
DNSSEC + DANE
Andres Marin

Colab. with Prof. Strufe



Securing DNS Cryptographically

▪ Securing DNS has different goals:

• DNS transaction security
▪ Peer/message authentication

• DNS data security
▪ Data origin authentication

▪ Authenticated denial of existence



Transaction Authentication (TSIG)

▪ Idea:

▪ Use signatures to secure data at zone transfer master 🡪 slave

▪ Pre shared symmetric key at each entity

▪ MD5 Hash used as signature

▪ TSIG Resource Record:
(Name, Type (“TSIG”), Class (“ANY”), TTL(“0”), Length, Data(<signature>))

▪ Possibility to authenticate, but very complex to administrate in large domains (manual pre-sharing of 
keys)

▪ amount of keys required: 

▪ Main application areas: 
▪ Secure communication between stub resolvers and security aware caching servers (?)

▪ Zone transfers (master 🡪 slave)

▪ Combined with nsupdate in data centers, to update stale information in caches

[Vixie et. al: „RFC 2845: Secret Key Transaction Authentication for 

DNS“]



DNS Security (DNSSEC) – Objectives

▪ DNS security objectives:
▪ End-to-end zone data origin authentication and integrity

▪ Detection of data corruption and spoofing

▪ DNSSEC does not (want to) provide:
▪ DoS-Protection (in fact, it facilitates DoS Attacks on DNS servers)

▪ Data delivery guarantees (availability)

▪ Guarantee for correctness of data (only that it has been signed by some authoritative entity)

[Arends et. al: „RFC 4033: DNS Security Introduction and Requirements“]

[Eastlake: „RFC 2535: Domain Name System Security Extensions“ (obsolete)]

[RFCs:4033,4034,4035,4310,4641]



DNSSEC
▪ Usage of public key cryptography to allow for data origin authentication on a world wide scale

• RRSets (groups of RRs) signed with private key of authoritative entities

• Public keys (DNSKEYs) published using DNS

• Distinguish zone signing key (ZSK) and key signing key (KSK) (SEP-Secure Entry Point)

• Child zone keys are authenticated by parents and hence anchored trust chains established

• Only root zone key signing key (KSK) needed (manual distribution) to create complete trust hierarchy (in theory)

• How/Why shall we trust root zone key?

• Until then: islands of trust with manually shared anchor keys

• No key revocation 🡪 DNSSEC keys should have short expiration date (quick rollover)



DNSSEC – Targeted Threats

Zone

File

Dynamic 

updates

Auth 

Server

Slave

s

Caching 

Server

Resolve

r

Cache

Pollution

Cache

Impersonation

Altered Zone 

Data



DNSSEC – Means of Securing RRSets

▪ Goal: authenticity and integrity of Resource Record Sets

▪ Means:
▪ Public Key Cryptography (with Trust Chains)

▪ Security integrated in DNS (new RRs)

▪ New Resource Record Types:
▪ RRSig: signatures of RRs

▪ DNSKEY: public keys

▪ DS: for trust chaining (trust anchor signs key of child zone) 

▪ NSEC: pointer to next secure name in canonical order 
(authenticated denial for requested zone)



DNSSEC – New Resource Records: RRSIG
▪ Resource Record for transmission of signatures

▪ RRSIG:

▪ Name – name of the signed RR

▪ Type – RRSIG (46)

▪ Algorithm – MD5(1), Diffie-Hellman(2), DSA (3)

▪ Labels – number of labels in original RR (wildcard indication)

▪ TTL – TTL at time of signature inception

▪ Signature Expiration – End of validity period of signature

▪ Signature Inception – Beginning of validity period of signature

▪ Key Tag – ID of used key if signer owns multiple keys

▪ Signer’s Name – Name of the signer

▪ Signature – Actual Signature



RRSIG signature

▪ signature = sign(RRSIG_RDATA | RR(1) | RR(2)... )

▪ RRSIG_RDATA= all the fields but the signature
Name | type | alg | labels | TTL | sig_exp | sig_inc | key tag | signer’s name

▪ RR(i) = owner | type | class | TTL | RDATA length | RDATA



DNSSEC – New Resource Records: DNSKEY

▪ Resource Record containing public keys for distribution

▪ DNSKEY: (Label, Class, Type, Flags, Protocol, Algorithm, Key)

▪ Label – Name of key owner

▪ Class – Always: IN (3)

▪ Type – DNSKEY

▪ Flags – key types: Key Signing Key (257) or Zone Signing Key (256)

▪ Protocol – Always DNSSEC (3)

▪ Algorithm – RSA/MD5(1), Diffie-Hellman(2), DSA/SHA-1(3), elliptic curves(4), 
RSA/SHA-1(5)

▪ Key – Actual key



DNSSEC – New RRs: Delegation Signer (DS)

▪ DS contains hash-value of DNSKEY of the name server of a sub zone

▪ Together with NS Resource Record, DS is used for trust chaining

▪ DS: (Name, Type, Key Tag, Algorithm, Digest Type, Digest)

▪ Name – Name of the chained sub zone

▪ Type – DS

▪ Key Tag – Identification of the hashed key

▪ Algorithm – RSA/MD5(1), Diffie-Hellman(2), DSA(3) (of referred 
DNSKEY)

▪ Digest Type – SHA-1(1), SHA-256(2)

▪ Digest – Actual value of hashed DNSKEY



DNS – Authority Delegation and Trust Chaining

▪ Data can be trusted if signed by a ZSK

▪ ZSK can be trusted if signed by a KSK

▪ KSK can be trusted if pointed to by trusted DS record

▪ DS record can be trusted if
▪ Signed by parents ZSK

▪ Signed by locally configured trusted key

Trust 

Anchor Parent 

Zone

DS pointing to child 

zone

Signature with 

KSK

Signature with 

ZSK

Child 

Zone

TXT 

resource

Signature with 

KSK

Signature with 

ZSK



DNS – Authority Delegation and Trust Chaining (Example)

Trusted Key

(locally configured)

Parent 

Zone

child NS

ns.child

DS (…) 

<KSK-id>

RRSIG DS 

(…) parent.

@NS

ns

DNSKEY (…) <KSK-id>

DNSKEY (…) <ZSK-id>

RRSIG dnskey (…)<KSK-id> 

parent.

RRSIG dnskey (…)<ZSK-id> 

child.parent.

ns A 10.5.1.2

RRSIG A (…) <ZSK-id> 

child.parent.

www A 10.5.1.3

RRSIG A (…) <ZSK-id> 

child.parent.

Child 

Zone



DNSSEC – New Resource Records: NSEC

▪ Next Secure (NSEC) gives information about the next zone / sub domain in 
canonical order (last entry points to first entry for the construction of a closed 
ring)

▪ Gives the ability to prove the non-existence of a DNS entry: Authenticated 
Denial

▪ NSEC (Name, Type, Next Domain)
▪ Name – Name of the signed RR

▪ Type – NSEC (47)

▪ Next Domain – Name of the next domain in alphabetical order

▪ Allows adversary to crawl entire name zone (“zone walking”)



DNSSEC – New RRs: NSEC3 (1)
▪ Successor to NSEC: NSEC3 and NSEC3PARAM

▪ Uses hashed domain names to make zone walking more difficult

▪ Hashing based on salt and multiple iterations to make dictionary attacks more difficult

▪ NSEC3
▪ Name – Name of the signed RR

▪ Type – NSEC3 (50)

▪ Hash Algorithm – SHA-1 (1)

▪ Flags – To Opt-Out unsigned names

▪ Iterations – Number of iterations of Hash Algorithm

▪ Salt Length – Length of the salt value

▪ Salt – Actual salt value

▪ Hash Length – Output length of hash function

▪ Next Hashed Owner Name – Next Hash of domain name in alphabetical order



DNSSEC – New RRs: NSEC3 (2)

▪ Potential advantage: Salting and hashing does not allow for easily 
deducting hostnames from zone walks

▪ Problem: 
▪ Hostnames usually have very low entropy (to remember them)

▪ Easy dictionary attacks - despite the usage of salts & iterations

▪ But not used heavily anyways:
▪ .: Uses NSEC

▪ .com: No salt, No iterations

▪ .de: Static salt BA5EBA11, 15 Iterations



DNSSEC: NSEC5 / Record Type Denial

▪ Provide authenticated denial of existence without leaking names requires 
online signing.

▪ Providers do not want to trust the DNS servers with keys…

▪ Cloudflare Record Type Denial

• Send positive response but deny requested record type

[Goldberg et al.: NSEC5: Provably Preventing DNSSEC Zone Enumeration]



DNSSEC Issues

▪ Pro’s:
▪ DNSSEC allows to prevent unauthorized/spoofed DNS records 

▪ Con’s:
▪ Added complexity (signing, checking, key distribution) eases DoS attacks on DNS servers

▪ Zones need to be signed completely (performance challenge for large companies or registries)

▪ Authenticated denial with NSEC gives the possibility to “walk” the chain of NSEC and to gain 
knowledge on the full zone content (all zones/ sub domains) in O(N) ==> NSEC3, …

▪ Distribution of anchor keys still a manual task (allows for human error, social engineering)

Deployment:
▪ http://www.secspider.net/islands.html

▪ https://blog.apnic.net/2017/12/06/dnssec-deployment-remains-low/

▪ https://stats.labs.apnic.net/dnssec/XA

http://www.secspider.net/islands.html
https://blog.apnic.net/2017/12/06/dnssec-deployment-remains-low/
https://stats.labs.apnic.net/dnssec/XA


TLS authentication 

▪ Many applications use the certificate-based authentication in Transport Layer Security (TLS)
○ allow clients to authenticate server.
○ allow server and client to agree upon acceptable ciphersuite 

▪ Typically, authentication is based on PKIX certificate chains rooted in certificate authorities 
(CAs)

▪ What are the challenges in PKIX?
○ trust roots are configured out of band (depend on vendors)
○ DoS attacks to block certificate status verification
○ trusted CAs may be attacked and misbehave



TLS authentication 
▪ Authentication is often based on PKIX certificate chains rooted in certificate authorities (CAs)

PKIX challenges
○ trust roots are configured out 

of band (depend on vendors)
○ DoS attacks to block 

certificate status verification
○ verification path building
○ trusted CAs may be attacked 

and misbehave
○ ...

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/


Certificates (privkey)stolen
▪ Adobe, Microsoft developer, ...



CAs attacked
▪ Comodo: fraud certs to mail.google.com, login.skype.com, addons.mozilla.org
▪ ...

https://www.hackmageddon.com/2011/12/10/another-certification-authority-breached-the-12th/


TLS authentication and DNSSEC 

▪ DNS-Based Authentication of Named Entities (DANE) supports TLS using DNSSEC

○ DANE provides information about the cryptographic credentials associated with a 
domain

○ Clients can increase the level of assurance they receive from the TLS handshake 
process

○ Not only https but any application

▪ Remember DNSSEC:
○ links a key to a domain name ○ TLS server name

○ verification path easier to build

○ hierarchical control

○ allows online access to signed keys 

○ keys associated to a domain must be 
signed by a key in the parent domain



DANE certificate usages

▪ Let Alice be the 
○ operator of a TLS-protected application service on the host h.alice.com, and
○ the administrator of the corresponding DNS zone.

▪ Given those actors, let’s review DANE certificate usages:
○ CA constraints (PKIX-TA) 
○ Service certificate constraints (PKIX-EE)
○ Trust anchor (DANE-TA) 
○ Domain-issued certificates (DANE-EE)

▪ Let Bob be a client connecting to h.alice.com.

▪ Let Charlie be a well-known CA that issues certificates with domain names as identifiers.



h.alice.com

x.x.x.x

root zone

com

alice.com

cert_req

h.alice.com

h.alice.com?

x.x.x.x

RRSIG

DANE reg:

CA constraint: 

Charly_CA

TLS handshake:

cert(h.alice.com)

cert(Charly_CA)

PKIX-TA



CA constraints: PKIX-TA

▪ Alice has a cert issued by Charly to h.alice.com
○ Alice fears that an attacker gets a cert issued by another well known CA to h.alice.com

■ Clients would accept it since it is valid
○ Alice wants all the clients to accept only Charly’s issued certs for h.alice.com
○ In the TLS handshake

■ the server includes Charlie's cert in the server Certificate message's certificate_list
○ Charly should also check the CA Constraint in Alice domain prior to issue the cert



h.alice.com

x.x.x.x

root zone

com

alice.com

cert_req

h.alice.com

h.alice.com?

x.x.x.x

RRSIG

DANE reg:

PKIX-EE 

cert(h.alice.com)

TLS handshake:

cert(h.alice.com)

PKIX-EE



Service Certificate Constraints: PKIX-EE

▪ Alice has a cert issued by Charly to h.alice.com
○ Alice fears that an attacker gets another cert issued by Charly to h.alice.com

■ Clients would accept it since it is valid
○ Alice wants all the clients to accept only the present cert she had been issued by Charly
○ in the TLS handshake

■ the server includes the cert issued by Charlie as the first in the certificate_list

▪ Similar as in CA Constraints, a successful attacker would need to
○ take control of DNS zone
○ tamper with the dnssec records
○ have a valid cert issued by Charly
○ modify the DANE records accordingly



h.alice.com

x.x.x.x

root zone

com

alice.com

cert_issue

h.alice.com

h.alice.com?

x.x.x.x

RRSIG

DANE reg:

CA constraint: 

Alice_CA

TLS handshake:

cert(h.alice.com)

cert(Alice_CA)

DANE-TA



Trust Anchor Assertion (DANE-TA) and 
Domain-Issued Certificates (DANE-EE)

▪ Alice runs her own CA to issue certificates to applications and hosts in her domain
○ Alice wants all the clients to accept only the certificates issued by her
○ in the TLS handshake

■ the server includes Alice’s self-signed CA cert as the first in the certificate_list
○ Besides adding the self-signed cert as a trust anchor, Alice can add it as CA Constraints

■ This way clients will only accept Alice issued certificates for the domain

▪ Such a trust anchor can be also used in the previous scenarios as a prerequisite for Charly 
to issue a cert to h.alice.com
○ The CA can check if the cryptographic key linked to the domain has been used to sign 

the certificate request or can be used to validate the signing key.

▪ How this relates to the use case where Alice wants to use a little known certificate 
autority? 



Delegated Services

▪ Suppose Oscar operates h.alice.com on behalf of Alice.
▪ Oscar has control over certificates to present in TLS handshakes for h.alice.com.

a. Alice has the A/AAAA records in her DNS and can sign them along with the DANE 
record, Oscar and Alice need tight coordination if the addresses and/or the certificates 
change.

a. Alice delegates a sub-domain name to Oscar, and has no control over the A/AAAA, 
DANE, or any other pieces under Oscar's control.

a. Alice can put DANE records into her DNS server but delegate the address records to 
Oscar's DNS server. 
■ Alice controls the usage of certificates
■ Oscar is free to move the servers around as needed
■ Coordination only needed when the certificates change (Always?)



TLSA record

▪ DANE performs its functions defining a new DNSSEC Resource Record named the TLSA
▪ The TLSA record gives information about a host in the domain:

a. the certificate usage: PKIX-TA (0), PKIX-EE(1), DANE-TA(2), DANE-EE(3)
b. the selector: the full cert (0) or just the public key info (1)
c. the matching type: Full (0), SHA2-256 (1), SHA2-512 (2)
d. data: full value or digest of the certificate or subject public key as determined by the 

matching type and selector

Example of PKIX-TA CERT SHA2-512:

_443._tcp.h.alice.com.  TLSA 0 0 2 {blob} 



Other proposals for DANE

▪ DANE can also be used for other purposes:
a. Distributing OpenPGP public keys RFC 7929

b. Associate Certificates with Domain Names for S/MIME RFC 8162

c. SMTP transport security RFC 7672

▪ Other resources:
a. https://weberblog.net/how-to-use-danetlsa/
b. https://weberblog.net/pgp-key-distribution-via-dnssec-openpgpkey/
c. https://dnssec-validator.cz/pages/documentation.html

https://tools.ietf.org/html/rfc7929
https://tools.ietf.org/html/rfc8162
https://tools.ietf.org/html/rfc7672
https://weberblog.net/how-to-use-danetlsa/
https://weberblog.net/pgp-key-distribution-via-dnssec-openpgpkey/
https://dnssec-validator.cz/pages/documentation.html

