secure PRF.

E(k,m): choose a random IV  {0,1}n and do:

Variation: Choose 128 bit IV as: nonce || counter

Remarks:
E, D can be parallelized and F(k,IV+i) can be precomputed
R-CTR allows random access, any block can be decrypted on its own
Again: F can be any PRF, no need to invert

23.01.2017

m[0] m[1] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)


c[0] c[1] … c[L]

IV

IV

ciphertext

Privacy and Security Folie Nr. 49

Summary

You recall properties of functions

You can explain what (Trapdoor) One-way functions are

You know what PRFs and PRPs are

You can also show against what they are secure

You can explain Feistel Networks and DES/3DES

You can break DES (and you can explain how it‘s done)

You know about Substitution Permutation Networks and AES

You saw different modes of operation and know their properties

23.01.2017

