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Securing DNS Cryptographically

▪ Securing DNS has different goals:

• DNS transaction security
▪ Peer/message authentication

• DNS data security
▪ Data origin authentication

▪ Authenticated denial of existence



Transaction Authentication (TSIG)

▪ Idea:

▪ Use signatures to secure data at zone transfer master 🡪 slave

▪ Pre shared symmetric key at each entity

▪ MD5 Hash used as signature

▪ TSIG Resource Record:
(Name, Type (“TSIG”), Class (“ANY”), TTL(“0”), Length, Data(<signature>))

▪ Possibility to authenticate, but very complex to administrate in large domains (manual pre-sharing of 
keys)

▪ amount of keys required: 

▪ Main application areas: 
▪ Secure communication between stub resolvers and security aware caching servers (?)

▪ Zone transfers (master 🡪 slave)

▪ Combined with nsupdate in data centers, to update stale information in caches

[Vixie et. al: „RFC 2845: Secret Key Transaction Authentication for 

DNS“]



DNS Security (DNSSEC) – Objectives

▪ DNS security objectives:
▪ End-to-end zone data origin authentication and integrity

▪ Detection of data corruption and spoofing

▪ DNSSEC does not (want to) provide:
▪ DoS-Protection (in fact, it facilitates DoS Attacks on DNS servers)

▪ Data delivery guarantees (availability)

▪ Guarantee for correctness of data (only that it has been signed by some authoritative entity)

[Arends et. al: „RFC 4033: DNS Security Introduction and Requirements“]

[Eastlake: „RFC 2535: Domain Name System Security Extensions“ (obsolete)]

[RFCs:4033,4034,4035,4310,4641]



DNSSEC
▪ Usage of public key cryptography to allow for data origin authentication on a world wide scale

• RRSets (groups of RRs) signed with private key of authoritative entities

• Public keys (DNSKEYs) published using DNS

• Distinguish zone signing key (ZSK) and key signing key (KSK) (SEP-Secure Entry Point)

• Child zone keys are authenticated by parents and hence anchored trust chains established

• Only root zone key signing key (KSK) needed (manual distribution) to create complete trust hierarchy (in theory)

• How/Why shall we trust root zone key?

• Until then: islands of trust with manually shared anchor keys

• No key revocation 🡪 DNSSEC keys should have short expiration date (quick rollover)



DNSSEC – Targeted Threats
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DNSSEC – Means of Securing RRSets

▪ Goal: authenticity and integrity of Resource Record Sets

▪ Means:
▪ Public Key Cryptography (with Trust Chains)

▪ Security integrated in DNS (new RRs)

▪ New Resource Record Types:
▪ RRSig: signatures of RRs

▪ DNSKEY: public keys

▪ DS: for trust chaining (trust anchor signs key of child zone) 

▪ NSEC: pointer to next secure name in canonical order 
(authenticated denial for requested zone)



DNSSEC – New Resource Records: RRSIG
▪ Resource Record for transmission of signatures

▪ RRSIG:

▪ Name – name of the signed RR

▪ Type – RRSIG (46)

▪ Algorithm – MD5(1), Diffie-Hellman(2), DSA (3)

▪ Labels – number of labels in original RR (wildcard indication)

▪ TTL – TTL at time of signature inception

▪ Signature Expiration – End of validity period of signature

▪ Signature Inception – Beginning of validity period of signature

▪ Key Tag – ID of used key if signer owns multiple keys

▪ Signer’s Name – Name of the signer

▪ Signature – Actual Signature



RRSIG signature

▪ signature = sign(RRSIG_RDATA | RR(1) | RR(2)... )

▪ RRSIG_RDATA= all the fields but the signature
Name | type | alg | labels | TTL | sig_exp | sig_inc | key tag | signer’s name

▪ RR(i) = owner | type | class | TTL | RDATA length | RDATA



DNSSEC – New Resource Records: DNSKEY

▪ Resource Record containing public keys for distribution

▪ DNSKEY: (Label, Class, Type, Flags, Protocol, Algorithm, Key)

▪ Label – Name of key owner

▪ Class – Always: IN (3)

▪ Type – DNSKEY

▪ Flags – key types: Key Signing Key (257) or Zone Signing Key (256)

▪ Protocol – Always DNSSEC (3)

▪ Algorithm – RSA/MD5(1), Diffie-Hellman(2), DSA/SHA-1(3), elliptic curves(4), 
RSA/SHA-1(5)

▪ Key – Actual key



DNSSEC – New RRs: Delegation Signer (DS)

▪ DS contains hash-value of DNSKEY of the name server of a sub zone

▪ Together with NS Resource Record, DS is used for trust chaining

▪ DS: (Name, Type, Key Tag, Algorithm, Digest Type, Digest)

▪ Name – Name of the chained sub zone

▪ Type – DS

▪ Key Tag – Identification of the hashed key

▪ Algorithm – RSA/MD5(1), Diffie-Hellman(2), DSA(3) (of referred 
DNSKEY)

▪ Digest Type – SHA-1(1), SHA-256(2)

▪ Digest – Actual value of hashed DNSKEY



DNS – Authority Delegation and Trust Chaining

▪ Data can be trusted if signed by a ZSK

▪ ZSK can be trusted if signed by a KSK

▪ KSK can be trusted if pointed to by trusted DS record

▪ DS record can be trusted if
▪ Signed by parents ZSK

▪ Signed by locally configured trusted key
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DNS – Authority Delegation and Trust Chaining (Example)
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DNSSEC – New Resource Records: NSEC

▪ Next Secure (NSEC) gives information about the next zone / sub domain in 
canonical order (last entry points to first entry for the construction of a closed 
ring)

▪ Gives the ability to prove the non-existence of a DNS entry: Authenticated 
Denial

▪ NSEC (Name, Type, Next Domain)
▪ Name – Name of the signed RR

▪ Type – NSEC (47)

▪ Next Domain – Name of the next domain in alphabetical order

▪ Allows adversary to crawl entire name zone (“zone walking”)



DNSSEC – New RRs: NSEC3 (1)
▪ Successor to NSEC: NSEC3 and NSEC3PARAM

▪ Uses hashed domain names to make zone walking more difficult

▪ Hashing based on salt and multiple iterations to make dictionary attacks more difficult

▪ NSEC3
▪ Name – Name of the signed RR

▪ Type – NSEC3 (50)

▪ Hash Algorithm – SHA-1 (1)

▪ Flags – To Opt-Out unsigned names

▪ Iterations – Number of iterations of Hash Algorithm

▪ Salt Length – Length of the salt value

▪ Salt – Actual salt value

▪ Hash Length – Output length of hash function

▪ Next Hashed Owner Name – Next Hash of domain name in alphabetical order



DNSSEC – New RRs: NSEC3 (2)

▪ Potential advantage: Salting and hashing does not allow for easily 
deducting hostnames from zone walks

▪ Problem: 
▪ Hostnames usually have very low entropy (to remember them)

▪ Easy dictionary attacks - despite the usage of salts & iterations

▪ But not used heavily anyways:
▪ .: Uses NSEC

▪ .com: No salt, No iterations

▪ .de: Static salt BA5EBA11, 15 Iterations



DNSSEC: NSEC5 / Record Type Denial

▪ Provide authenticated denial of existence without leaking names requires 
online signing.

▪ Providers do not want to trust the DNS servers with keys…

▪ Cloudflare Record Type Denial

• Send positive response but deny requested record type

[Goldberg et al.: NSEC5: Provably Preventing DNSSEC Zone Enumeration]



DNSSEC Issues

▪ Pro’s:
▪ DNSSEC allows to prevent unauthorized/spoofed DNS records 

▪ Con’s:
▪ Added complexity (signing, checking, key distribution) eases DoS attacks on DNS servers

▪ Zones need to be signed completely (performance challenge for large companies or registries)

▪ Authenticated denial with NSEC gives the possibility to “walk” the chain of NSEC and to gain 
knowledge on the full zone content (all zones/ sub domains) in O(N) ==> NSEC3, …

▪ Distribution of anchor keys still a manual task (allows for human error, social engineering)

Deployment:
▪ http://www.secspider.net/islands.html

▪ https://blog.apnic.net/2017/12/06/dnssec-deployment-remains-low/

▪ https://stats.labs.apnic.net/dnssec/XA

http://www.secspider.net/islands.html
https://blog.apnic.net/2017/12/06/dnssec-deployment-remains-low/
https://stats.labs.apnic.net/dnssec/XA


TLS authentication 

▪ Many applications use the certificate-based authentication in Transport Layer Security (TLS)
○ allow clients to authenticate server.
○ allow server and client to agree upon acceptable ciphersuite 

▪ Typically, authentication is based on PKIX certificate chains rooted in certificate authorities 
(CAs)

▪ What are the challenges in PKIX?
○ trust roots are configured out of band (depend on vendors)
○ DoS attacks to block certificate status verification
○ trusted CAs may be attacked and misbehave



TLS authentication 
▪ Authentication is often based on PKIX certificate chains rooted in certificate authorities (CAs)

PKIX challenges
○ trust roots are configured out 

of band (depend on vendors)
○ DoS attacks to block 

certificate status verification
○ verification path building
○ trusted CAs may be attacked 

and misbehave
○ ...

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/


Certificates (privkey)stolen
▪ Adobe, Microsoft developer, ...



CAs attacked
▪ Comodo: fraud certs to mail.google.com, login.skype.com, addons.mozilla.org
▪ ...

https://www.hackmageddon.com/2011/12/10/another-certification-authority-breached-the-12th/


TLS authentication and DNSSEC 

▪ DNS-Based Authentication of Named Entities (DANE) supports TLS using DNSSEC

○ DANE provides information about the cryptographic credentials associated with a 
domain

○ Clients can increase the level of assurance they receive from the TLS handshake 
process

○ Not only https but any application

▪ Remember DNSSEC:
○ links a key to a domain name ○ TLS server name

○ verification path easier to build

○ hierarchical control

○ allows online access to signed keys 

○ keys associated to a domain must be 
signed by a key in the parent domain



DANE certificate usages

▪ Let Alice be the 
○ operator of a TLS-protected application service on the host h.alice.com, and
○ the administrator of the corresponding DNS zone.

▪ Given those actors, let’s review DANE certificate usages:
○ CA constraints (PKIX-TA) 
○ Service certificate constraints (PKIX-EE)
○ Trust anchor (DANE-TA) 
○ Domain-issued certificates (DANE-EE)

▪ Let Bob be a client connecting to h.alice.com.

▪ Let Charlie be a well-known CA that issues certificates with domain names as identifiers.
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CA constraints: PKIX-TA

▪ Alice has a cert issued by Charly to h.alice.com
○ Alice fears that an attacker gets a cert issued by another well known CA to h.alice.com

■ Clients would accept it since it is valid
○ Alice wants all the clients to accept only Charly’s issued certs for h.alice.com
○ In the TLS handshake

■ the server includes Charlie's cert in the server Certificate message's certificate_list
○ Charly should also check the CA Constraint in Alice domain prior to issue the cert
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Service Certificate Constraints: PKIX-EE

▪ Alice has a cert issued by Charly to h.alice.com
○ Alice fears that an attacker gets another cert issued by Charly to h.alice.com

■ Clients would accept it since it is valid
○ Alice wants all the clients to accept only the present cert she had been issued by Charly
○ in the TLS handshake

■ the server includes the cert issued by Charlie as the first in the certificate_list

▪ Similar as in CA Constraints, a successful attacker would need to
○ take control of DNS zone
○ tamper with the dnssec records
○ have a valid cert issued by Charly
○ modify the DANE records accordingly
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Trust Anchor Assertion (DANE-TA) and 
Domain-Issued Certificates (DANE-EE)

▪ Alice runs her own CA to issue certificates to applications and hosts in her domain
○ Alice wants all the clients to accept only the certificates issued by her
○ in the TLS handshake

■ the server includes Alice’s self-signed CA cert as the first in the certificate_list
○ Besides adding the self-signed cert as a trust anchor, Alice can add it as CA Constraints

■ This way clients will only accept Alice issued certificates for the domain

▪ Such a trust anchor can be also used in the previous scenarios as a prerequisite for Charly 
to issue a cert to h.alice.com
○ The CA can check if the cryptographic key linked to the domain has been used to sign 

the certificate request or can be used to validate the signing key.

▪ How this relates to the use case where Alice wants to use a little known certificate 
autority? 



Delegated Services

▪ Suppose Oscar operates h.alice.com on behalf of Alice.
▪ Oscar has control over certificates to present in TLS handshakes for h.alice.com.

a. Alice has the A/AAAA records in her DNS and can sign them along with the DANE 
record, Oscar and Alice need tight coordination if the addresses and/or the certificates 
change.

a. Alice delegates a sub-domain name to Oscar, and has no control over the A/AAAA, 
DANE, or any other pieces under Oscar's control.

a. Alice can put DANE records into her DNS server but delegate the address records to 
Oscar's DNS server. 
■ Alice controls the usage of certificates
■ Oscar is free to move the servers around as needed
■ Coordination only needed when the certificates change (Always?)



TLSA record

▪ DANE performs its functions defining a new DNSSEC Resource Record named the TLSA
▪ The TLSA record gives information about a host in the domain:

a. the certificate usage: PKIX-TA (0), PKIX-EE(1), DANE-TA(2), DANE-EE(3)
b. the selector: the full cert (0) or just the public key info (1)
c. the matching type: Full (0), SHA2-256 (1), SHA2-512 (2)
d. data: full value or digest of the certificate or subject public key as determined by the 

matching type and selector

Example of PKIX-TA CERT SHA2-512:

_443._tcp.h.alice.com.  TLSA 0 0 2 {blob} 



Other proposals for DANE

▪ DANE can also be used for other purposes:
a. Distributing OpenPGP public keys RFC 7929

b. Associate Certificates with Domain Names for S/MIME RFC 8162

c. SMTP transport security RFC 7672

▪ Other resources:
a. https://weberblog.net/how-to-use-danetlsa/
b. https://weberblog.net/pgp-key-distribution-via-dnssec-openpgpkey/
c. https://dnssec-validator.cz/pages/documentation.html

https://tools.ietf.org/html/rfc7929
https://tools.ietf.org/html/rfc8162
https://tools.ietf.org/html/rfc7672
https://weberblog.net/how-to-use-danetlsa/
https://weberblog.net/pgp-key-distribution-via-dnssec-openpgpkey/
https://dnssec-validator.cz/pages/documentation.html

