

Prof. Dr. Mathias Fischer Winter term 2020/2021

Resilient Networks

Network Monitoring and Intrusion Detection

Outline

- Goals of IDS
- Requirements to an IDS
- Classification of IDS
 - Signature-based Detection
 - Policy-based Detection
 - Anomaly Detection
- Problems of IDS
- Alert Correlation
- Cyber-Killchain
- IDS Evasion

69% victims notified by external entity

Goal of Intrusion Detection/Prevention Systems

- Overall goal:
 - Intrusion Detection Systems (IDS)
 Supervision of computer systems and communication infrastructures to detect intrusions and misuse
 - Intrusion Prevention Systems (IPS)
 Detect and stop intrusion/misuse

Why detection of attackers?

- Full protection not possible!
- Security measures too expensive or too inflexible
- Wrong postulates about attacker capabilities (NSA!?)
- Unpatched systems for compliance reasons
- ...

What can be attained with intrusion detection?

- Detection of attacks and attackers + detection of system misuse
- Limitation of damage if (automated) response mechanisms exist
- Gain of experience to recover from attack, improve preventive measures
- Deterrence of other potential attackers (if police is able to arrest them!)

Requirements to Intrusion Detection Systems

- Easy to integrate into a system / network
- Easy to configure & maintain
- Autonomous and fault tolerant operation
- Low resource requirements
- Self-protection, so that IDS cannot be deactivated by deliberate attack (to conceal subsequent attacks)
- High accuracy (= low rate of false positives and false negatives)

Detection Quality

Operation of Intrusion Detection/Prevention Systems

SIEM = Security Information and Event Management

Types of Audit Data

- Events recorded in a computer system:
 - Opening of files
 - Execution of programs
 - Detected access violation
 - Failed password verification
 - etc.

Events recorded in a network:

- Connection establishment and release
- Packets transferred from / to specific systems / ports
- Specific signaling events, e.g. ICMP network unreachable message, etc.

Application specific events:

- Have to be programmed for a specific application
- Events are application specific and indicate security relevant activities

Classification of IDS

Scope

- Host-based: analysis of system events
- Network-based: analysis of exchanged information (IP packets)
- Hybrid: combined analysis of system events and network traffic
- Time of analysis
 - Post mortem analysis
 - Online analysis

Detection mechanism

- Signature-based
- Policy-based / Misuse-based / Anomaly-based

Types of IDS (1) – Host IDS

Host Intrusion Detection Systems (HIDS)

- Works on information available on a system, e.g., OS-Logs, application-logs, timestamps
- Can easily detect attacks by insiders, as modification of files, illegal access to files, installation of Trojans or rootkits

Problems:

- has to be installed on every system
- produces lots of information
- often no real-time-analysis but predefined time intervals
- hard to manage a large number of systems

osquery> SELECT uid, name FROM listening_ports 1, processes p WHERE 1.pid=p.pid;

Example of a Host-Monitor – Osquery (1)

- Allows to use OS as high-performance relational database
 - SQL tables representing abstract concepts
- Power of complete SQL language on top of dozens of useful tables

processes				Tables	
All running processes on th	e host system.			- All Platfo	• running processes
Column	Туре	Description		carbon_bla	ck_info
pid	BIGINT_TYPE	Process (or thread) ID		chrome_ext	 logged in users
name	TEXT_TYPE	The process path or shorthand argv[0]		etc_hosts	
path	TEXT_TYPE	Path to executed binary		etc_protoco	password changes
cmdline	TEXT_TYPE	Complete argv		etc_service	s Intrasses
state	TEXT_TYPE	Process state		interface_d	
cwd	TEXT_TYPE	Process current working directory		kernel_info	firewall excentions
root	TEXT_TYPE	Process virtual root directory		listening_po	
uid	BIGINT_TYPE	Unsigned user ID		platform in	 listening norts
gid	BIGINT_TYPE	Unsigned group ID		process_op	en_sockets
euid	BIGINT_TYPE	Unsigned effective user ID		processes	•
egid	BIGINT_TYPE	Unsigned effective group ID		system_info	,
suid	BIGINT_TYPE	Unsigned saved user ID		users	
sgid	BIGINT_TYPE	Unsigned saved group ID	usb_devices		
on_disk	INTEGER_TYPE	The process path exists yes=1, no=0, unknown=-1	USB devices that are active	ely plugged into th	ne host system.
wired_size	BIGINT_TYPE	Bytes of unpagable memory used by process	Column	Туре	Description
resident_size	BIGINT_TYPE	Bytes of private memory used by process	usb_address	INTEGER_TYPE	USB Device used address
total_size	BIGINT_TYPE	Total virtual memory size	usb_port	INTEGER_TYPE	USB Device used port
user_time	BIGINT_TYPE	CPU time spent in user space	vendor	TEXT_TYPE	USB Device vendor string
system_time	BIGINT_TYPE	CPU time spent in kernel space	vendor_id	TEXT_TYPE	Hex encoded USB Device vendor identifier
<pre>start_time</pre>	BIGINT_TYPE	Process start in seconds since boot (non-sleeping)	model	TEXT_TYPE	USB Device model string
parent	BIGINT_TYPE	Process parent's PID	model_id	TEXT_TYPE	Hex encoded USB Device model identifier
pgroup	BIGINT_TYPE	Process group	serial	TEXT_TYPE	USB Device serial connection
threads	INTEGER_TYPE	Number of threads used by process	removable	INTEGER_TYPE	1 If USB device is removable else 0
nice	INTEGER_TYPE	Process nice level (-20 to 20, default 0)			
select * from processes w	here pid = 1				

Example of an Host-Sensor - Osquery (2)

- High-performance and low-footprint distributed host monitoring
 - To query the system in an abstract way
 - Independent of OS, software or hardware configuration
- Host monitoring daemon
 - allows to schedule queries to be executed across entire infrastructure
 - takes care of aggregating query results over time and generates logs which indicate state changes in the infrastructure
- Cross platform operating system instrumentation framework for
 - intrusion detection,
 - infrastructure reliability
 - or compliance monitoring

Only monitoring, no intrusion detection capabilities on its own

Types of IDS (2) – Network IDS

Network Intrusion Detection System (NIDS)

- Works on information provided by network, mainly packets sniffed from network layer.
- Existing systems use combination of
 - signature detection,
 - protocol decoding,
 - statistical anomaly analysis
- Can detect DoS with buffer overflow attacks, invalid packets, attacks on application layer, DDoS, spoofing attacks, port scans
- Often used on network hubs to monitor a segment of the network

Network IDSs

SIEM = Security Information and Event Management ¹⁴

Signature Detection

- Basic idea
 - Some attack patterns can be described with sufficient detail
 → specification of "attack signatures"
 - The event audit analyzed if it contains known attack signatures
- Identifying attack signatures
 - Analyzing vulnerabilities
 - Analyzing past attacks that have been recorded in the audit
- Specifying attack signatures
 - Based on identified knowledge so-called rules describing attacks are specified
 - Most IDS offer specification techniques for describing rules
- Drawbacks of signature-based detection
 - Requires prior knowledge of potential attacks
 - Signature database requires continuous updating
 - High rate of false negatives if signature database is not up to date

Signature Detection – Example: Snort (1)

Network IDS and intrusion prevention system

- Analysis of IP packets in real time
- Mainly signature based, each intrusion needs a predefined rule

alert tcp \$HOME_NET any -> any 9996 \ (msg:"Sasser ftp script to transfer up.exe"; \ content:"|5F75702E657865|"; depth:250; flags:A+; classtype: misc-activity; \ sid:1000000; rev:3)

Three step processing of captured information (capturing is done by libpcap):

- Preprocessing (normalizing and reassembling packets)
- Detection Engine works on data and decides what action should be taken
- Action (log, alert, pass)

Policy-based Detection

Also called misuse-based detection

Basic Idea

- Specify what is allowed in a network and/or what is forbidden
- Violations create alerts
- In that sense, similar to a Firewall

Drawbacks

- You can only detect what you configured / what deviates from what you have configured
- Needs expert knowledge of the system to be protected

Policy-based Detection – Example: Zeek (1)

- Primary a network monitoring tool
- Can be used for pure traffic analysis
- Powerful IDS

Focus on

- Application-level semantic analysis
- Policy-based detection in protocols
- Tracking information over time
- Zeek comes with >10,000 lines of script code
 - Prewritten functionality that's just loaded
 - Extensive customization and extension possible
 - Growing community writing 3rd party scripts
- Intrusion prevention
 - Zeek can act as dynamic and intelligent firewall


```
> zeek -i eth0
[ ... wait ... ]
> ls *.log
app_stats.log
communication.log
dhcp.log
dhcp.log
dns.log
dpd.log
files.log
ftp.log
http.log
```

irc.log
known_certs.log
known_hosts.log
known_services.log
modbus.log
notice.log
reporter.log
signatures.log
smtp.log

socks.log
software.log
ssh.log
ssl.log
syslog.log
traceroute.log
tunnel.log
weird.log

> zeek -i eth0					
[wait]					
> cat conn.log					
<pre>#separator \x09</pre>					
<pre>#set separator ,</pre>					
<pre>#empty field (e</pre>	mpty)				
#unset_field -					
<pre>#path conn</pre>					
#open 2013-04-28	-23-47-26				
#fields ts	uid	id.orig_h	id.orig_p	id.resp_h	[]
#types time	string	addr	port	addr	[]
1258531221.486539	arKYeMETxOg	192.168.1.102	68	192.168.1.1	[]
1258531680.237254	nQcgTWjvg4c	192.168.1.103	37	192.168.1.255	[]
1258531693.816224	j4u32Pc5bif	192.168.1.102	37	192.168.1.255	[]
1258531635.800933	k6kgXLOoSKl	192.168.1.103	138	192.168.1.255	[]
1258531693.825212	TEfuqmmG4bh	192.168.1.102	138	192.168.1.255	[]
1258531803.872834	50Knoww6x14	192.168.1.104	137	192.168.1.255	[]
1258531747.077012	FrJExwHcSal	192.168.1.104	138	192.168.1.255	[]
1258531924.321413	0 0 0 1	100 100 1 100	<u> </u>	100 100 1 1	

[...]

ts	1393099191.817686	Timestamp
uid	Cy3S2U2sbarorQgmw6a	Unique ID
id.orig_h	177.22.211.144	Originator IP
id.orig_p	43618	Originator Port
id.resp_h	115.25.19.26	Responder IP
id.resp_p	25	Responder Port
proto	tcp	IP Protocol
service	smtp	App-layer Protocol
duration	1.414936	Duration
orig_bytes	9068	Bytes by Originator
resp_bytes	4450	Bytes by Responder
conn_state	SF	TCP state
local_orig	Т	Local Originator?
missed_bytes	0	Gaps
history	ShAdDaFf	State History
tunnel_parents	(empty)	Outer Tunnels

ts	1393099291.589208
uid	CKFUW73bIADw0r9pl
id.orig_h	17.22.7.4
id.orig_p	54352
id.resp_h	24.26.13.36
id.resp_p	80
method	POST
host	com-services.pandonetworks.com
uri	/soapservices/services/SessionStart
referrer	-
user_agent	Mozilla/4.0 (Windows; U) Pando/2.6.0.8
status_code	200
username	anonymous
password	-
orig_mime_types	application/xml
resp_mime_types	application/xml

Zeek Logs (5) – ssl.log

ts	1392805957.927087
uid	CEA0512D7k0BD9Dda2
id.orig_h	2a07:f2c0:90:402:41e:c13:6cb:99c
id.orig_p	40475
id.resp_h	2406:fe60:f47::aaeb:98c
id.resp_p	443
version	TLSv10
cipher	TLS_DHE_RSA_WITH_AES_256_CBC_SHA
server_name	www.netflix.com
subject	CN=www.netflix.com,OU=Operations, O=Netflix, Inc.,L=Los Gatos, ST=CALIFORNIA,C=US
issuer_subject	CN=VeriSign Class 3 Secure Server CA, OU=VeriSign Trust Network,O=VeriSign, C=US
not_valid_before	1389859200.000000
not_valid_after	1452931199.000000
client_subject	-
client_issuer_subject	
cert_hash	197cab7c6c92a0b9ac5f37cfb0699268
validation_status	ok

Our Work: zeek-osquery (1)

- Attributes network to host activity
- Joint processing of host-events and network data in Zeek scripts

How effective is zeek-osquery in the attribution of connections to processes? Is zeek-osquery scalable with an increasing amount of osquery hosts?

Our Work: zeek-osquery (2) - Evaluation

Test run on 11 office machines during three days:

Attribution of network flows to processes

Prot.	# Flows	Zeek	zeek-osquery
All	334.366	0,06%	86,61%
ТСР	273.241	0,07%	96,05%
UDP	70.929	0%	50,43%

	zeek-osquery	
1	Firefox	23,17%
2	Thunderbird	12,30%
3	Spotify	6,11%
4	Opera	5,41%
5	Syncthing	5,39%
6	Chromium	4,55%
7	Skype	3,86%
8	Seafile	3,80%
9	Chrome	3.56%

zeek-osquery enhances the visibility of Zeek and can attribute connections to processes and users!

Scalability: CPU and RAM utilization at Zeek host

- One Zeek instance, varying number hosts
- 2 events per second per host

Further application scenarios of zeek-osquery/zeek-agent

- Transparent decryption of TLS connections
- Detection of malicious file attachements in Emails + information if user opened the attachement
- Detection of SSH chain logins

- ...

Anomaly Detection (1)

Basic idea – detect behavior that differs significantly from normal use:

- Users have certain habits in their system usage:
 - Duration of usage
 - Login times
 - Amount of file system usage
 - Executed programs, accessed files, ...
- Assumption: "normal user behavior" can be described statistically
 - Requires a learning phase / specification of normal behavior
 - Most approaches require labeled data
- Analysis:
 - compares recorded events with reference profile of normal behavior
- Advantage:
 - An attack scenario needs not to be defined a priori
 - This approach can, in principle, detect unknown attacks

Anomaly Detection (2)

- "Flash crowd anomalies"
 - Caused by software releases or special interest in a web site

Anomaly Detection (3)

- Network abuse anomalies
 - DoS flood attacks
 - Port scans

Generic anomaly detection system

Problems of IDS – Audit Data

- Amount of log data
 - Auditing often generates a rather high data volume
 - Significant storage capacities are required
 - Processing of audit data should be automated as much as possible
- Location of audit data storage
 - Alternatives: on specific "log server" or the system to be supervised
 - If stored on log server, data must be transferred to this server
 - If stored on system to be supervised, the log uses significant amounts of resources of the system

Protection of audit data

- If a system gets compromised, audit data stored on it might get compromised either
- Expressiveness of audit data
 - Which information is relevant?
 - Audits often contain a rather low percentage of useful information

Problems of IDS – Privacy (data protection)

- User identifying data elements are logged, e.g.,
 - Directly identifying elements: user IDs
 - Indirectly / partly identifying elements: names of directories and subdirectories (home directory), file names, program names
 - Minimally identifying elements: host type + time + action, access rights + time + action
- IDS audits may violate the privacy of users
 - Violation of the user's right to determine himself which data is collected regarding his person
 - Collected information might be abused if not secured properly
 - Recording of events puts a psychological burden on users
 (→ "big brother is watching you")

Potential solution

 Pseudonymous audit: log activities with user pseudonyms and ensure, that they can only be mapped to user IDs upon incident detection

Problems of IDS - Analysis

- Limited efficiency of analysis
 - Most IDS follow a centralist approach for analysis: so-called agents collect audit data and one central evaluation unit analyzes this data
 - \Rightarrow No (partial) evaluation in agents
 - \Rightarrow Performance bottleneck
 - Insufficient efficiency, especially concerning attack variants and attacks with parallel actions

High number of false positives

- In practice, many IDS report too many false alarms (some publications report up to 10.000 per month)
- Potential countermeasure: alert correlation (\rightarrow hierarchical approach)

The bigger Picture of an Attack - Alert Correlation

- Distributed attacks and multi-step attacks result in large number of alerts
- Temporal and spatial distribution of attacks possible
- Alert aggregation and correlation required
- Operates in three phases
 - 1. Filtering of alerts
 - 2. Clustering/Grouping of alerts, e.g., according to alert attribute similarities
 - 3. Cluster/group interconnection to assemble multi-step attacks
- Most correlation algorithms only cover the first two phases
- Most can only correlate bulk attacks, e.g., DDoS, port scans, worm spreadings

Alert Level – Alert Correlation Process

Attack Interconnection

Multi-step Attacks e.g., Port-Scan -> Targeted attack

Context Supplementation

Distributed Attacks DDoS, Distributed Port-Scans, Worm spreadings ...

Alert Clustering

Alert attributes Src IP, Dst IP Src Port, Dst Port ...

Alerts from <u>Network-</u> or Host IDS

Cyber Kill Chain (1)

- Proposed by Lockheed Martin in 2011
- Targets Advanced Persistent Threats (APTs)
- 7 consecutive stages that describe the attack campaign
- Inflexible and oversimplified when compared to known attacks

With 'Hands on Keyboard' access, intruders accomplish their original goals

[HuCl10]

Cyber Kill Chain (2) - Variations

- Several adaptions of the original kill chain
 - By domain (industrial systems, insider attacks..)
 - For increased flexibility (new and optional stages)
- More focus on zone breaching and lateral movement and host activity
- Unified Kill Chain (UKC) as most comprehensive model
 - 18 (partially optional) stages
 - Based on literature review and case studies

#	Unified Kill Chain
1	Reconnaissance
2	Weaponization
3	Delivery
4	Social Engineering
5	Exploitation
6	Persistence
7	Defense Evasion
8	Command & Control
9	Pivoting
10	Discovery
11	Privilege Escalation
12	Execution
13	Credential Access
14	Lateral Movement
15	Collection
16	Exfiltration
17	Target Manipulation
18	Objectives

Our Work: Kill Chain State Machine (1)

[WiOr+21]

Our Work: Kill Chain State Machine (2)

- State machine derived from UKC
 - − Alerts \rightarrow Transitions
 - Stages: Campaign progress

Detection algorithm

- 1. Maps alerts to transitions
- 2. Connect transitions based on SM
- 3. Deduplicate and optimize chains
- Prioritize scenarios based on length/complexity
- Currently network only, but extensible to other alert types

[WiOr+21]

Our Work: Kill Chain State Machine (3) - Evaluation

- CSE-CIC-IDS2018 Dataset
- Realistically embedded (artificial) APT campaign

Property	Value
# Subnets/Zones	6 + Internet
# Target Hosts	450
# Attacker Hosts	50
# Connections	63 973 325
# (unrelated) attacks	7
Duration	10 days
Size in GB	559
ize in GB	559

Table III. CSE-CIC-IDS2018: OVERVIEW

Table IV. IDS2018-APT: CAMPAIGN OVERVIEW

1 EternalRomance RCE 1.1.13.37 172.31.64.6	Day	Attack	Source	Target
1 2nd stage trojan download 172.31.64.67 12.34.12.3 4 Cosmic Duke C&C 172.31.64.67 1.1.14.4 8 PS-EXEC via SMB 172.31.64.67 172.31.69.2 10 Description 172.31.64.67 172.31.69.2	1	EternalRomance RCE	1.1.13.37	172.31.64.67
	1	2nd stage trojan download	172.31.64.67	12.34.12.34
	4	Cosmic Duke C&C	172.31.64.67	1.1.14.47
	8	PS-EXEC via SMB	172.31.64.67	172.31.69.20

Our Work: Kill Chain State Machine (4) - Evaluation

		I	DS2018-APT-M	IN	II	DS2018-APT-FU	LL
Source	Alert Type	# Alerts	APT related	Ratio	# Alerts	APT related	Ratio
ult	Conn::Retransmission_Inconsistency	1 171	0	0	1 171	0	0
lefa	Scan::Address_Scan	1 555	0	0	1 555	0	0
g	Scan::Port_Scan	38	0	0	38	0	0
sel	SSH::Password_Guessing	120	0	0	120	0	0
N	SSL::weak_Key	120	0	0	120	0	0
8	Custom::Stalled_HTTP_Connection	4976	0	0	4 976	0	0
ipt	Custom::HTTP_Windows_Executable_Download	13	0	0	13	0	0
Scr	Custom::NON_HTTP_Windows_Executable_Download	8	2	0.25	8	2	0.25
.0	Custom::SMB_Executable_File_Transfer	1	1	1.00	1	1	1.00
nar	Custom::Javascript_Web_Injection_URI	5934	0	0	5 934	0	0
cei	Custom::SQL_Web_Injection_URI	79	0	0	79	0	0
n S	Custom::Web_Login_Guessing	14	0	0	14	0	0
ton	Custom::Large_Outgoing_Tx	5772	0	0	5772	0	0
Cus	Custom::Multiple_Large_Outgoing_Tx	187	0	0	187	0	0
0	Custom::Very_Large_Outgoing_Tx	10	1	0.10	10	1	0.10
R	ATTACK::Execution	_	_	_	2	2	1.00
ZA	ATTACK::Lateral_Movement	_	—	_	4	4	1.00
B	ATTACK::Lateral_Movement_and_Execution	_	—	_	1	0	0
itre	ATTACK::Lateral_Movement_Extracted_File	_	_	_	1	1	1.00
X	ATTACK::Lateral_Movement_Multiple_Attempts	_	_	_	245	0	0
	EternalSafety::DoublePulsar	_	_	_	1	1	1.00
rgy	EternalSafety::EternalBlue	_	—	_	53	0	0
'ne	EternalSafety::EternalSynergy	_	_	_	1	1	1.00
(Sl	EternalSafety::ViolationCmd	_	_	_	1 389	0	0
ma	EternalSafety::ViolationNtRename	_	_	_	8731	0	0
Ite	EternalSafety::ViolationPidMid	_	_	_	6133	0	0
I	EternalSafety::ViolationTx2Cmd	_	—	_	408 686	1	0.000002
	Total	19 883	3	0.000151	445 130	13	0.000029

Evasion Techniques to Bypass IDS

Signature Evasion

- Attack Obfuscation
- Packet Splitting
- Duplicate Insertion
- Packet Overlapping

Anomaly Evasion

- Training Data Injection
- Mimicry Attacks
- Covert Channel Attacks

Signature Evasion - Attack Obfuscation

- Transformation of malicious code into semantically equivalent one
- As the signature will defer from the original it will not be detected

Depending on the level of mutation

- Payload mutation
 - Change the signature of the payload of the packet
- Shellcode mutation
 - Obfuscate the shellcode with polymorphic techniques
 - Easily done via popular penetration testing tools like Metasploit Framework

- Aim to hide very existence of communication
- Using means of communication not normally intended to be used for it
- Covert channels similar to techniques hiding information in audio, visual, or textual content (steganography)
 - Steganography requires some form of content as cover
 - Covert channels require some network protocol as carrier
- Covert channels as method to evade IDS

Covert Channel Attacks – Techniques (1)

- Unused header bits, header extensions and padding
- IP identification and fragment offset
- TCP initial sequence number field
- Checksum field

. . .

- Modulating the IP TTL field
- Modulating address fields and packet lengths
- Modulating timestamp fields
- Packet rate and timing
- Message sequence timing
- Packet loss and packet sorting
- Application protocols, .e.g., HTTP or DNS

Covert Channel Attacks – Techniques (2)

Packet rate and packet timing

- Encode covert information by varying packet rates
 - equivalent to modulate packet timing
- Covert sender varies packet rate between two (binary channel) or multiple packet rates each time interval
- Binary channel can transport one bit and multi-rate channel can transmit log₂ r bits per time interval (r is number of different packet rates)

- IDS
 - Signature-based vs. policy-based vs. anomaly-based IDS
 - In combination with Firewalls: IPS
 - Classification according to kind of sensors deployed, level of distribution

IDS problems

- Huge amounts of data to process
- Limited accuracy and large number of false positives
- Privacy
- IDS evasion techniques
- Alert correlation to obtain the bigger picture of attacks
 - Alert correlation process
 - Cyber Kill Chain and Alert Correlation

Additional References

[Zwi00a]	E. Zwicky, S. Cooper, B. Chapman. Building Internet Firewalls. Second Edition, O'Reilly, 2000.
[Sem96a]	C. Semeria. Internet Firewalls and Security. 3Com Technical Paper, 1996.
[Wack95a]	J. P. Wack, L.J. Carnahan. <i>Keeping Your Site Comfortably Secure: An Introduction to Internet Firewalls.</i> NIST Special Publication 800-10, 1995.
[StaBro08]	William Stallings and Lawrie Brown. Computer Security: Principles and Practice. Prentice Hall Press, Upper Saddle River, NJ, USA, 2nd edition, 2008.
[Bar01]	P. Barford, D. Plonka, Characteristics of Network Traffic Flow Anomalies. Proceedings of ACM SIGCOMM Internet Measurement Workshop, October 2001.
[Chan09]	Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2009. "Anomaly Detection: A Survey." ACM Computing Surveys 41 (3) (July 1): 1–58. doi:10.1145/1541880.1541882.
[Man2015]	Mandiant, M-Trends [®] 2015: A View from the Front Lines <u>https://www2.fireeye.com/WEB-</u> 2015-MNDT-RPT-M-Trends-2015_LP.html
[Sym2016]	Symantec, Internet Security Threat Report, 2016, <u>https://www.symantec.com/security-</u> <u>center/threat-report</u>
[Yo2012]	Yves Younan, 25 Years of Vulnerabilities: 1988-2012, RESEARCH REPORT, Sourcefire Vulnerability Research Team (VRT)
[Pa99]	V. Paxson, "Bro: a system for detecting network intruders in real-time," in USENIX Security Symposium, 1999, vol. 7, pp. 1–22.
[VaKa+15]	E. Vasilomanolakis, S. Karuppayah, M. Muehlhaeuser, and M. Fischer, "Taxonomy and Survey of Collaborative Intrusion Detection," ACM Computing Surveys, pp. 1–35, 2015.

Additional References

[Ju03]	Julisch, K. (2003). Clustering intrusion detection alarms to support root cause analysis. ACM Transactions on Information and System Security (TISSEC), 6(4), 443–471. https://doi.org/10.1145/950191.950192
[Han92]	HAN, J., CAI,Y., AND CERCONE, N. 1992. Knowledge discovery in databases: An attribute- oriented approach. In 18th International Conference on Very Large Databases, 547–559
[ZhoLe+10]	C. V. Zhou, C. Leckie, and S. Karunasekera, "A survey of coordinated attacks and collaborative intrusion detection," Comput. Secur., vol. 29, no. 1, pp. 124–140, 2010.
[HuCl10]	E.M. Hutchins, M.J. Cloppert and R.M Amin PH.D., "Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains," Proc. 6th Int'l Conf. Information Warfare and Security(ICIW 11), Academic Conferences Ltd., 2010, pp. 113– 125; http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM- White-Paper-Intel-Driven-Defense.pdf
[WiOr+21]	F. Wilkens, F. Ortmann, S. Haas, M. Vallentin, and M. Fischer, "Multi-Stage Attack Detection via Kill Chain State Machines," Submitted to: ACM Conference on Computer and Communications Security (CCS), 2021.
[HaFi18]	S. Haas and M. Fischer, "GAC: Graph-Based Alert Correlation for the Detection of Distributed Multi-Step Attacks", ACM Symposium on Applied Computing (SAC), 2018.
[HaFi+19]	S. Haas and M. Fischer, "On the alert correlation process for the detection of multi-step attacks and a graph-based realization", ACM SIGAPP Applied Computing Review 19, 1 (April 2019), 5-19