
Competence Center for Applied Security Technology

kastel.kit.eduKIT – The Research University in the Helmholtz Association

Resilient Networking
Module 4: Name Resolution Security
Thorsten Strufe – This module prepared in cooperation with Mathias Fischer, Michael Roßberg, and Günter Schäfer
Winter Term 2020 – KIT/TUD

Module Outline

▪ Overview of DNS

▪ Known attacks on DNS
▪ Denial-of-Service
▪ Cache Poisoning

▪ Securing DNS
▪ Split-horizon DNS
▪ DNS Cookies (RFC 7873)
▪ DNSSEC
▪ DNSCurve
▪ PNRP
▪ GNS

DNS – The Domain Name System

▪What is DNS?

▪Naming Service for (almost all) Internet traffic

▪ Lookup of (resolve)
▪ Host-Addresses

▪ Mail-Servers

▪ Alias Names

▪ Alternative Name Servers

▪ …

▪ Distributed Database consisting

of multitude of servers

What does this „it scales“ mean anyways!?

DNS – what does it do?

▪DNS services

• Hostname to IP address translation

• Host aliasing
▪ Canonical and alias names

• Mail server aliasing

• Load distribution
▪ Replicated Web servers: set of IP

addresses for one canonical name

▪Why not centralize DNS?

• Single point of failure

• Traffic volume

• Distant centralized database

• Maintenance

• does not scale!

▪ Structured Namespace

▪ Hierarchical organization in sub domains/zones

▪ Sourced at “root zone” (“.”)

▪ Parent zones maintain pointers to child zones (“zone cuts”)

▪ Zone data is stored as “Resource Records” (RR)

com org edu

google bbc mit caltech

“.”

DNS – Data Organization: Domains / Zones

Root DNS Servers

de DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

google.de
DNS servers

tu-darmstadt.de
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

…and in reality…

com org de

google apple zeit bund

.

www maps bsi

www

bmbf

Root Domain Server

DENIC Server

Bundes-

verwaltungsamt

Internic

Server

Google Server

Client wants IP for www.dud.inf.tu-dresden.de; 1st approx:
▪ Client queries a root server to find de DNS server

▪ Client queries de DNS server to get tu-dresden.de DNS server

▪ Client queries tu-dresden.de DNS server to get IP address for
www.dud.inf.tu-dresden.de

▪ Contacted by local name server that can not resolve name

▪ Root name server:

▪ Contacts authoritative name server if name mapping not known

▪ Gets mapping

▪ Returns mapping to local name server

13 root name servers
worldwide

[A..M].ROOT-SERVERS.NETb USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 17 other locations)

i Autonomica, Stockholm (plus 3
other locations)

k RIPE London (also Amsterdam, Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (11 locations)

So, how many root nameservers are there actually? (physically)

DNS: Root Name Servers

http://www.root-servers.org/

DNS: Root Name Servers

DNS – Components
▪ Authoritative Server

▪ Server maintaining authoritative content of a complete DNS zone
▪ Top-Level-Domain (TLD) servers & auth servers of organization’s domains
▪ Pointed to in parent zone as authoritative
▪ Possible load balancing: master/slaves

▪ Recursive (Caching) Server
▪ Local proxy for DNS requests
▪ Caches content for specified period of time (soft-state with TTL)
▪ If data not available in the cache, request is processed recursively

▪ Resolver
▪ Software on client’s machines (part of the OS)
▪ Windows-* and *nix: Stub resolvers

▪ Delegate request to local server
▪ Recursive requests only, no support for iterative requests

Internet
Fly by night

ISPs-R-Us

DNS – Resource Record Type

▪ Atomic entries in DNS are called “Resource Records” (RR)

▪ Format: <name> [<ttl>] [<class>] <type> <rdata>

▪ name (domain name of resource)

▪ ttl (Time-to-live)

▪ class (used protocol): IN (Internet), CH (Chaosnet)…

▪ type (record type): A (Host-Address), NS (Name Server),

MX (Mail Exchange), CNAME (Canonical Name),

AAAA (IPv6-Host-Address), DNAME (CNAME, IPv6)

▪ rdata (resource data): Content! (What did we want to look up?)

RR Format: (name, ttl, class, type, value)

▪ Type=A

▪ name is hostname

▪ value is IP address

▪ Type=NS

▪ name is domain (e.g. foo.com)

▪ value is IP address of
authoritative name server for
this domain

▪ Type=MX

▪ value is name of mailserver
associated with name

▪ Type=CNAME

▪ name is alias name for some
“canonical” (the real) name

www.ibm.com is really

servereast.backup2.ibm.com

▪ value is canonical name

Specific DNS Records

0 1 2 3

Identification Flags and Codes

Question Count Answer Record Count

Name Server (Auth Record) Count Additional Record Count

Questions

Answers

Authority

Additional Information

Q/R OPCode AA TC RD RA Zero RespCode

16 17 21 22 23 24 25 28 31

▪ RD Recursion Desired Flag

▪ RA Recursion Available Flag

▪ Zero (three resv. bits)

▪ Response Code

▪ Q/R Query/Response Flag

▪ Operation Code

▪ AA Auth. Answer Flag

▪ TC Truncation Flag

DNS – Message Format

DNS: Caching and Updating Records

▪Once (any) name server learns mapping, it caches mapping
▪ Stored as “soft state”: Cache entries timeout (disappear) after some time

▪ TLD servers typically cached in local name servers

▪ Thus, root name servers not often visited

▪Updating records, independent of TTL
▪ RFC 2136 defines dynamic updates

▪ BIND (>8) implements nsupdate (upon TSIG, see below)

Inserting Records Into DNS

▪ Example: just created startup “Fireblog”

▪ Register name fireblog.de at a registrar (e.g., denic)
▪ Need to provide registrar with names and IP addresses of your authoritative name server (primary

and secondary)

▪ Registrar inserts two RRs into the de TLD server:

▪ (fireblog.de, dns1.fireblog.de, NS)

▪ (dns1.fireblog.de, 212.212.212.1, A)

▪ Add authoritative server Type A record for www.fireblog.de and Type MX record
for fireblog.de

1

2

3

4

5

6

7

8

ip-92-50-90-182.unitymediagroup.de

local (caching) DNS server
(via dhcp)

root DNS server
(A.ROOT-SERVERS.NET)

Auth DNS server
(TLD: c.de.net)

Auth DNS server
(TUD: ns3.tu-darmstadt.de)

www.p2p.tu-darmstadt.de

iterative

recursive

iterative

iterative

DNS HEADER (send)
- Identifier: 0x3116
- Flags: 0x00 (Q)
- Opcode: 0 (Standard query)
- Return code: 0 (No error)
- Number questions: 1
- Number answer RR: 0
- Number authority RR: 0
- Number additional RR: 0
QUESTIONS (send)
- Queryname: (3)www(3)p2p(12)tu-darmstadt(2)de
- Type: 1 (A)
- Class: 1 (Internet)

DNS – Recursive and Iterative Queries

strufe@eris:~$ dnstracer -v www.p2p.tu-darmstadt.de
Tracing to informatik.tu-darmstadt.de[a] via 130.83.163.141, maximum of 3 retries
130.83.163.141 (130.83.163.141) IP HEADER
-Destination address: 130.83.163.141
-DNS HEADER (send)
-- Identifier: 0x3116
-- Flags: 0x00 (Q)
-- Opcode: 0 (Standard query)
-- Return code: 0 (No error)
-- Number questions: 1
-- Number answer RR: 0
-- Number authority RR: 0
-- Number additional RR: 0
-QUESTIONS (send)
-- Queryname: (3)www(3)p2p(12)tu-darmstadt(2)de
-- Type: 1 (A)
-- Class: 1 (Internet)
-DNS HEADER (recv)
-- Identifier: 0x3116
-- Flags: 0x8080 (R RA)
-- Opcode: 0 (Standard query)
-- Return code: 0 (No error)
-- Number questions: 1
-- Number answer RR: 2
-- Number authority RR: 0
-- Number additional RR: 0
-…….

QUESTIONS (recv)
- Queryname: (3)www(3)p2p(12)tu-darmstadt(2)de
- Type: 1 (A)
- Class: 1 (Internet)
ANSWER RR
- Domainname: (6)charon(7)dekanat(10)informatik(12)tu-darmstadt(2)de
- Type: 1 (A)
- Class: 1 (Internet)
- TTL: 1592 (26m32s)
- Resource length: 4
- Resource data: 130.83.162.6
ANSWER RR
- Domainname: (3)www(3)p2p(12)tu-darmstadt(2)de
- Type: 5 (CNAME)
- Class: 1 (Internet)
- TTL: 49817 (13h50m17s)
- Resource length: 28
- Resource data: (6)charon(7)dekanat(10)informatik(12)tu-darmstadt(2)de
Got answer [received type is cname]

A Quick Example…

strufe@eris:~$ dnstracer -v -qns tu-darmstadt.de
Tracing to tu-darmstadt.de[ns] via 130.83.163.130
130.83.163.130 (130.83.163.130) IP HEADER
- Destination address: 130.83.163.130
DNS HEADER (send)
- Identifier: 0x4C45
- Flags: 0x00 (Q)
- Opcode: 0 (Standard query)
- Return code: 0 (No error)
- Number questions: 1
- Number answer RR: 0
- Number authority RR: 0
- Number additional RR: 0
QUESTIONS (send)
- Queryname: (12)tu-darmstadt(2)de
- Type: 2 (NS)
- Class: 1 (Internet)
DNS HEADER (recv)
- Identifier: 0x4C45
- Flags: 0x8080 (R RA)
- Opcode: 0 (Standard query)
- Return code: 0 (No error)
- Number questions: 1
- Number answer RR: 5
- Number authority RR: 0
- Number additional RR: 9

…….

QUESTIONS (recv)
- Queryname: (12)tu-darmstadt(2)de
- Type: 2 (NS)
- Class: 1 (Internet)
ANSWER RR
- Domainname: (12)tu-darmstadt(2)de
- Type: 2 (NS)
- Class: 1 (Internet)
- TTL: 70523 (19h35m23s)
- Resource length: 6
- Resource data: (3)ns1(3)hrz(12)tu-darmstadt(2)de
ANSWER RR
- Domainname: (12)tu-darmstadt(2)de
- Type: 2 (NS)
- Class: 1 (Internet)
- TTL: 70523 (19h35m23s)
- Resource length: 5
- Resource data: (2)ns(6)man-da(2)de
ANSWER RR
- Domainname: (12)tu-darmstadt(2)de
- Type: 2 (NS)
- Class: 1 (Internet)
- TTL: 70523 (19h35m23s)
- Resource length: 6
- Resource data: (3)ns2(3)hrz(12)tu-darmstadt(2)de

…….

So where is the Info?

…….
ADDITIONAL RR
- Domainname: (3)ns1(3)hrz(12)tu-darmstadt(2)de
- Type: 1 (A)
- Class: 1 (Internet)
- TTL: 17335 (4h48m55s)
- Resource length: 4
- Resource data: 130.83.22.63
ADDITIONAL RR
- Domainname: (2)ns(6)man-da(2)de
- Type: 28 (unknown)
- Class: 1 (Internet)
- TTL: 38386 (10h39m46s)
- Resource length: 16
- Resource data: 2001:41b8:0000:0001:0000:0000:0000:0053
ADDITIONAL RR
- Domainname: (2)ns(6)man-da(2)de
- Type: 1 (A)
- Class: 1 (Internet)
- TTL: 38386 (10h39m46s)
- Resource length: 4
- Resource data: 82.195.66.249
ADDITIONAL RR
- Domainname: (3)ns2(3)hrz(12)tu-darmstadt(2)de
- Type: 28 (unknown)
- Class: 1 (Internet)
- TTL: 17335 (4h48m55s)
- Resource length: 16
- Resource data: 2001:41b8:083f:0022:0000:0000:0000:0063
…….

…….
ADDITIONAL RR
- Domainname: (3)ns2(3)hrz(12)tu-darmstadt(2)de
- Type: 1 (A)
- Class: 1 (Internet)
- TTL: 17335 (4h48m55s)
- Resource length: 4
- Resource data: 130.83.22.60
ADDITIONAL RR
- Domainname: (3)ns2(6)man-da(2)de
- Type: 1 (A)
- Class: 1 (Internet)
- TTL: 38386 (10h39m46s)
- Resource length: 4
- Resource data: 217.198.242.225
ADDITIONAL RR
- Domainname: (3)ns3(3)hrz(12)tu-darmstadt(2)de
- Type: 28 (unknown)
- Class: 1 (Internet)
- TTL: 17335 (4h48m55s)
- Resource length: 16
- Resource data: 2001:41b8:083f:0056:0000:0000:0000:0060
ADDITIONAL RR
- Domainname: (3)ns3(3)hrz(12)tu-darmstadt(2)de
- Type: 1 (A)
- Class: 1 (Internet)
- TTL: 17335 (4h48m55s)
- Resource length: 4
- Resource data: 130.83.56.60
Got answer

Answer ctd…

DNS – Lessons Learned

▪ Structure name space (divide et impera)

▪ Simple „routing“ b/c of structured (hierarchical) namespace

▪ Store information at multiple locations

▪ Maintain multiple connections

▪ → Be redundant! (Replicate…)
▪ primary and secondary server, multiple TLD servers

▪ Delegation using iterative or recursive forwarding
▪ (Btw: what are the pros and cons of each?)

Security of the Domain Name System

▪ Vital service for the Internet
▪ “Do you know the IP-Address of your mail server?”

▪ “You know you shouldn’t follow the link
http://malicio.us/phishing/yourbank.html

but what about

http://www.yourbank.de ??”

▪ But: DNS does not support
▪ Data integrity

▪ Data origin authentication

▪ Threats:
▪ Denial of Service

▪ Data Authenticity/Integrity

DNS – Data Flow

Zone

File

Dynamic updates

Auth Server

Slaves

Caching Server

Resolver

[http://www.ripe.net/training/dnssec/]

DNS Security Issues Outlined

▪ Robustness towards DDoS
▪ General issues
▪ Redundancy

▪ Robustness towards data corruption
▪ Cache Poisoning and simple countermeasures

▪ More complex countermeasures:
▪ Split-Split DNS / Split-horizon DNS

▪ Cryptographic countermeasures
▪ DNS Cookies
▪ DNSSEC
▪ DNSCurve

How does this relate to security of routing?

Threats to DNS: Denial of Service

▪ DNS as vital service a “worthy” target
▪ Without DNS most Internet services will not work

(usage of names rather than IP-Addresses for numerous reasons!)

▪ DDoS Attacks on root servers: via notorious “typos” in TLDs

▪ DNS Amplification Attack (15.02.2006)
▪ Spoofed queries (60 Bytes) may generate potentially large responses (4KBytes)

▪ Exploit open recursive servers to generate load on other DNS servers

▪ Exploit open servers as reflectors when flooding a victim with traffic
(via source IP Address spoofing in request)

Robustness towards DDoS
▪ General issues

▪ Secure DNS server

▪ OS selection and updates

▪ Firewalls

▪ Server software selection and updates

▪ Redundancy and over-provisioning

▪ Root “.”: 13 name server “names” ({a..m}.root-servers.net)

▪ “com”, “net”, “de”: several name servers each

▪ Anycast

▪ Announcement of an IP prefix from multiple locations

▪ Requests from different parts of the internet are routed to different machines with the same IP address

▪ Done with several DNS servers

DNS – Threats to Data Integrity

Zone

File

Dynamic updates

Auth Server

Slaves

Caching Server

Resolver

Corrupting Data

Unauthorised

Updates

Impersonating

Master
Cache

Pollution

Cache

Impersonation

Altered Zone Data

(manually)

Threats to DNS: Data Corruption / Cache Poisoning

▪ All resolved RRs are cached at local DNS servers

▪ DNS slave servers replicate zone data from master

▪Normal DNS lookup:

1

Victim local DNS server (X)

Auth DNS server

S: <port_v>

D: 53/udp

Q-ID_v

2
S: <port_X>

D: 53/udp

Q-ID_x

3
S:53

D: <port_X>

Q-ID_x

4
S: 53

D: <port_v>

Q-ID_v

port_x: static in old DNS servers

Q-ID_x: chosen sequentially in old

DNS servers

DNS Threats – Cache Poisoning: Simple Poisoning(1)

▪ Attack: plant fake data in slaves / caching servers
(and nobody will realize the redirection from

www.yourbank.de to malicio.us/phishing/yourbank.html …)

▪ DNS via UDP/IP, no handshakes for connection establishment

▪ Transactions in DNS only identified by tuple of

<auth server(ip-address), auth server(port), transaction id>

▪ With knowledge about transactions: distribute malicious data

▪ IP Address of authoritative name servers are well known

▪ In many implementations same port for all transactions

▪ Q-ID unknown, but: BIND used to choose them sequentially…

DNS Threats – Cache Poisoning: Simple Poisoning(2)

Victim

local

DNS server

Auth DNS server

D: 53

S: <port_X>

Q-ID_x + 1

Auth DNS server

of Attacker’s Domain

1. Attacker requests DNS-Info on own Domain

2. Victim‘s server requests Info recursively

3. Port and last Q-ID known to Attacker

Attacker

4. Attacker sends request for target domain

5. DNS server performs lookup

6. Attacker sends fake information to known

port_x, with last Q-ID +1 and source

address of correct Auth DNS server

7. Second reply (by correct Auth DNS server)

is ignored

8. Victim requests IP for host in target domain

9. Local DNS server answers with poisoned info

D: 53

S: <port_X>

Q-ID_x

[<port_X>, Q-ID_x]

D: <port_X>

S: 53

Q-ID_x + 1

Mitigation of Cache Poisoning
▪ Random ports for each transaction (BIND8)

▪ Since Version 8 BIND uses PRNG for port number and query id selection
▪ However PRNG == Pseudo Random Number Generator, with knowledge about previous port numbers

future port numbers can be guessed if PRNG not cryptographically secure

▪ More random ports for each transaction (BIND9)
▪ New and better PRNG since BIND9, random numbers are

harder to guess

▪ Cache Poisoning only after aging of entry in local DNS server
▪ Only if attacker attacks at the right moment, he can poison the cache
▪ Typical TTL:

▪ 172800 (2d) for most name servers
▪ Seconds to hours for A-Entries of organizations (tu-ilmenau.de 24h, deutschebank.de:60mins, commerzbank.de

30mins, postbank.de 30s, microsoft.com:60mins (where do you get your sec-updates today?))

▪ Nevertheless: cache poisoning is still not solved…

Cache Poisoning with “Brute Force”

1. Attacker sends multitude of requests for targeted domain to local DNS
server of victim and

2. Attacker sends multitude of fake replies with IP and port from auth server
of targeted domain, guessing transaction id for one of the recursive
requests from local caching server to auth server (216 x 216 = 232 4 Billion
possible combinations)

3. Victim requests data about targeted domain

4. Local caching server responds with fake data 1

2
3

4

Victim Victim’s

local DNS server

Attacker

~~

More Sophisticated Cache Poisoning

▪Usually not a high number of chances when TTL high, e.g., 1 day

▪ Imagine the attacker M:
▪ M → Cache: Give me kslkskdf.bank.com (w/ random “kslkskdf”)

▪ The cache server must now ask the Authoritative Server at bank.com

▪ M → Cache: Not responsible for kslkskdf.bank.com, but www.bank.com is.
You may reach www.bank.com at A.B.C.D (A.B.C.D being the address of the
attacking host)
▪ The cache will then ask A.B.C.D for kslkskdf.bank.com and will also remember the “name server”

www.bank.com

▪ The entropy of 232 is insufficient!

More Sophisticated Cache Poisoning - Defense
▪ How can we increase the entropy of DNS queries?

▪ Idea: DNS does not distinguish between upper and lower case, encode more bits in the name

▪ Now the same attack:
▪ M → Cache: Give me kslkskdf.bank.com

▪ The Cache Server must now ask the Authoritative Server at bank.com
Cache → Auth Server: Give me kSLkSkdF.bAnK.COM

▪ M → Cache: Not responsible for kslkskdf.bank.com, but www.bank.com is. You may reach
www.bank.com at 141.24.212.114. (Ignored as kslkskdf.bank.com does not match the case of the query)

▪ Auth Server → Cache: kSLkSkdF.bAnK.COM is unknown

▪ Entropy is increased to 232+n for n being the letters in a domain name

▪ Helps for www.tu-dresden.de but not much for tud.de

Most Sophisticated Cache Poisoning
▪ DNS is usually transported over UDP, which may fragment

▪ What happens when a DNS reply gets fragmented?
▪ Random port numbers, Query ID and perhaps the original question (e.g. kSLkSkdF.bAnK.COM) are in

the first fragment
▪ Depending on the query and the MTU the actual answer may be in the second fragment
▪ Fragments are matched by a 16 bit identification field…

▪ Attackers thus can try to
▪ Find queries leading to large answers
▪ Spoof PMTU related ICMP messages to set the fragmentation boundary
▪ Send a “second” fragment with different identifications to the cache
▪ Send the query to the cache
▪ Wait for the cache to reassemble the reply and the crafted second fragment…

▪ DNS server should avoid large answers and PMTU discovery...

Prevent Data Corruption: Split-Split DNS
▪ Goal: Avoid cache poisoning from external machines

▪ Idea: Split the name service functions
▪ Name resolution (look up of DNS info)
▪ Domain information (Auth service of local DNS info)

▪ Internal server
▪ Implements name resolution
▪ Performs recursive look-ups at remote DNS servers
▪ Located behind firewall and only accepts requests from local LAN

▪ External server
▪ Authoritative server of domain
▪ Accepts remote requests but never accepts remote updates

▪ Zone transfer from external to internal server allowed

Split-Split DNS/ Split-Horizon DNS

Internal Client Internal Server
Internal Requests

Recursive Lookups

→ Remote updates

External Server
Auth Server for local Domain

External Requests

NO remote updates

External Client

Remote Auth Server

DNS Cookies

▪ Goals
• DNS transaction security

▪ Prevent off-path attacks (poisoning)
▪ Limit spoofing, DoS

▪ Core ideas:
• „Authenticate“ query in DNS response
• Establish semi-state between clients and servers

▪ Approach:
• EDNS option
• Include client/server cookies (extending query ID)

[Eastlake, Andrews: „RFC 7873: Domain Name System Cookies “]

DNS Cookies – States and Behavior
▪ States of communication

1. „Unauthenticated“: Client contacts server for the first time

2. „Authenticated“: Client and server share some state

▪ Server behavior:

1. Provide service at low priority, offer server cookie

2. Provide normal DNS service (return server cookie)

▪ Client behavior:

1.
a. Send DNS query, client cookie and ask for server cookie, OR
b. Query for server cookie, then (2)

2. Send server cookie, DNS query, client cookie

DNS Cookies – Cookies and OPT RR
▪ Generating DNS cookies:

▪ cookie <- PRNG(Client IP, Server IP, k)

▪ with temporary secret k at server/client

▪ Message format:

▪ Option length: [8 (only client cookie), {>=16, <=40} (client/server cookies)]

▪ Client cookie: fixed size 8 octets

▪ Server cookie: variable size, 8-32 bytes

0 1 2 3

Option Code = 10 Option Length

Client Cookie ([0-3])

Client Cookie ctd. ([4-7])

Server Cookie

Server Cookie ctd.

DNS Cookies - Protection
▪ So what do DNS cookies actually achieve?

▪ Protects transactions between resolvers/caches and caches/servers

▪ Validation of cookies:

• Valid client cookie for server (probably no off-path poisoning)

• Valid server cookie for client (previous transactions with same IP address, probably no IP address
spoofing)

▪ Critical assessment:

• Very low overhead, no protocol changes, little software adaptation

• Currently rolled out

• However: very weak protection (on-path adversaries? Leaked cookies?)

• Unclear how servers should behave in phase 1

Securing DNS Cryptographically

▪ Securing DNS has different goals:

• DNS transaction security
▪ Peer/message authentication

• DNS data security
▪ Data origin authentication

▪ Authenticated denial of existence

Transaction Authentication (TSIG)
▪ Idea:

▪ Use signatures to secure data at zone transfer master → slave

▪ Pre shared symmetric key at each entity

▪ MD5 Hash used as signature

▪ TSIG Resource Record:
(Name, Type (“TSIG”), Class (“ANY”), TTL(“0”), Length, Data(<signature>))

▪ Possibility to authenticate, but very complex to administrate in large domains (manual pre-
sharing of keys)

▪ amount of keys required:
𝑛 (𝑛−1)

2

▪ Main application areas:
▪ Secure communication between stub resolvers and security aware caching servers (?)
▪ Zone transfers (master → slave)
▪ Combined with nsupdate in data centers, to update stale information in caches

[Vixie et. al: „RFC 2845: Secret Key Transaction Authentication for DNS“]

DNS Security (DNSSEC) – Objectives

▪ DNS security objectives:
▪ End-to-end zone data origin authentication and integrity

▪ Detection of data corruption and spoofing

▪ DNSSEC does not (want to) provide:
▪ DoS-Protection (in fact, it facilitates DoS Attacks on DNS servers)

▪ Data delivery guarantees (availability)

▪ Guarantee for correctness of data (only that it has been signed by some authoritative entity)

[Arends et. al: „RFC 4033: DNS Security Introduction and Requirements“]

[Eastlake: „RFC 2535: Domain Name System Security Extensions“ (obsolete)]

[RFCs:4033,4034,4035,4310,4641]

DNSSEC
▪ Usage of public key cryptography to allow for data origin authentication on a world wide scale

• RRSets (groups of RRs) signed with private key of authoritative entities

• Public keys (DNSKEYs) published using DNS

• Distinguish zone signing key (ZSK) and key signing key (KSK)

• Child zone keys are authenticated by parents (according to the zone hierarchy) and hence
anchored trust chains established

• Only root zone key signing key (KSK) needed (manual distribution) to create complete trust
hierarchy (in theory)

• Until then: islands of trust with manually shared anchor keys

• No key revocation → DNSSEC keys should have short expiration date (quick rollover)

DNSSEC – Targeted Threats

Zone

File

Dynamic updates

Auth Server

Slaves

Caching Server

Resolver

Cache

Pollution

Cache

Impersonation

Altered Zone Data

DNSSEC – Means of Securing RRSets

▪Goal: authenticity and integrity of Resource Record Sets

▪Means:
▪ Public Key Cryptography (with Trust Chains)

▪ Security integrated in DNS (new RRs)

▪New Resource Record Types:
▪ RRSig: RR for signatures to transmitted RRs

▪ DNSKEY: RR for transmission of public keys

▪ DS: RR for trust chaining (trust anchor signs key of child zone)

▪ NSEC: RR for next secure zone in canonical order
(authenticated denial for requested zone)

DNSSEC – New Resource Records: RRSIG
▪ Resource Record for transmission of signatures

▪ RRSIG:

(Name, Type, Algorithm, Labels, TTL, Sig Expiration, Sig Inception, Key Tag, Signer’s Name, Signature)

▪ Name – name of the signed RR

▪ Type – RRSIG (46)

▪ Algorithm – MD5(1), Diffie-Hellman(2), DSA (3)

▪ Labels – number of labels in original RR (wildcard indication)

▪ TTL – TTL at time of signature inception

▪ Signature Expiration – End of validity period of signature

▪ Signature Inception – Beginning of validity period of signature

▪ Key Tag – ID of used key if signer owns multiple keys

▪ Signer’s Name – Name of the signer

▪ Signature – Actual Signature

DNSSEC – New Resource Records: DNSKEY

▪ Resource Record containing public keys for distribution

▪ DNSKEY: (Label, Class, Type, Flags, Protocol, Algorithm, Key)

▪ Label – Name of key owner

▪ Class – Always: IN (3)

▪ Type – DNSKEY

▪ Flags – key types: Key Signing Key (257) or Zone Signing Key (256)

▪ Protocol – Always DNSSEC (3)

▪ Algorithm – RSA/MD5(1), Diffie-Hellman(2), DSA/SHA-1(3), elliptic curves(4), RSA/SHA-1(5)

▪ Key – Actual key

DNSSEC – New RRs: Delegation Signer (DS)

▪ DS contains hash-value of DNSKEY of the name server of a sub zone

▪ Together with NS Resource Record, DS is used for trust chaining

▪ DS: (Name, Type, Key Tag, Algorithm, Digest Type, Digest)

▪ Name – Name of the chained sub zone

▪ Type – DS

▪ Key Tag – Identification of the hashed key

▪ Algorithm – RSA/MD5(1), Diffie-Hellman(2), DSA(3) (of referred
DNSKEY)

▪ Digest Type – SHA-1(1), SHA-256(2)

▪ Digest – Actual value of hashed DNSKEY

DNS – Authority Delegation and Trust Chaining

▪ Data can be trusted if signed by a ZSK

▪ ZSK can be trusted if signed by a KSK

▪ KSK can be trusted if pointed to by trusted DS record

▪ DS record can be trusted if
▪ Signed by parents ZSK
▪ Signed by locally configured trusted key

Trust Anchor

Parent Zone

DS pointing to child zone

Signature with KSK

Signature with ZSK Child Zone

TXT resource

Signature with KSK

Signature with ZSK

DNSSEC – New Resource Records: NSEC

▪Next Secure (NSEC) gives information about the next zone / sub domain in
canonical order (last entry points to first entry for the construction of a
closed ring)

▪Gives the ability to prove the non-existence of a DNS entry: Authenticated
Denial

▪ NSEC (Name, Type, Next Domain)
▪ Name – Name of the signed RR
▪ Type – NSEC (47)
▪ Next Domain – Name of the next domain in alphabetical order

▪ Allows adversary to crawl entire name zone (“zone walking”)

DNSSEC – New RRs: NSEC3 (1)
▪ Successor to NSEC: NSEC3 and NSEC3PARAM

▪ Uses hashed domain names to make zone walking more difficult

▪ Hashing based on salt and multiple iterations to make dictionary attacks more difficult

▪ NSEC3
▪ Name – Name of the signed RR
▪ Type – NSEC3 (50)
▪ Hash Algorithm – SHA-1 (1)
▪ Flags – To Opt-Out unsigned names
▪ Iterations – Number of iterations of Hash Algorithm
▪ Salt Length – Length of the salt value
▪ Salt – Actual salt value
▪ Hash Length – Output length of hash function
▪ Next Hashed Owner Name – Next Hash of domain name in alphabetical

order

DNSSEC – New RRs: NSEC3 (2)

▪ Potential advantage: Salting and hashing does not allow for easily deducting
hostnames from zone walks

▪ Problem:
▪ Hostnames usually have very low entropy (to remember them)

▪ Easy dictionary attacks - despite the usage of salts & iterations

▪ But not used heavily anyways:
▪ .: Uses NSEC

▪ .com: No salt, No iterations

▪ .de: Static salt BA5EBA11, 15 Iterations

DNSSEC: NSEC5 / Record Type Denial

▪ Provide authenticated denial of existence without leaking names requires
online signing.

▪ Providers do not want to trust the DNS servers with keys…

▪ Cloudflare Record Type Denial

• Send positive response but deny requested record type

[Goldberg et al.: NSEC5: Provably Preventing DNSSEC Zone Enumeration]

DNSSEC Issues

▪ Pro’s:
▪ DNSSEC allows to prevent unauthorized/spoofed DNS records

▪ Con’s:
▪ Added complexity (signing, checking, key distribution) eases DoS attacks on DNS servers

▪ Zones need to be signed completely (performance challenge for large companies or
registries)

▪ Authenticated denial with NSEC gives the possibility to “walk” the chain of NSEC and to gain
knowledge on the full zone content (all zones/ sub domains) in O(N) ==> NSEC3, …

▪ Distribution of anchor keys still a manual task (allows for human error, social engineering)

Deployment:

▪ https://www.internetsociety.org/deploy360/dnssec/maps/

Summary
▪ DNS a central service of the Internet, implemented on layer 7

▪ Vital for secure operations

▪ Vulnerabilities:
▪ DoS
▪ Poisoning

▪ Countermeasures
▪ Better PRNG
▪ Split/Split DNS
▪ TSIG
▪ DNSSEC
▪ DNS Cookies
▪ DNSCurve, PNRG, GNS

