

Resilient Networking

Disclaimer: this course has been created with very valuable input from Günter Schäfer, Mathias Fischer, and the members of the Chair

Module 1 – Preliminaries (Winter Term 2020)

Thorsten Strufe

Competence Center for Applied Security Technology

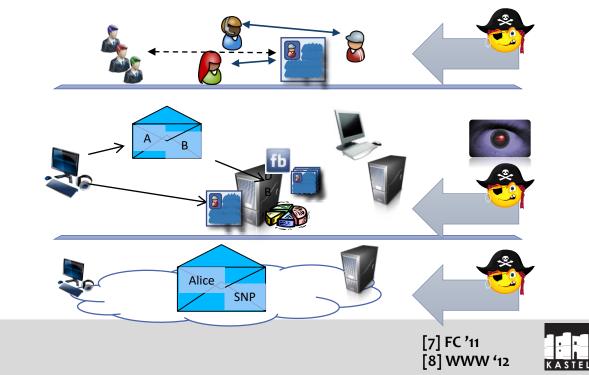
Lecture Outline

Karlsruhe Institute of Technology

- Who are we?
- Organizational matters (preliminaries)
- Course outline
- A brief introduction

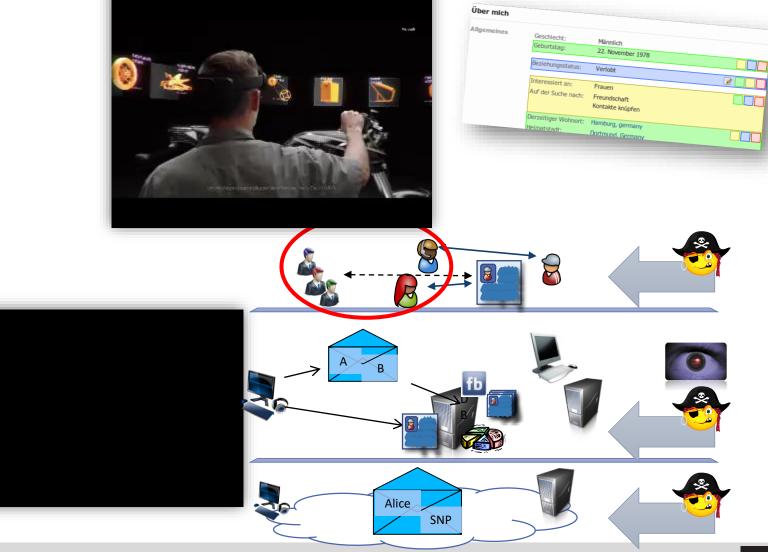
Who is Who

- Professur "IT Security and Privacy"
- For this lecture:
- Thorsten Strufe (Lectures)
 - **50.34/281**
 - thorsten.strufe [at] kit.edu
- Teaching assistants
- This lecture doesn't have one.
- Consultation:
- Send me an email (repeatedly...)
- https://ps.tm.kit.edu/



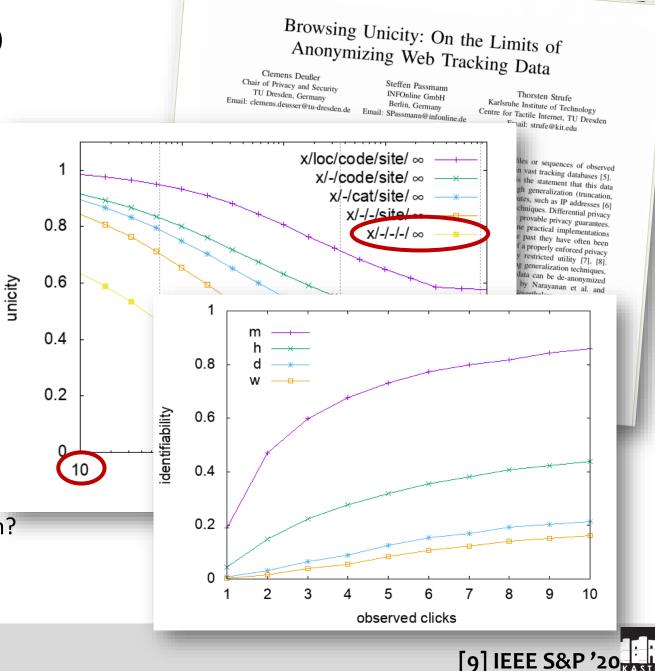
What we're working on...

• User understanding


What we're working on...

- User understanding
 - Intention recognition
 - Privacy analyses
 - Data sanitation

[7] FC '11 [8] WWW '12



Identifiability on the Web

- Web-Tracking is ubiquitous
- Situation:
 - Tracker claim anonymity
 - "delete last octett": generalization
 - GDPR: Pseudonym ≠ Anonym

Study

- Cooperation with private partner
- Comprehensive data set (German Web, 2-3 Bn visits per day)
- Questions:
 - To which extent is behavior a pseudonym?
 - How little is needed to identify a trace?

What we're working on...

User understanding

- Intention recognition
- Privacy analyses
- Data sanitation

• Privacy-Enhancing Technologies

- Anonymity metrics
- Anonymous services (f2f/Web)
- Anonymous Communication (Tor, ..)

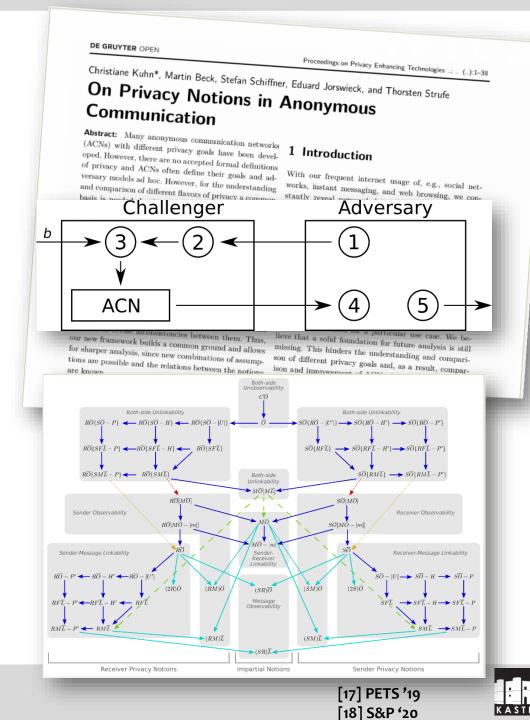
What we're working on...

User understanding

- Intention recognition
- Privacy analyses
- Data sanitation

• Privacy-Enhancing Technologies

- Anonymity metrics
- Anonymous services (f2f/Web)
- Anonymous Communication (Tor, ..)



Anonymity Notions

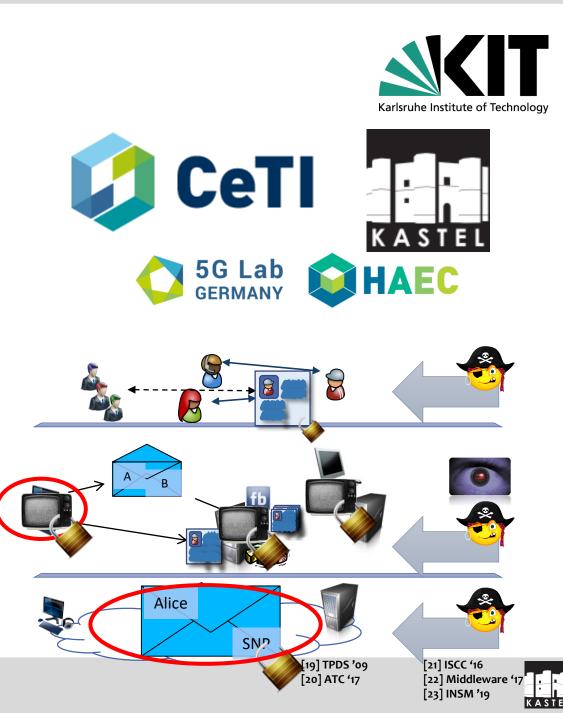
- Plethora of anonymizers around
 - TOR, AN.ON, DC, HORNET, Loopix, ZCash,...
 - Claim "Sender-Anonymity", or "Recipient-Anonymity, or "Transaction Confidentiality"
 - Literature defines, Unlinkability", "Unobservability", "Pseudonymity", "*-Anonymity", "Anonymity Sets", "Indistinguishability"
 - So what does all this actually mean?

Study

- Game-based formalization of anonymity online
- Consider all communication properties
- Define and analyse privacy notions and their dependencies, rigorous protocol analysis

What we're working on

User understanding


- Intention recognition
- Privacy analyses
- Data sanitation

Privacy-Enhancing Technologies

- Anonymity metrics
- Anonymous services (f2f/Web)
- Anonymous Communication (Tor, ..)

• Network security

- SDN/NFV security
- Isolation/VPNs
- Denial-of-Service

Resilient Networking

Lecture/Reading group Winter term 2020

Some Words Regarding this Course

- Main topic of the course is the security of deployed, crucial networks, networking functions, and network protocols.
- Considering the Internet: networking is an essential service, hence the networking infrastructure is/may be the main target of attacks!
- Now what!?

Preliminary Course Overview

Karlsruhe Institute of Technology

- 1. Introduction
- 2. Graphs and graph theory
- Crypto basics (Symmetric/Asymmetric/MACs)
- 4. Link-Layer Security
- 5. Resilient Routing (Attacks on BGP, SBGP)
- 6. IPsec
- **7**. *TLS*
- 8. DNS Security
- 9. DDoS and Countermeasures
- 10. Resilient Overlay Networks / Blockchain / Darknets
- **11**. Intrusion Detection and Response

Organizational matters

- Lecture
- Tue 10:00 12:40 (hold up: Corona, so TUE 12-13:30 during this Winter term)
- Grashof lecture hall (hold up: Corona, so online, for now)
- Exercises
- Thu 10:00 11:30
- 50.34 301 (first meeting in CW 49: Dec 3, prepare *now;* Corona: online for now)
- Exams
- Oral exams, make appointments
- Procedure:
 - Questions available in German (and English upon request)
 - Answers given in German (and English upon request)
- All necessary information (will be) on the Web site

Organizational Matters

There will be some ex-cathedra parts, but please ask and discuss as much as possible!

Course Language

- Slides are in English, presentation as you prefer
- = > What's your language of preference?

Slide history

- Based on several former courses given at TU Ilmenau, Uni Mannheim, TU Darmstadt, and Dresden
- Heavily derived from "Network Security" and "Protection of Communication Infrastructures" of/with Prof. Schäfer in Ilmenau and extended with Prof. Fischer's input from UHH

Material

- Slides/recordings will be on the Web site
- Literature/References
- Schäfer, Roßberg: Network Security
- For crypto: Dan Boneh's coursera course
- David Kahn: The Codebreakers
- Simon Singh: The Code Book

The Reading Group (Exercises)

- Exercise course will be organized as a reading group
 - Papers (links) available on the webpage (soon)
 - Read papers early...
 - One paper with relation to lecture topics will be presented (by a random one of you!) and discussed (by you!) each week (please take note of the emphasize on YOU :-)

Questions?

Developing our terms...

Resilient Networks – Winter Term 2020 (KIT/TUD)

Motivation: A Changing World

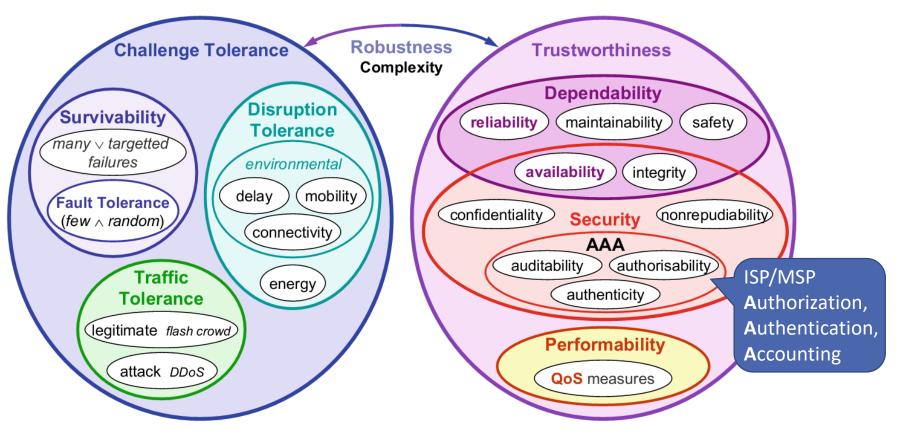
Let's get started!

- "Always on", ubiquitous connectivity to the global Internet has dramatically changed the way we
 - communicate,
 - conduct business, and
 - organize our society
- CPS, connected cars, and pervasive computing promise to create an additional layer of networked devices
- However, the benefits associated with information and communication technology imply new vulnerabilities

The modern information society exhibits an increasing dependence on *availability* and *secure operation* of *communication services*

What are "Resilient Networks"?

- "Resilience is the ability of an object to spring back into shape"
- "Resilience is the ability of the network to provide and maintain an adequate level of service in the face of challenges to normal operation"
- "Resilience is the ability of the network to provide and maintain an acceptable level of security service in case some nodes are compromised."
- Challenges? Compromised nodes...?
- What kind of *problems, challenges, threats* could you imagine?
- What *exactly* do these terms mean, anyway?

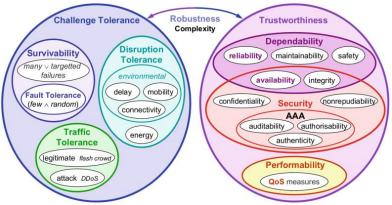

Sterbenz: Resilinets, 2006-2008 Chen et al.: Sensor Network Security, 2009

Resilience Disciplines

Resilience comprises a multitude of disciplines

Sterbenz, James P.G., Hutchison, David, Çetinkaya, Egemen K Jabbar, Abdul, Rohrer, Justin P, Schöller, Marcus and Smith, Paul. Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. IEEE Computer Networks, 2010

Resilience – Challenge Tolerance (1)

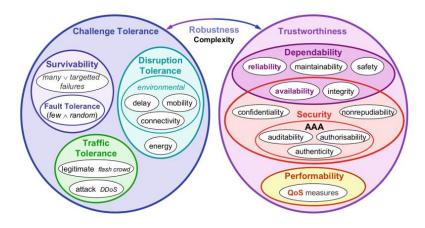


Survivability

- Capability of a system to fulfill its mission,
 - in a timely manner,
 - in the presence of *threats* such as *attacks* or large-scale natural *disasters*.
- Covers correlated failures as result of intelligent adversary and failures of large parts of network infrastructure
- Requires **diversity**: same fate unlikely to be shared by parts of system undergoing correlated failures

Fault tolerance

- Subset of survivability
- Ability of system to tolerate faults to prevent service failures
- Relies on redundancy to compensate random uncorrelated failures of components
- Provides no sufficient coverage when facing correlated failures



Resilience – Trustworthiness (1)

Dependability

- Quantifies resilience of the service delivery by a system
- Basic measures
 - Mean Time To Failure (MTTF)
 - Mean Time To Repair (MTTR)
- Consists of
 - Availability: readiness for usage
 - *Reliability*: continuous service delivery

Security

- Property of a system, and the measures taken such that it protects itself from *unauthorized access or change*
- Security shares availability with dependability
- However, we assume a strategic adversary (worst case, repeatedly...)

The Security in Resilience...

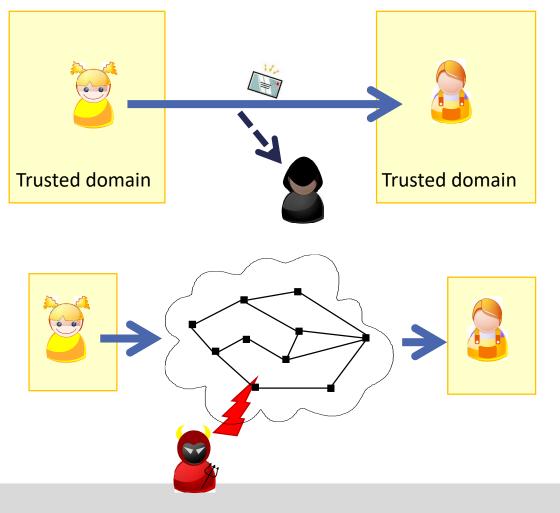
Resilient Networks – Winter Term 2020 (KIT/TUD)

- Public Telecommunication Providers:
 - Protect subscribers' privacy
 - Restrict access to administrative functions to authorized personnel
 - Protect against service interruptions
- Corporate / Private Networks:
 - Protect corporate confidentiality / individual privacy
 - Ensure message authenticity
 - Protect against service interruptions
- All Networks:
 - Prevent outside penetrations (who wants hackers?)
- Security goals are also called security objectives

Security Goals Technically Defined (CIA)

- Confidentiality:
 - Data transmitted or stored should only be revealed to the intended audience
 - Confidentiality of entities is also referred to as anonymity
- (Data) Integrity:
 - It should be possible to detect any modification of data
 - This requires to be able to *identify* the creator of some data
- Availability:
 - Services should be available and function correctly
- Accountability:
 - It should be possible to identify the entity responsible for any communication event
- Controlled Access:
 - Only authorized entities should be able to access certain services or information

Several other models have been proposed, anything beyond CIA is constantly subject to arguments and discussions...

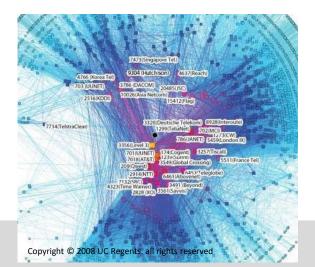


Introducing Actors of the Play

For clarity it's good to have some model...

The classic security – scenario:

• The RN – scenario:


Threats in Communication Networks

Abstract Definition:

- A threat is any possible event or sequence of actions that might lead to a violation of one or more security goals
- The actual realization of a threat is called an *attack*

Examples:

- A hacker breaking into a corporate computer
- Disclosure of emails in transit
- A hacker temporarily shutting down a website
- Someone using services or ordering goods in the name of others

Potential Attackers and an Adversary Model

A word on assumptions.

- Assume an omnipotent adversary. She could:
- access all information of interest
- compromise arbitrary intermediate systems
- physically destroy any or all components
- Could we deal with this?
- Unfortunately, no:
- "Nothing can protect from an omnipotent adversary."

More realistic (specific!) model of adversaries needed.

On Eve, Mallory, Craig, and Trudy...

- An *adversary model* needs to define
- The *intention* of the adversary
 - Break and/or access <something>
- The *behavior*
 - Passive or active?
- The *capabilities* of an attacker
 - Computational capacity (often: think complexity class)
 - Resources (time and money)
- The area of control
 - Insider or outsider?
 - Local, regional, or global?

The Dolev - Yao Model

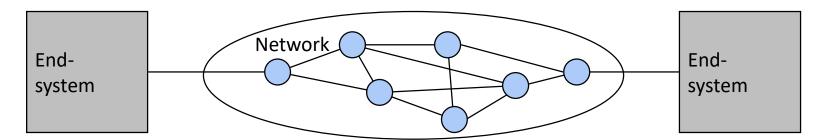
- Mallory has full control over the communication channel
- Intercept/eavesdrop on messages (passive)
- Relay messages
- Suppress message delivery
- Replay messages
- Manipulate messages
- Exchange messages
- Forge messages
- But:
- Mallory can't break (secure) cryptographic primitives!

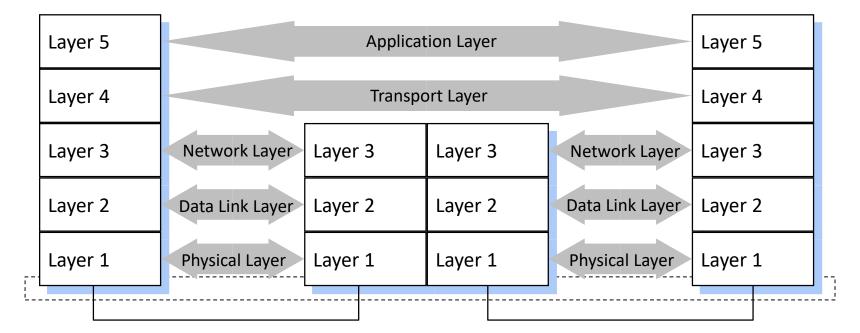
Threats Technically Defined

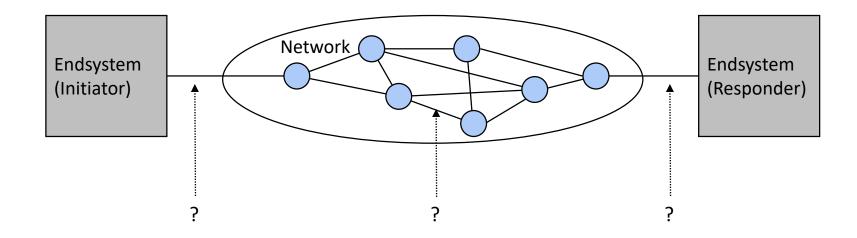
- Masquerade:
 - An entity claims to be another entity
- Eavesdropping:
 - An entity reads information it is not intended to read
- Authorization violation:
 - An entity uses a service or resources it is not intended to use
- Loss or Modification of (transmitted) information:
 - Data is being altered or destroyed
- Denial of Communication Acts (Repudiation):
 - An entity falsely denies its participation in a communication act
- Forgery of information:
 - An entity creates new information in the name of another entity
- Sabotage:
 - Any action that aims to reduce the availability and / or correct functioning of services or systems

That was fairly abstract... How can we operationalize this?

Network Security Analysis


- To find countermeasures, threats have to be evaluated appropriately for a given network configuration.
- Therefore, a detailed network security analysis is needed that:
 - evaluates the *risk potential* of the general threats to the entities using a network, and
 - estimates the *expenditure* (resources, time, etc.) needed to perform known attacks.

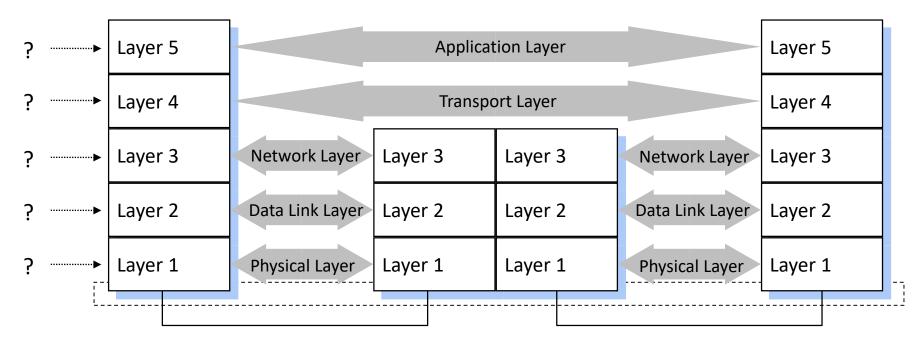

→ Attention: It is generally impossible to assess unknown attacks!



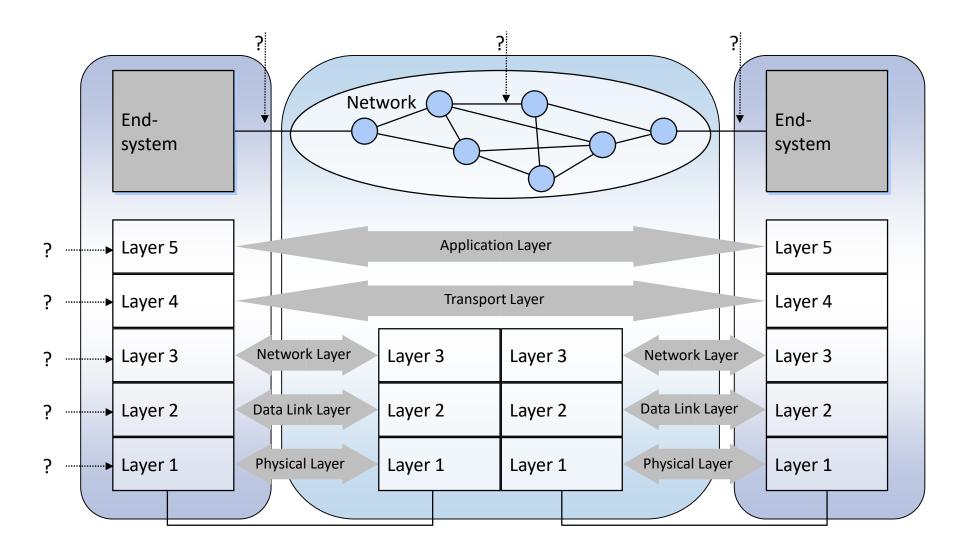
Communication in Layered Protocol Architectures

Resilient Networks – Winter Term 2020 (KIT/TUD)

Security Analysis of Layered Protocol Architectures 1

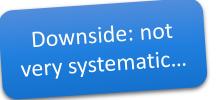


Dimension 1: At which interface could an attack take place?



Dimension 2: In which layer could an attack take place?

Potential Points of Attack



Towards a Systematic Threat Analysis

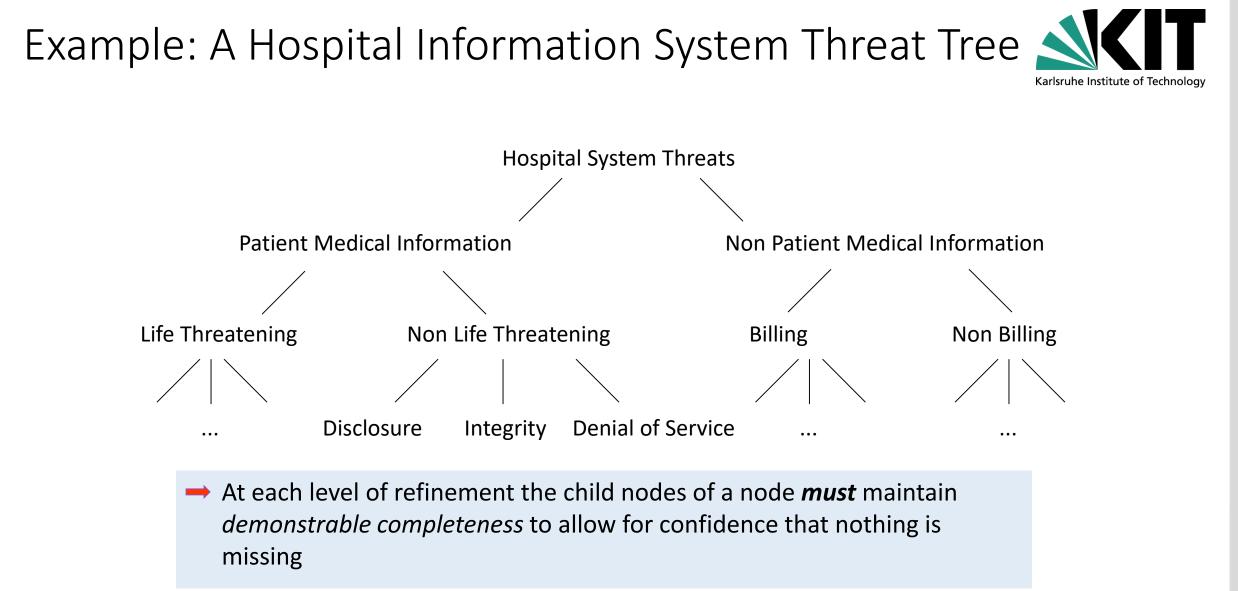
- One approach: produce arbitrary threat list by any ad-hoc brainstorming method
- Example: Hospital Information System
 - Corruption of patient medical information
 - Corruption of billing information
 - Disclosure of confidential patient information
 - Compromise of internal schedules
 - Unavailability of confidential patient information
 - ...
- Drawbacks of this approach:
 - Questionable completeness of identified threats
 - Lack of rationale for identified threats other than experience
 - Potential inconsistencies (e.g. disclosure vs. unavailability of confidential patient information in the example above)

Approaches for Systematic Threat Modeling

- Explicit quantification of security is hard (impossible?)
- Threat modelling is a soft task

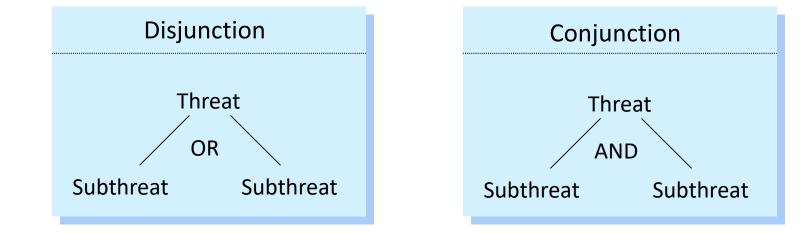
• Alternative management approaches have been suggested

- STRIDE
 - Risk identification (Microsoft: Kohnfelder and Garg, 1999)
 - Spoofing, Tampering, Repudiation, Information-disclosure, DoS, Elevation of Privilege
- DREAD
 - Risk assessment, as used e.g. by OpenStack (among others)
 - Damage, Reproducibility, Exploitability, Affected Users, Discoverability
- Threat Trees (Amoroso, 1994) (later on: "Attack trees")



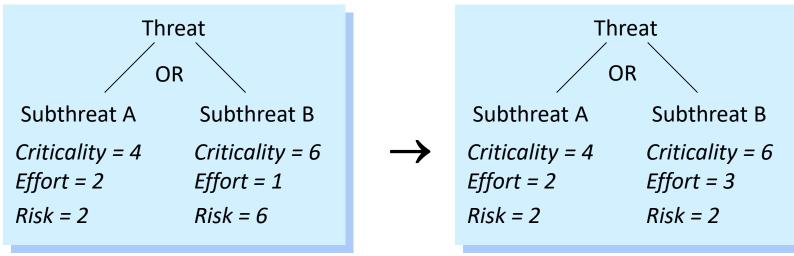
Threat Trees: One Systematic Threat Analysis Approach

- A *threat tree* is a tree with:
 - nodes describing threats at different levels of abstractions, and
 - subtrees refining the threat of the node they are rooted at,
 - where the child nodes of one node give a *complete refinement* of the threat represented by the parent node
- Technique for establishing threat trees:
 - Start with general, abstract description of complete set of threats for a given system (e.g. "security of system X compromised")
 - *Iteratively*, gradually introduce detail by carefully refining the description
 - Each node becomes root of a *subtree* describing *threats* represented by it
 - Eventually, each *leaf node* of the tree provides a description of a threat that can be used for a (less arbitrary) threat list
- The main idea of this technique is to postpone the creation of (arbitrary) threat lists as much as possible



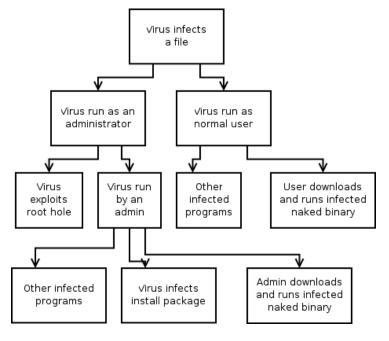
(source: [Amo94])

- Inferring Composed Threat in Threat Trees
- Child nodes can have different relations to their parent nodes
- The two most common relations are AND and OR:


- These relations can be used to infer composed threat:
 - Augment nodes with effort estimations (e.g. easy, moderate, high)
 - OR-related composed threat inferred as the lowest effort value subtree (the attacker will most likely take the easy way...)
 - For conjunction, infer highest effort (all threats have to be realized)

Risk-Assessment/Quantification with Threat Trees

- Appropriate attributes are, e.g., estimated criticality and attacker effort for individual threats
- Threat trees then can help to gain insight where to spend resources to decrease the overall system's vulnerability:


- □ The second threat tree re-evaluates the risk after some protective measure has been taken to increase the attacker's effort for subthreat B
- □ Here, risk is assessed as:

Risk = Criticality / Effort

Variation of the Game: Attack Trees

Karlsruhe Institute of Technology

- NSA/Darpa/Schneier's approach:
 - Model the attacker's goal as root node
 - Branches model means of reaching the goal
 - Leaf nodes enumerate specific attacks

Summary (High Level System Security Engineering Process)

- Specify system architecture:
 - Identify components and interrelations
- *Identify threats*, vulnerabilities and attack techniques:
 - The threat tree technique provides help for this step
- *Estimate* component *risks* by adding attributes to the threat tree:
 - However, removing subjectivity from initial assessments is often impossible and other attributes than criticality and effort (e.g. risk of detection) might have to be considered as well

Prioritize vulnerabilities:

- Taking into account the components' importance
- Identify and install *safeguards*:
 - Apply protection techniques to counter high priority vulnerabilities
- L• Perform potential *iterations* of this process
 - Re-assess risks of the modified system and decide, if more iterations are required

Countering Attacks: Three Action Classes

- Prevention:
 - Measures taken to avert that an attacker succeeds in realizing a threat
 - Examples:
 - *Cryptography*: encryption, computation of modification detection codes, running authentication protocols, etc.
 - *Firewalls*: packet filtering, service proxying, etc.
- Detection:
 - Measures taken to recognize an attack while or after it occurred
 - Examples:
 - Recording and analysis of audit trails
 - On-the-fly traffic monitoring
- Reaction:
 - Measures taken in order react to ongoing (mitigation and healing) or past attacks
 - Examples:
 - Adding new firewall rules
 - Traffic re-routing
- (DDS: Prevention, Removal, Forecasting, Tolerance/Graceful degradation)

Course Objectives

This course tackles the following aspects:

- Threats to and measures for ensuring *availability*
- Threats and measures concerning systems (beyond pure network security protocols which are more targeting transmission security)
- Measures for intrusion detection and response

Considering the Internet: networking is an essential service, hence the networking infrastructure is/may be the main target of attacks! We'll hence be looking at the security of deployed, crucial networks, networking functions, and network protocols.

Summary

- You know who we are
- You know what to expect from the lecture
- You have seen some trends that are happening
- You have been introduced to Alice, Bob, Eve, and Mallory
- You understand what threats are ... and what this means
- You can tell security goals (CIA!) from security services
- You know how to perform a network security analysis using threat trees ;-)

Papers we want to read:

- Réka Albert, Hawoong Jeong & Albert-László Barabási: "Error and attack tolerance of complex networks", Nature
- Magoni, Damien. "Tearing down the Internet." IEEE Journal on Selected Areas in Communications 21.6 (2003): 949-960
- Schuchard, Max, et al. "Losing control of the internet: using the data plane to attack the control plane." Proceedings of the 17th ACM conference on Computer and communications security. ACM, 2010.
- "All your dns records point to us: Understanding the security threats of dangling dns records." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.
- Rossow, Christian. "Amplification Hell: Revisiting Network Protocols for DDoS Abuse." NDSS. 2014.
- -- "Identifying the scan and attack infrastructures behind amplification DDoS attacks." Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.

Questions?

