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Reprise from the last modules

You have an overview of cryptography and cryptology

You know different adversary models and their corresponding games

You know what symmetric cryptography is

You recall the difference of stream and block ciphers

You can explain the OTP and constructions for stream ciphers

You can prove that the OTP has perfect secrecy

You can tell PRFs and PRP apart and you know constructions for block ciphers

You can explain different modes of operation and their properties
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Module Outline

Verification of message integrity as a goal

Adversary and security models

Hashes and cryptographic hash functions

Collisions and how to create them (also: the birthday paradox)

The Merkle-Damgard construction and some real hash functions (MD5, SHA-1)

Block ciphers as compression functions

Secure MACs from hash functions and PRFs

MACs using block ciphers (CBC, NMAC, HMAC)

07.02.2018
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Integrity and Authenticity

So far messages can be kept confidential
Integrity of messages not given

07.02.2018

From: Bob

From: Eve

c1 = m ⊕ k  

c2 = m ⊕ k ⊕ p 

p
⊕

E: (m ⊕ k) 

D: (c ⊕ k) 
File2

HDD

File1File1‘
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Message Integrity

Algorithms:
Tag S:  M  T M = {0,1}n ; S = {0,1}t with n>>t
Verify V: M x T  {yes,no}

07.02.2018

: message

message tag

http://images.google.com/imgres?imgurl=http://wjedfoundation.org/graphics/letter_icon-wh.jpg&imgrefurl=http://wjedfoundation.org/seats.html&usg=__NYFuFhc_BjeTycc8vpdaLN6OhqY=&h=142&w=137&sz=18&hl=de&start=29&um=1&tbnid=ShBpaeHi74csHM:&tbnh=94&tbnw=91&prev=/images?q=letter+icon&ndsp=21&hl=de&rls=com.microsoft:de:IE-SearchBox&rlz=1I7SNYK&sa=N&start=21&um=1


Privacy and Security Folie Nr. 6

Bad Examples

Cross sum:
f(x) : calculate the cross sum of all bytes in the message
Is this secure? Why (not)?
f(5 23) = f(23 5)

CRC:
tag  CRC(m) ; Verify tag: return CRC(m) == tag
Is this secure? Why (not)?
Adversary can create new message and recompute CRC

Simple Encryption:
tag  Enc(k,m) | 1,…,6 Verify tag: return tag == Enc(k,m) | 1,…,6 

Is this secure? Why (not)?
Adversary can guess tag for a message in 26

07.02.2018
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Existential Forgery

Chosen Message Attack:
• given s1, s2, … sn for chosen mi

(variations are: known key / known signature attacks)

Existential Forgery:
Produce some new valid tuple (m,s)  (any message, even gibberish)
⇒ adversary cannot produce a valid tag for a new message
⇒ adversary cannot even produce (m,t’) for (m,t) and t’ ≠ t

Breaches in general:
Exist. forgery < selective forgery < universal forgery < total break

07.02.2018

m1, s1
…

xx, sj
…

mn, sn

!: mi
?: si

Vorführender
Präsentationsnotizen
 In a key-only attack, the attacker is only given the public verification key.
    In a known message attack, the attacker is given valid signatures for a variety of messages known by the attacker but not chosen by the attacker.
    In an adaptive chosen message attack, the attacker first learns signatures on arbitrary messages of the attacker's choice.

They also describe a hierarchy of attack results:[14]

    A total break results in the recovery of the signing key.
    A universal forgery attack results in the ability to forge signatures for any message.
    A selective forgery attack results in a signature on a message of the adversary's choice.
    An existential forgery merely results in some valid message/signature pair not already known to the adversary.
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Defining the MAC game

For a MAC   I=(S,V)  and adversary A, where (S,V) additionally take k:

Def:  I=(S,V)  is a secure MAC if for all “efficient” A:
AdvMAC[A,I] =  Pr[Chal. outputs 1] ≤ ε

Variations:
Existential forgery may forge tag on a message that seems gibberish
(like, for instance, a random-looking bitstring like a ciphertext or a key…)
07.02.2018

Chal. Adv.
k←K

(m,t)

m1 ∈ M
t1 ← S(k,m1)

b=1    if  V(k,m,t) = `yes’ and  (m,t)  ∉ { (m1,t1) , … , (mq,tq) }

b=0   otherwise

b

m2 , …, mq

t2 , …, tq

Vorführender
Präsentationsnotizen
Selective Forgery: m chosen by the adversary before the attack
Universal Forgery: creation of a valid signature for any message
Total break: Full key recovery
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Secure MAC from a PRF

Assume a PRF F: K x X Y 
Define integrity scheme IF = (S,V):
• S(k,m) := F(k,m)
• V(k,m,t) := test t==F(k,m)

• Is this a secure integrity scheme?
suppose F is PRF, m given, what is the chance of the adv. to guess s?

AdvMAC[A,IF] = 1/|Y|

• What are its downsides?
07.02.2018

: message

message tag

Vorführender
Präsentationsnotizen
This is secure if 1/|Y| is negligible
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Security of the simple PRF MAC

Assume  f: X⟶Y  is a random function and  1/|Y| is negligible   

Assume F: K x X⟶Y is a secure PRF,  construct MAC IF:

For every efficient MAC adversary A attacking IF, there must be an efficient
PRF adversary B attacking F, s.t.:

AdvMAC[A, IF]  ≤ AdvPRF[B, F]   +  1/|Y|

⇒ IF is secure as long as:
• F is a secure PRF (given), and |Y|  is large  (|Y| ≥ 2160)

07.02.2018

Chal. Adv.

f  in 
Funs[X,Y] (m,t)

m1 ∈ X
t1 ← f(m1)

m2 , …,   mq

f(m2) , …, f(mq)

Vorführender
Präsentationsnotizen
For truly random function f, the tags are entirely random, so  none depends on any previously seen output - so the best the adversary can do is guess t for m, with probability 1/|Y|

For PRF F, the tags are indistinguishable from purely random to the adversary (definition of a PRF)

In order to break IF, the adversary has to find an algorithm that breaks PRF F, or only has the advantage of 1/|Y|

Truncate the output: make sure that the function still depends on all bits of the message
AND |Y| is still large



Privacy and Security Folie Nr. 12

Interlude: Collision Resistant Hash Functions

Goal: 
Map a message of arbitrary length to a characteristic digest
(fingerprint)

Hash H: M  S with M = {0,1}* and S = {0,1}s

• has an efficient algorithm to evaluate H(x)
• is an „onto“ function (surjective, Im(H) = S)
• avoids collision (maps uniformly to S)
• creates chaos (slight changes in m yield large differences in s)

07.02.2018
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Cryptographic Hash Functions

Further properties / requirements of hash functions for security:
• Compression is irreversible

• Collision resistance

07.02.2018

{0,1}*

{0,1}sx

y

{0,1}*

{0,1}s
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Cryptographic Hash Functions

Further requirements to hash functions for security:
• Pre-image resistance

• 2nd pre-image resistance

07.02.2018

{0,1}*

{0,1}s
y

x

{0,1}*

{0,1}s

x1

x2
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Collision Resistance

Let  H: M → S  be a hash function       (  |M| >> |S|  )

A collision for H is a pair  m0 , m1 ∈ M  such that:
H(m0)  =  H(m1)    and    m0 ≠ m1

A function H is collision resistant if for all (explicit) “eff” algs. A:

AdvCR[A,H]  =  Pr[ A outputs collision for H] ≤ ε

Vorführender
Präsentationsnotizen
Why is collision resistance important for security? 
Assume a simple MAC: E_AES(k,H(m)) to be a secure MAC
Then if the adversary can find a collision of m_0 and m_1 in the MAC game he can request the valid tag for m_0 and submit it as the tag for m_1 !
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Brute Forcing Collisions

Do collisions exist? 

Yes.
but it should be hard to find  collisions (in polynomial time)

Trivial Collision-Finder (Brute Force)
compute H ≝ {H(m) | for all m ∈ {0,1}s }
if no collision found compute H(m*) for any m* ∉ {0,1} s

there must be at least one m with H(m) ∈ H such that H(m) = H(m*) 

Introduction to Cryptography

{0,1}* {0,1}s

m0

m1

h

s must be sufficiently large
time needed

O(2s)
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Generic Attack on C.R. Hash Function

Let  H: M → {0,1}s be a hash function ( |M| >> 2s  )

Generic alg. to find a collision in time   O(2s/2)   hashes

Algorithm:

1. Choose 2s/2  random messages in M:     m1, …, m(2s/2) (distinct w.h.p )

2. For i = 1, …,  2s/2  compute    ti = H(mi)    ∈{0,1}s

3. Look for a collision  (ti = tj).    If not found, got back to step 1.

How well will this work?



Privacy and Security Folie Nr. 18

The Birthday Paradox

Let   r1, …, rn ∈ {1,…,B} be random integers, chosen iid. 

BP states: when  n= 1.2 × B1/2 then   Pr[ ∃i≠j:   ri = rj ] ≥  ½ 

07.02.2018

B=106

# samples  n

Vorführender
Präsentationsnotizen
indep. identically distributed
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Generic attack due to the B. P.

H: M → {0,1}s .      Collision finding algorithm:
1. Choose 2s/2  random elements in M:     m1, …, m2s/2

2. For i = 1, …,  2s/2  compute    ti = H(mi) ∈{0,1}s

3. Look for a collision  (ti = tj).    If not found, got back to step 1.

Expected number of iterations until success ≈   2

Running time:  O(2n/2) (space  O(2n/2) )
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Revisiting Requirements for Cryptographic h

Cryptographic hash functions:
Hash h: M  S with M = {0,1}* and S = {0,1}s

Three core security requirements:
• Collision resistance

• Collision: Given h(⋅), find m1, m2 with m1 ≠ m2 such that h(m1) = h(m2)
• AdvCR(A, h(⋅)): Pr[Collision] ≤ min{|M|,|S|} ½

− Common assumption: |M| >> |S| , hence O(2 ⁄𝑠𝑠
2) (General attack due to BP)

• Pre-image, second pre-image resistance
• Pre-image: given h(m) find h-1(h(m)) = m
• 2nd pre-image: given m1 find m2 such that m1 ≠ m2 and h(m1) = h(m2)
• Adv(S)PR(A, h(⋅)) ≤ |S| + ε , (cf. assumption above, hence O(2𝑠𝑠))

07.02.2018
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The Merkle-Damgard construction

From short message blocks to arbitrarily long messages…
Given a compression function h : {0,1}2s ⟶ {0,1}s and
Input m ∈ {0,1}* of length L
Construct H of B= ⌈L/s⌉ iterations of h:

If h is a fixed length CRHF, then H is an arbitrary length CRHF
Proof: either M=M‘, or HB-i (m[B-i])=HB-i(m‘[B-i])

07.02.2018

h h h

m[1] m[2] m[3] m[B]  ll PB

h
IV

(fixed)

H(m)

H0 H1 H2 H3 HB

1000…0  ll L      

64 bits

collision on hno collision

and PB: = 
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A brief history of Hash Functions

MD4

MD5

1990

1991

SHA-0

1992

1993

1994

1995

2002

2012

HAVAL

SHA-1

RIPEMD

RIPEMD-160

SHA-2

SHA-3

broken or alm
ost broken

still secure

MD4 s  = 128 bits
collisions in O(28), preimages in O(2102)

MD5 s  = 128 bits
collisions in O(232)
known colliding documents, certificates

HAVAL s  = 128, 160, 192, 224, 256 bits
collisions on HAVAL-128 in O(26) 

RIPEMD s  = 128 bits
collisions are known

SHA-0 s  = 160 bits
collisions in O(239), replaced by SHA-1 in ’95
meanwhile collisions in 1 hour

SHA-1 s  = 160 bits
collisions in O(263) – O(269)
still secure in practice

SHA-2 supports s  = 224, 256, 384, 512 bitswinner of NIST competition

Vorführender
Präsentationsnotizen
https://sites.google.com/site/itstheshappening/
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Popular Merkle Damgard constructions

Fixed length h (for arbitrary length m, as MD):

07.02.2018

SHA-1 (160 bit)MD5 (128 bit)

Vorführender
Präsentationsnotizen
MD5: A,B,C,D, K_i constants, ABCD state per round
  message of 512 bit broken in 16 x 32 bits, 
  F function per round; s_i shift value per round
  [+] == addition mod 32
  64 rounds (4 per message block): 
     M_i is a 32bit word from the message
  output 128 bits A-D

SHA1: ABCDE, K_t constants / state
  message of 512 bits -> 16 x 32 bits, expand to 80 x 32 bit words (W_t)
  F function per round  
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Hash Functions from Block Ciphers

Can we build compression functions from block ciphers? 
• block ciphers F : {0,1} k × {0,1} b ⟶ {0,1} b behave like PRPs
• the outputs of F are close to uniform
• collision-resistance
• provable security: reduction to the security of a block cipher
• block ciphers used in practice are efficient
• implementation of a block cipher immediate hash function

but what about the keys?

F

m

k

Fk(m)

H

m

k

Hk(m)

secret public

Vorführender
Präsentationsnotizen
Where do we get this compression function „h“?

Recall: we want to calculate a digest of a known message – there‘s no secret here, just a „checksum“
Everybody should be able to verify a hash -> the „secret key“ must be public!
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An insecure attempt…

E: K× {0,1}n ⟶ {0,1}n a block cipher.
Construct cascade, for compression encrypt message blocks:

What‘s wrong with that?
Hi+1= E(mi,Hi)
Can you find a collision on this compression function?
Hi+1= E(m’, D(m’,Hi+1))

07.02.2018

E
>

mi

Hi

Hi+1

Vorführender
Präsentationsnotizen
Encrypt chaining variable under the key defined by the message block

Collision: two different inputs yield identical output -> H‘,m‘ under the control of the adversary…
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Davies – Meyer Compression Function

E: K× {0,1}n ⟶ {0,1}n a block cipher.

The Davies-Meyer compression function: h(H, m) = E(m, H)⨁H

Thm:   Suppose E is ideal cipher (collection of |K| random perms.).
To find collision h(H,m)=h(H’,m’)  takes O(2n/2) evaluations of (E,D).

Equivalent to birthday attack  as good as possible.

07.02.2018

E
>

mi

Hi
⨁

Vorführender
Präsentationsnotizen
Why XOR? 

the adversary knows one input and one output, the unknown input is covered by the last PRP

H’=D(m’, E(m,H)) ==>  E(m’, H’) = E (m,H) 

Add operation that hides output with unknown input after last PRP -> irreversible without knowledge of H_i
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Further variations

Matyas-Meyer-Oseas

Miyaguchi-Preneel

… and many insecure one‘s..

07.02.2018

E
>g

mi

Hi-1
⨁

Hi

E
>g

mi

Hi-1
⨁

Hi
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Using Block Ciphers in Practice

The efficiency of Davies-Meyer compression function in the Merkle-Damgård
transformation depends on the efficiency of the chosen block cipher

Example AES-128 has key length κ = 128 bits, block length b = 128 bits
AES-192 has key length κ = 192 bits, block length b = 128 bits
AES-256 has key length κ = 256 bits, block length b = 128 bits

Davies-Meyer with AES 

block ciphers with much larger key lengths and block sizes needed…

07.02.2018

AES

|mi| = 128 bits
|mi| = 192 bits
|mi| = 256 bits

|hi–1| = 128 bits

key

⨁

𝒽𝒽

|hi| = 128 bits  

Efficiency hashing of a 5MB file would
require at least 156250 ≈ 217 AES executions

Security „birthday attack“  O(264)

Vorführender
Präsentationsnotizen
2^17 AES ops ca. 0.002s on intel i7 with crypto++, not too bad..

SHA-256 uses davies meyer compression function that takes as input a 512bit key and encrypts a 256 bit block (chaining variable) to a 256 bit output (SHACAL)
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End of Interlude, back to MACs!

So can we use these hash functions directly as a MAC?
Quick answer: no, we need some secret (recall: CRC)!

Intermediate answer is „for special cases, yes“:
Assume a public repository of files
and a public read-only space with their hashes

User can verify validity of the contents of a packet
Adversary cannot forge packets for given H(Fi) (collision!)

07.02.2018

F1 F2 Fn⋯
package name package name package name

read-only
public space

H(F1) H(F2)

H(Fn)
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Creating secure MACs, a first attempt

MAC:   signing alg.   S(k,m)⟶t and verification alg.   V(k,m,t) ⟶0,1

First Idea: keyed hash functions, MAC: H(k||m)

Recall: Secure hash is collision resistant
But a secure MAC needs to be unforgeable under chosen message attack

no existential forgery: no valid tag forged for arbitrary message

Consider Merkle-Damgard construction: s = H(m|| PB)
Can you forge a valid tag?

Feasible chosen message attack:
A – [m] –> C  s = h(k||m||PB) 
C <– [s] – A

s‘ = h(m||m‘) = h(s||m‘||PB‘)
A – (m||m‘,   s‘) –> C  and wins the game!

07.02.2018

Vorführender
Präsentationsnotizen
Length Extension Attack
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Creating MACs using known PRF/PRPs: NMAC

Recall Merkle-Damgard, k instead of fixed IV:

Let   F: K × X ⟶ X   be a PRF, define new PRF   FNMAC : K2 × X≤L ⟶ X

Cascade:

Why the last encryption with second key?
Otherwise: cascade(k, m||m‘) = cascade(cascade(k,m)||m‘)

07.02.2018

t ll fpadF F F

m[0] m[1] m[3] m[4]

F> > > >k t
F

tag>

k1

Vorführender
Präsentationsnotizen
Not commonly used with AES, as efficiency of encryption depends on static keys (-> key expansion), and key changes here

Actually not commonly used at all, but basis for HMAC (further down)

(same holds for the CBC-MAC  final encryption with k1
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Extend raw CBC to CBC-MAC / ECBC

Recall Merkle-Damgard, PRFs & mode of operation
Let‘s create a MAC from AES (a PRP for small messages)!

Let   F: K × X ⟶ X   be a PRF, define new PRF   FECBC : K2 × X≤L ⟶ X
CBC-MAC (ECBC: Encrypted Last Block CBC)

CBC-MAC insecure if |m| ≠ multiple of block size
Solve by padding (cmp. hash): PB = 10…0 (Why not “0…0”)?
What if |m| = multiple of block size?

07.02.2018

F(k0,m[0]) F(k0,⋅) F(k0,⋅)

m[0] m[1] m[3] m[4]      

⊕⊕
F(k0,⋅)

⊕
F(k1,⋅) tag

|| PB

Vorführender
Präsentationsnotizen
(banking – ANSI X9.9, X9.19,   FIPS 186-3)
ECBC -> Encrypted Last Block Cipher Block Chaining
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Speeding things up… PMAC

Let   F: K × X ⟶ X   be a PRF 
Given P(k,i) being a function that is easy to compute, and key: (k, k1)

Define new PRF   FPMAC : K2 × X≤L ⟶ X 

07.02.2018

m[0] m[1] m[2] m[3]

⊕ ⊕⊕ ⊕

F(k1,⋅) F(k1,⋅) F(k1,⋅)

F(k1,⋅) tag

⊕

P(k,0) P(k,1) P(k,2) P(k,3)

Vorführender
Präsentationsnotizen
Function P(k,i) to ensure order of blocks

PMAC allows for updating of tag  PMAC is incremental
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And finally: The HMAC (RFC 2104)

Hashing is fast, but H(k||m) insecure
Solution: encase message with keys! (Essientially double NMAC)

HMAC:       S( k, m ) =  H( k⊕opad ll H( k⊕ipad ll m ) )
(used in TLS, IPsec,…)

07.02.2018

h h

m[0] m[1] m[2]  ll PB

h

h tag

> > >h

k⨁ipad

IV
(fixed)

>

>IV
(fixed)

h>
k⨁opad
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Other Approaches to MACs and Hashing

Merkle-Damgard on compression functions
• Create an H for arbitrary sized input to fixed size output
• Using „small“ compression functions
• We already know (and have implemented) some small

compression functions, which we seem to „understand“ well (we
have a good feeling about AES, and it‘s already implemented in 
hardware)

• Given the above, we can prove the security of H

However: other approaches to create secure arbitrary length hash
functions do exist…

07.02.2018

Vorführender
Präsentationsnotizen
Correction of last week‘s lecture:
 - Davies-Meyer is the specification of the internal compression function
 - Davies-Meyer is trivially invertible without the XOR
 - Inverted block trivially leads to collisions
 - Requirement for the internal compression function is to be collision resistant
 -> fails the requirements
Although (hence my tripping): with fixed IV the H‘ cannot simply be chosen -> it seems „secure“ in the overall construction (ok, the proofs break)
BUT: this would allow for meet-in-the-middle attacks (ref 2DES)
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Interlude: Arbitrary Length Output

Recall the definition of h: M -> S with M= {0,1}* and S = {0,1}s

Proving security: the output is indistinguishable from an output of a 
really random oracle RO: M -> Y with Y = {0,1}s

Now what happens if F: M->Y with Y = {0,1}*

The security in the random oracle model depends on |S|, does the
security of the latter increase with the length of the output?

Probably not, rather with the size of internal state…

07.02.2018

Vorführender
Präsentationsnotizen
The random oracle outputs a new random output for each new input, and the same output for repeated calls with the same input

Arbitrary length output is incedibly useful to generate key bits, authenticated encryption, etc…

If security increased with the length of the output then essentially you could use a PRF of insecure length and „generate“ security by extending the output
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SHA-3 Competition

2005: NIST discusses new standard for Secure Hash Algorithm
rationale: all prior standards are based on MD, consider what
happened if there was a systematic break…

2007: Call for proposals; requirements (replacement for SHA-2):
224, 256, 384, and 512 bit output length

2008: 64 submissions

2009, 2010, 2012: Candidate conferences (14 candidates, 5 finalists:
BLAKE (Aumasson, Henzen, Meier, Phan, based on 
ChaCha20), Grøstl (TU Graz, DTU, based on AES), JH (Hongjun
Wu), Keccak (Bertoni, Daemen, Peeters, van Assche), Skein
(“Team World” including Schneier, Lucks, based on Threefish).

2012: Announcement of Keccak as SHA-3

07.02.2018

Vorführender
Präsentationsnotizen
224, 256, 384 and 512: consider collision resistance vs. birthday paradox, and 3DES/AES security levels of 2^112 (3DES), 128, 192, 256 -> AES key length


http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf 
Since SHA–3 is expected to provide a simple substitute for the SHA–2 family of hash functions, certain properties of the SHA– 2 hash functions must be preserved, including the input parameters; the output sizes; the collision resistance, preimage resistance, and second-preimage resistance properties; and the ‘‘one-pass” streaming mode of execution. 

However, it is also desirable that the selected SHA–3 algorithm offer features or properties that exceed, or improve upon, the SHA–2 hash functions.
Parallelization, Implementation in hardware, other output length, rates, security levels

Stefan Lucks Bauhaus Uni Weimar 

Various discussions about Keccak afterwards (it’s only fast in hardware; seemingly meddling of NIST/NSA – which didn’t turn out to be true, etc.)
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Keccak – SHA3

Specification of two modes:
• SHA-2 replacement: fixed length output of 224, 256, 384, 512 bits
• Variable length output: output of arbitrary length
• Keccak[r,c] with internal permutation Keccak-f[b]

Construction of two phases
• Absorb: block-wise input of message
• Squeeze: output of required bits as hash value

07.02.2018

m[0] m[1] m[2]  ll PB

0

0

r

c
f

⊕
f

⊕
f

⊕

h[0] h[1] h[3]   …

f f

absorbing squeezing

Vorführender
Präsentationsnotizen
Arbitrary length output useful, e.g., for stream ciphers (key bit generation)
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Keccak State – the Sponge

Keccak[r,c] parameters:
• bit rate r, capacity c  (c = 256,512)
• word length w = 2l l=0,1,..,6     (6 for 64 bit systems)

b = r+c = 5x5xw
= 25,50, 100

100,200,400
800,1600 

07.02.2018
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Vorführender
Präsentationsnotizen
25,50 for testing purposes only
200-400 for lightweight (resource restricted) (16bit processors), 200 -> C=160, b =40 -> original SHA1 security level of 80bits
800-1600 for 32bit / 64 bit processors
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Keccak Bit Rate and Capacity

Absorbing into and squeezing out of S
• 256 bit security (c=512 bits)
• 128 bit security

Bits in c never in- nor output

07.02.2018
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Permutation in Several Rounds

Keccak permutes state in 12 + 2l rounds
• 32 bit processor -> Keccak-f[800] -> 22 rounds
• 64 bit processor -> Keccak-f[1600] -> 24 rounds
• (Keccak-f[25] -> 12 rounds)

Five operations for each round:

07.02.2018

r

c
s θ χ π ρ ι s

⊕ ⊕ ⊕

Vorführender
Präsentationsnotizen
Collisions for low numbers of rounds (5-7) have been constructed
 Theta Chi Pi Rho Iota
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The Keccak-f Permutation

Internal function defined as permutation Keccak–f[b]:
S ← ι ◦ ρ ◦ π ◦ χ ◦ θ (S)

• Iota adds predefined constant to lane [0,0]
07.02.2018

http://celan.informatik.uni-oldenburg.de/kryptos/info/keccak

Vorführender
Präsentationsnotizen
Die Theta-Permutation wird auf jedes Bit des States einzeln angewendet.
Hierzu werden die Columns links des Bits (x-1) und rechts vorne (x+1, z-1) betrachtet. Die einzelnen Bits der Columns werden miteinander XOR-verknüpft und dann mit dem zu manipulierenden Bit ebenfalls XOR-verknüpft. 

Chi is the only non-linear function in keccak-f: “Flip bit if neighbors exhibit 01 pattern”

Die Pi-Permutation vertauscht die Positionen der Lanes innerhalb des States nach einem bestimmten Schema.

Rho ist rechtsrotation der einzelnen Lanes (mit unterschiedlichen Offsets)
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The Keccak-f Permutation

07.02.2018

θ

χ π

ρ
http://keccak.nokoen.org
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Kezzak – Squeeze

07.02.2018
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http://celan.informatik.uni-oldenburg.de/kryptos/info/keccak
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Using Keccak as SHA3 (and SHAKE)

Keccak[r,c] (l=6 -> Keccak-f[1600]) standardized as SHA-3:

07.02.2018

Algorithm Output size Block size Bit security

SHA3-224 224 1152 112

SHA3-256 256 1088 128

SHA3-384 384 832 192

SHA3-512 512 576 256

SHAKE128 d 1344 128*

SHAKE256 d 1088 256*

* or d/2, if smaller

Vorführender
Präsentationsnotizen
#bit security levels to collision/preimage due to the proofs. The actual internal state is 2xc -> 1600-448 = 1152 bit rate/block size
-> 112 bit security (birthday paradox) -> 3DES
256 -> 128 bit -> AES-128
384 -> 192 bit -> AES 192
512 -> AES 256
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Using SHA3 and SHAKE for Integrity

Can we implement a secure MAC as: 
SHA-3(k||m)?
How?

Why?

07.02.2018
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Vorführender
Präsentationsnotizen
Why: the vulnerability in case of MD is length-extension, due to cascade.
Here no cascade, state generated depends on entire input, first, then output generated. Next output or after additional input are entirely different.
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Using SHA3 and SHAKE for Confidentiality

Can we implement a stream cipher with SHA3?
How?

07.02.2018
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Vorführender
Präsentationsnotizen
SHAKE: arbitrary output length hash with 128/256 bit security (SHAKE128 / SHAKE256)
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SHA3 for Confidentiality and Integrity

Stream ciphers are malleable… Can we achieve authenticated
encryption with SHA3?

How?

07.02.2018
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Vorführender
Präsentationsnotizen
XOR each message block into the state doesn‘t cost us much…
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Can we be even faster: One time MAC

Can be secure against all adversaries and faster than previous MACs

Let  q  be a large prime (e.g.  q = 2128+51 ) (or: 130-5)
key = (a, b) ∈ {1,…,q}2          (two random ints. in [1,q] )
msg = ( m[1], …, m[L] )    where each block is 128 bit int.

S( key, msg )  =  Pmsg(a) + b     (mod q)

where   Pmsg(x) = ∑𝑖𝑖=1
𝐿𝐿 𝑥𝑥𝑖𝑖 � 𝑚𝑚[𝑖𝑖]

= m[L]⋅xL + … + m[1]⋅x    is a poly. of deg. L

07.02.2018

Vorführender
Präsentationsnotizen
Can be implemented very efficiently in GF

Has to be a one-time mac, with two secret ints as the key -> two linear equations suffice to determine two unknowns…
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One-time MAC -> Many-time MACs

Let  (S,V)  be a secure one-time MAC over (KI,M, {0,1}n ) .
Let  F: KF × {0,1}n ⟶ {0,1}n be a secure PRF.

Carter-Wegman MAC:    CW( (k1,k2), m) =  (r,  F(k1,r) ⨁ S(k2,m) )
for random r ⟵ {0,1}n . 

Thm:   If  (S,V) is a secure one-time MAC and F a secure PRF
then  CW  is a secure MAC outputting tags in  {0,1}2n .

07.02.2018

fast 
long inp

slow but 
short inp
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Timing Attacks on MACs

A (badly implemented) verification oracle
• Compares output of MAC byte by byte
• (and returns as soon as a byte differs)

Mallory has access to verification oracle, aims at universal forgery

(Given arbitrary message (pirated code), guess correct MAC)
1. For Bi try all 256 possible values
2. Measure time until rejection (comparison per byte 2.2ms)

For 16 byte MAC (2128), how many attempts do you need? 
07.02.2018

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Vorführender
Präsentationsnotizen
Lock-picking attempt: 
 - if a byte is verified correctly, the algorithm starts comparing byte i+1, 
 - if it it‘s rejected, process terminates one verification step earlier (byte i not equal -> reject)

16*256 -> 4096 attempts

XBOX 360 hack
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Concluding: Security through MACs

MACs verify integrity of messages
S(k,m) ; V(k,m,t)  secret key must be used, known to verifier

MAC hard to forge without secret key, but integrity purely mutual:
• Once key is disclosed, receiver can create arbitrary new tags!
• ⇒ Proof of origin not towards third parties (no non-repudiation!)

But to achieve this, we first have to understand keys better…

07.02.2018
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Summary

You can explain the goals and ideas of message integrity

You know different adversary and security models for MACs

You have seen different constructions of hash functions

You specifically can explain the Merkle-Damgard construction, MD5, SHA-1

You know how to create collisions (and why that‘s bad)

You can explain how to create secure MACs from hash functions and PRFs

You can construct and explain the details of CBC, and HMAC
07.02.2018
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