
Competence Center for Applied Security Technology

kastel.kit.eduKIT – The Research University in the Helmholtz Association

Resilient Networking
Module 5: Denial of Service
Thorsten Strufe – This module prepared in cooperation with Günter Schäfer, Mathias Fischer, and the members of the Chair.

Winter Term 2020 – KIT/TUD

Denial of Service

▪ Classification
▪ DoS examples

▪ Exploiting IP fragmentation and assembly
▪ Abusing ICMP: Smurf attack
▪ TCP SYN-Flood attack
▪ DDoS
▪ Botnets
▪ DRDoS

▪ Countermeasures against DoS
▪ Crypto Puzzles
▪ Stateless Protocols
▪ Avoid IP address spoofing / identifying malicious nodes
▪ Filtering attack traffic
▪ Industry solutions to DDoS mitigation

Resilient Networks – Winter Term 2020 (KIT/TUD)2

The Threat...

(source: Julie Sigwart - "Geeks”)

Introduction

▪What is Denial of Service?
▪ Denial of Service (DoS) attacks aim at denying or degrading legitimate users’ access to a

service or network resource, or at bringing down the servers offering such services

▪Motivations for launching DoS attacks:
▪ Hacking (just for fun, by “script kiddies”, ...)

▪ Gaining information leap (→ 1997 attack on bureau of labor statistics server; was possibly
launched as unemployment information has implications to the stock market)

▪ Discrediting an organization operating a system (i.e. web server)

▪ Revenge (personal, against a company, ...)

▪ Political reasons (“information warfare”)

▪ Financial advantage (mirai and minecraft, 2016)

▪ ...

Resilient Networks – Winter Term 2020 (KIT/TUD)4

How serious is the DoS problem? (1)
▪ Qualitative answer:

▪ Very, as our modern information society depends increasingly on availability of information and communications services
▪ Even worse, as attacking tools are available for download

▪ Largest seen DoS attack so far: 2.3 Tbps (on Amazon AWS in 2020)

Resilient Networks – Winter Term 2020 (KIT/TUD)5

2020:

https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-2020/

How serious is the DoS problem? (2)

▪ Various attack vectors used

Resilient Networks – Winter Term 2020 (KIT/TUD)6

DDoS blackmailing is a
lucrative business model!

2020

https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-2020/

Denial of Service Attack Classes

Classification depending on different aspects:
▪ Attack effect
• Resource destruction
• Resource depletion

▪ Origin of malicious traffic
• Single source with single / multiple (forged) source addresses
• Multiple sources (Distributed DoS)

▪ Attack target
• Victim
• Infrastructure

Resilient Networks – Winter Term 2020 (KIT/TUD)8

Attack Effect in Denial of Service
▪ Affected resource

▪ Network connectivity (uplink, transit link)
▪ Computation
▪ Memory

▪ Resource destruction:
▪ Hacking into systems
▪ Making use of implementation weaknesses like buffer overflows
▪ Deviation from proper protocol execution
▪ Your common TU Dresden Excavator

▪ Resource depletion by causing:
▪ Storage of (useless) state information
▪ High traffic load (requires high overall bandwidth from attacker)
▪ Expensive computations (“expensive cryptography”!)
▪ Resource reservations that are never used (e.g. bandwidth)

Resilient Networks – Winter Term 2020 (KIT/TUD)9

So how is it done?

Resilient Networks – Winter Term 2020 (KIT/TUD)10

Attacking Techniques

▪ Reflector attacks: Generate traffic indirection

• Request service in the name of the victim (e.g. spoofed IP – which
protocols?)

• Hides attack source, allows for external amplification

▪ Amplification attacks: Leverage asymmetry in protocols

• Send lightweight requests (low cost) that generate heavyweight responses
or heavy load on the service (crypto)

• Increases damage

Resilient Networks – Winter Term 2020 (KIT/TUD)11

Victim

Control Traffic Attack Traffic

Masters

Slaves

Attacker

DoS Tools: Botnets 101

▪ The attacker classifies the compromised systems
in:

▪ Master systems

▪ Slave systems

▪ Master systems:

▪ Receive command data from attacker

▪ Control the slaves

▪ Slave systems:

▪ Launch the proper attack against the victim

▪ During the attack there is no traffic from the
attacker

Resilient Networks – Winter Term 2020 (KIT/TUD)12

Victim

Masters

Slaves

Control Traffic Attack Traffic

Attacker

Botnet Strategies: Partitioning

▪ Each master system only knows
some slave systems

▪ Therefore, the network can handle
partial failure, caused by detection
of some slaves or masters

Resilient Networks – Winter Term 2020 (KIT/TUD)13

Resource Destruction

Resilient Networks – Winter Term 2020 (KIT/TUD)14

Resource Destruction – Examples (1)
▪ Resource Destruction:

▪ Physically/Logically destroy a resource that is vital for targeted service

▪ Hacking:
▪ Exploiting weaknesses that are caused by careless operation of a system
▪ Examples: default accounts and passwords not disabled, badly chosen passwords, social engineering

(incl. malware attachments), etc.

▪ Making use of implementation weaknesses
▪ Buffer Overflows, Format-String-Attacks, ...

▪ Deviation from proper protocol execution:
▪ Example: exploit IP’s fragmentation & reassembly

Resilient Networks – Winter Term 2020 (KIT/TUD)15

Resource Destruction – Examples (2)

▪ Original Teardrop attack: exploit IP’s fragmentation & reassembly
▪ Send IP fragments to broadcast address 192.168.133.0

▪ BSD-based OS used to respond to broadcast messages, messages can be fragmented

▪ Response requires reassembly, first

▪ If an attacker sends a lot of fragments without ever sending a first / last fragment, the
buffer of the reassembling system gets overloaded

▪ (Routers use BSD-based TCP/IP stacks -> attack on network infrastructure)

▪ Sending a series of fragmented IP datagram pairs with overlapping offset to target

▪ Windows 95: crashed when trying to reassemble one pair of datagrams

More recently: ⚐0🌈 ;-)

Resilient Networks – Winter Term 2020 (KIT/TUD)16

Defending Against Resource Destruction DoS

Defenses against disabling services:
▪ Hacking:

▪ Good system administration
▪ Firewalls, logging & intrusion detection systems

▪ Implementation weakness:
▪ Code reviews, stress testing, etc. (in theory: verification and microkernels)

▪ Protocol deviation:
▪ Fault tolerant protocol design
▪ Attack-aware protocol deployment (fail2ban, rate limiting, etc)
▪ “DoS-aware protocol design”:

▪ Be aware of possible DoS attacks when e.g. reassembling packets
▪ Do not perform expensive operations, reserve memory, etc., before authentication

Resilient Networks – Winter Term 2020 (KIT/TUD)17

Resource Depletion

Resilient Networks – Winter Term 2020 (KIT/TUD)18

Background: Internet Control Message Protocol

▪ Internet Control Message Protocol (ICMP) has been specified for
communication of error conditions in the Internet

▪ ICMP PDUs are transported as IP packet payload and identified by value “1”
in the protocol field of the IP header

▪ Two main reasons make ICMP particular interesting for attackers:
▪ It may be addressed to broadcast addresses

▪ Routers respond to it

Resilient Networks – Winter Term 2020 (KIT/TUD)21

ICMP Functions
▪ Announce network errors: e.g. a host or entire portion of the network being unreachable, or a

TCP or UDP packet directed at a port number with no receiver attached (destination
unreachable)

▪ Announce network congestion: routers generate ICMP source quench messages, when they
need to buffer too many packets

▪ Assist troubleshooting: ICMP supports an Echo function, which just sends an ICMP echo packet
on a round trip between two hosts

▪ Announce timeouts: if an IP packet's TTL field drops to zero, the router discarding the packet
may generate an ICMP packet (time exceeded)

▪ Announce routing detours: if a router detects that it is not on the route between source and
destination, it may generate an ICMP redirect packet

Resilient Networks – Winter Term 2020 (KIT/TUD)22

The mother of DoS: Smurf – ICMP Bandwidth
Depletion
▪ Two reasons make ICMP particular interesting for attackers:
▪ It may be addressed to broadcast addresses
▪ Routers respond to it

▪ The Smurf attack - ICMP echo request to broadcast:
▪ Routers (sometimes) allow ICMP echo requests to broadcast addresses…
▪ An attacker sends an ICMP echo request to a broadcast address with the source

address forged to refer to the victim
▪ All devices in the addressed network respond to the packet
▪ The victim is flooded with replies to the echo request
▪ With this technique, the network being abused

as an (unaware) attack amplifier is also
called a reflector network: ...

Resilient Networks – Winter Term 2020 (KIT/TUD)23

More recent examples…

Resilient Networks – Winter Term 2020 (KIT/TUD)24

Depleting Memory: TCP’s Three-Way-Handshake

▪ The Transmission Control Protocol (TCP):
▪ provides a connection-oriented, reliable transport service
▪ uses IP for transport of its PDUs

▪ TCP connection establishment is realized with handshake:

• After handshake, data can be exchanged in both directions
• Both peers may initiate termination of the connection (two-way-handshake)

Initiator Responder

Send SYN
SYN

Send ACK

Send SYN ACK
Receive SYN ACK

SYN ACK

ACK

Receive ACK

Receive SYN

Resilient Networks – Winter Term 2020 (KIT/TUD)25

TCP Connection Management: State Diagram

Resilient Networks – Winter Term 2020 (KIT/TUD)26

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACK

Timeout after two
segment lifetimes

FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYNStimulus / Reaction

(e.g. Receive / Send)

Note: some states are “superstates”, actually

containing their own state machine

Background: Reaction According to Protocol

Reply packets according to protocol specification if state not available

Packet Sent Reaction of Receiver

TCP SYN (to open port)

TCP SYN (to closed port)

TCP ACK

TCP DATA

TCP RST

TCP NULL

ICMP Echo Request

ICMP TS Request

UDP Packet (to open port)

UDP Packet (to closed port)

TCP SYN ACK (to closed port)

TCP SYN ACK

TCP RST (ACK)

TCP RST (ACK)

TCP RST (ACK)

no response

TCP RST (ACK)

ICMP Echo Reply

ICMP TS Reply

protocol dependent

ICMP Port Unreachable

Resilient Networks – Winter Term 2020 (KIT/TUD)27

TCP SYN Flood: Memory Depletion

▪ Category Storage of useless state information:
▪ Here: TCP-SYN flood attack

Attacker

Victim

TCP SYN packets with forged source addresses (“SYN Flood”)

TCP SYN ACK packet to assumed initiator (“Backscatter”)

Connection Table

A
B
C
D
E
...

A B C

D

E

Resilient Networks – Winter Term 2020 (KIT/TUD)28

More recent Memory Depletion DoS Attacks

• Zip bombs (see above)
• Exploit recursive/nested compression to create very large output

• Recently also with overlapping files (non-recursive)

• „A billion laughs“
• „XML bomb“

• Exponential entity expansion attack on parsers

https://www.bamsoftware.com/hacks/zipbomb/

Resilient Networks – Winter Term 2020 (KIT/TUD)29

DDoS: CPU Exhaustion

▪ Category CPU exhaustion by expensive computations:
▪ Here: attacking with bogus authentication attempts

▪ The attacker usually either needs to receive or guess some values of the second message, that have to be
included in the third message for the attack to be successful

▪ Also, the attacker, must trick the victim repeatedly to perform the expensive computation in order to cause
significant damage

VictimAttacker

attacker requests for
connection with server

server asks ‘client’ for
authentication

attacker sends false digital signature, server wastes
resources verifying false signature

Resilient Networks – Winter Term 2020 (KIT/TUD)30

Background: Secure Socket Layer (SSL)

SSL was designed in the early 1990’s to primarily protect HTTP sessions and it
provides the following security services:
▪ Peer entity authentication:

▪ Prior to any communications between a client and a server, an authentication protocol is run to
authenticate the peer entities

▪ Upon successful completion of the authentication dialogue an SSL session is established between the
peer entities

▪ User data confidentiality:
▪ If negotiated upon session establishment, user data is encrypted
▪ Different encryption algorithms can be negotiated: RC4, 3DES, AES, ...

▪ User data integrity:
▪ HMAC based on a cryptographic hash function is appended to user data
▪ The MAC is computed with a negotiated secret in prefix-suffix mode
▪ Either MD5 or SHA can be negotiated for MAC computation

Resilient Networks – Winter Term 2020 (KIT/TUD)36

Background: Transport Layer Security
▪ Transport layer provides end-to-end communication

between application processes

▪ Main tasks
▪ Isolation of higher protocol layers

▪ Transparent transmission of user data

▪ Global addressing of application processes

▪ Overall goal: provisioning of an efficient
and reliable service

▪ Transport layer security protocols aim on enhancing
service of the transport layer by assuring additional
security properties

▪ Security protocols at transport layer: SSL, TLS, DTLS, SSH

▪ History
▪ SSL was designed in the early 1990’s to primarily protect HTTP sessions

▪ In 1996 the IETF decided to specify a generic Transport Layer Security (TLS) protocol that is based on SSL

Resilient Networks – Winter Term 2020 (KIT/TUD)37

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI-Model by layer

SSL/TLS Security Services
▪ Peer entity authentication:

▪ Prior to any communications between client and server, authentication protocol is run to authenticate the peer entities

▪ Upon successful completion of authentication dialogue SSL session is established

▪ User data integrity:

▪ A MAC based on a cryptographic hash function is appended to user data

▪ The MAC is computed with a negotiated secret in prefix-suffix mode

▪ Either MD5 or SHA can be negotiated for MAC computation

▪ User data confidentiality:

▪ If negotiated upon session establishment, user data is encrypted

▪ Different encryption algorithms can be negotiated: RC4, DES, 3DES, IDEA

Resilient Networks – Winter Term 2020 (KIT/TUD)38

Bob

msg

KA,B

MAC

K‘A,B

SSL Authentication: Full Handshake

Client Server

ClientHello

ServerHello
[ServerCertificate]
[CertificateRequest]
[ServerKeyExchange]
ServerHelloDone

[ClientCertificate]
ClientKeyExchange
[CertificateVerify]
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

[...] denotes optional messages

SSL CPU-Depletion

THC-SSL-DOS

Resilient Networks – Winter Term 2020 (KIT/TUD)41

More recent CPU Exhaustion Attacks…

Resilient Networks – Winter Term 2020 (KIT/TUD)42

Examples: Resource Depletion with DDoS (1)

▪ Attacker intrudes multiple systems by
exploiting known flaws

▪ Attacker installs DoS-software:

▪ „Root Kits“ are used to hide
the existence of this software
▪ Very often DoS software makes

system part of a Botnet

▪ DoS-software is used for:

▪ Exchange of control commands
▪ Launching an attack
▪ Coordinating the attack

Attacker

Victim

Resilient Networks – Winter Term 2020 (KIT/TUD)43

Examples: Resource Depletion with DDoS (4)

Different Attack Network Topologies

Victim

Master

Slaves

Victim

Master

Slaves

Reflector Reflector Reflector

a) Master-Slave-Victim b) Master-Slave-Reflector-Victim

Side Note: Reflector != Amplification!

Distributed Reflective Denial-of-Service (DR-DoS)
Resilient Networks – Winter Term 2020 (KIT/TUD)44

DRDoS - Amplification Attacks (1)

▪Use available public services on the Internet, e.g., open DNS resolvers

▪ Distributed Reflective Denial-of-Service (DR-DoS)

▪ Attack:
1. Attacker sends few spoofed small requests in the name of the victim

2. The reflectors reply accordingly to the protocol

3. Amplification of the original packets in terms of numbers and size

[Ros14]

Resilient Networks – Winter Term 2020 (KIT/TUD)45

DRDoS - Amplification Attacks (2)

▪ Amplification Factors
▪ Bandwidth amplification factor

𝐵𝐴𝐹 =
𝑙𝑒𝑛 𝑈𝐷𝑃 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟𝑠 𝑡𝑜 𝑣𝑖𝑐𝑡𝑖𝑚

𝑙𝑒𝑛 𝑈𝐷𝑃 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 𝑡𝑜 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

▪ Packet amplification factor

𝑃𝐴𝐹 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 𝑡𝑜 𝑣𝑖𝑐𝑡𝑖𝑚

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 𝑡𝑜 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟

Resilient Networks – Winter Term 2020 (KIT/TUD)46

Botnets

Botmaster

Conficker: 15 million infected
computers (in 2009)

Grum: capable of 39.9 billion
messages a day – up to 26% of
world‘s email spam (in 2010)

ZeroAccess: $100k a day (in
September 2012)

Dridex (Bugat v5): Banking Trojan
caused $30.5 million lost (in October
2015)

Botnet =
Army of infected machines (Bots)
Controlled by one instance
Automatic update mechanism

Resilient Networks – Winter Term 2020 (KIT/TUD)47

Botnets

Botmaster

Conficker: 15 million infected computers
(in 2009)

Grum: capable of 39.9 billion messages a
day – up to 26% of world‘s email spam (in
2010)

ZeroAccess: $100k a day (in September
2012)

Dridex (Bugat v5): Banking Trojan caused
$30.5 million lost (in October 2015)

Becomes even worse:
Mirai: IoT botnet for DDoS

620 Gbps on KrebsOnSecurity
and
1.1Tbps on hoster OVH
(both in September 2016)

Web Server

Resilient Networks – Winter Term 2020 (KIT/TUD)48

Mirai Botnet Advertisement

Resilient Networks – Winter Term 2020 (KIT/TUD)49

More recent: P2P-Botnets

Botmaster

▪ Traditionally centralized

▪ New Architecture: P2P Overlay

Resilient Networks – Winter Term 2020 (KIT/TUD)50

Resilient Networks – Winter Term 2020 (KIT/TUD)51

Defending Against Resource Depletion DoS

▪ Defenses against resource depletion:

▪ Generally:

▪ Rate Control (ensures availability of other functions on same system)

▪ Authentication & Accounting

▪ Expensive computations: careful protocol design, verifying the initiator’s “willingness” to spend
resources himself (e.g. “client puzzles”)

▪ Memory exhaustion: stateless protocol operation

Attack Sources and Spoofed Addresses

▪ Concerning origin of malicious traffic:

▪ Defenses against single source attacks:

▪ Disabling of address ranges (helps if addresses are valid)

▪ Defenses against forged source addresses:

▪ Ingress Filtering at ISPs (if the world was an ideal one...)

▪ “Verify” source of traffic (e.g. with exchange of “cookies”)

▪ Tracing back the true source of packets with spoofed addresses

▪ Widely distributed DoS:

▪ Offloading to Site Delivery Services/CDN

Memory Exhaustion: Stateless Protocols

▪ Basic idea:

▪ Avoid storing information at server, before DoS attack can be ruled out

▪ So, as long as no assurance regarding the client has been reached all state is “stored” in the
network (transferred back and forth)

1. C → S: Msg1

2. S →C: Msg2

3. C → S: Msg3

4. S →C: Msg4

...

S stores State S1

S stores State S2

1. C → S: Msg1

2. S →C: Msg2 , State S1

3. C → S: Msg3 , State S1

4. S →C: Msg4 , State S2

...

Stateful Operation Stateless Operation

• Drawback: requires higher bandwidth and more message processing

CPU Exhaustion: Client Puzzles/Proof of Work
Observations and assumptions:

▪ DoS (also: spam) works because there’s no postage paid (cost) when message is sent

▪ Amplification attacks require few resources at client and cause large load at victim

▪ Proof of Work: level the playing fields by making the clients prove that they invested
resources

▪ One-way functions are cheap to evaluate, but “impossible” to invert

▪ Good (as any) approach to inversion is guessing, partial guessing may be possible:

▪ Chances to guess x such that
P[H(x) = yyyyyyy0] = .5

what about P[H(x) = yyyy000]? ;-)

Simple Client Puzzles:

▪ Let server draw a pre-image at random

▪ Provide client with image and request it to provide the pre-image

Countering CPU Exhaustion with Client Puzzles (3)

▪ Reusable client puzzles according to Aura et al:

1. Server periodically broadcasts random number NS and difficulty level k

2. Every client C can then create a solution to a new instance of this puzzle by:

▪ Generating a fresh random number NC

▪ Determining with brute force search (= trying all possible values) an X such that:

•

▪ Summary:

▪ Client puzzles provide an effective means to slow down potential DoS attackers significantly

▪ At the same time, the length of messages is only increased minimally (about one byte for parameter k
and up to eight bytes for the solution X)

▪ This may protect servers at the early stage of a normal authentication where the computations are the
most CPU intensive

YXNNCH
k

CS 00000),,,(
!

=

Aura, Tuomas, Pekka Nikander, Jussipekka Leiwo, "DOS-resistant authentication with
client puzzles." Workshop on security protocols. 2000

Conclusion
▪ Increasing dependence of modern information society on availability of

communication services

▪ While some DoS attacking techniques can be encountered with “standard”
methods, some can not:
▪ Hacking, exploiting implementation weaknesses, etc. may be

encountered with firewalls, testing, monitoring etc.
▪ Malicious protocol deviation & resource depletion is harder to defend

against

▪ Designing DoS-resistant protocols emerges as a crucial task for network
engineering:
▪ Network protocol functions and architecture will have to be (re-

)designed with the general risk of DoS in mind
▪ Base techniques: stateless protocol design, cryptographic measures like

authentication, cookies, client puzzles, etc.

Verifying the Source of a Request

▪ Problem: Spoofed addresses allow adversaries to hide

▪ Basic solution:
▪ Before working on a new request, verify if the “initiator” can receive messages, sent to the claimed source of the request

▪ Only a legitimate client or an attacker which can receive the “cookie”, can send the cookie back to the server
▪ Of course, an attacker must not be able to guess the content of a cookie

▪ Discussion:
▪ Advantage: allows to counter simple spoofing attacks
▪ Drawback: requires one additional message roundtrip

“Request”

“Cookie”

Server

Attacker

Source

But...

▪ Verifying the source of a request with a cookie exchange can avoid spending significant
computation or memory resources on a bogus request

▪ What if the attacker is only interested in exhausting the access or packet processing bandwidth of
a victim?
▪ Obviously, sending cookies to all incoming packets even aggravates the situation!
▪ Such an attack situation, however, is quite easy to detect: there are simply too many packets

coming in

▪ Problems in such a case:
▪ Which packets come from genuine sources and which are bogus ones?
▪ Even worse: source addresses given in the packets may be spoofed
▪ Where do the spoofed packets come from?

IP-Address Spoofing

▪ Reprise: DoS-/ DDoS-Attacks

▪ Direct Attacks (Master – network of slaves)

▪ Problem of spoofed source addresses of attack packets sent by the slaves

▪ Reflector Attacks (Master – (slaves –) reflecting nodes)

▪ Problem of address-spoofing: set victims‘ IP-address as source

▪ Main problem is the possibility to lie about the source address…

Victim

Control Traffic

Attack Traffic

Masters

Slaves

Attacker

Victim

Slaves

Reflector Reflector Reflector

Attacker

Possible Solutions to DDoS-Attacks (1)

▪ Solutions to Reflector Attacks: secure available services

▪ Prevent amplification: Balance effort of request and reply

e.g.: Prohibit ICMP-Echo-Request to broadcast addresses

▪ => Reflectors don’t amplify attack magnitude

(however: does this work with all protocols? DNS?)

▪ Access-controlled services: provide service to authorized parties only

e.g.: Prohibit recursive DNS queries for external users

Possible Solutions to DDoS-Attacks (2)

▪ Possible Solutions to Direct Attacks:

▪ Avoid IP-Address spoofing

▪ Live with spoofed addresses and restrain effect of attacks

▪ Locate source of attack-packets

▪ Filter traffic from attacking nodes

▪ Inform admin/root of attacking networks/node

▪ But: IP is connectionless! Necessary to find means to trace back the traffic to the original source /
attacking node!

▪ Identify: zombie, spoofed address, ingress router, routers on path…

Inhibiting Spoofed Addresses: Ingress Filtering (RFC
2267)

▪ Routers block arriving packets with illegitimate source addresses.

▪ IETF BCP 38 (May 2000)

141.76.0.0/16

141.35.0.0/16

141.54.0.0/16

93.92.1.55

Discard!

Ingress Filtering (2)

▪ Difficult in the backbone (how to check if route is valid?)

▪ Easily possible at access links → ISPs

▪ Problems occur:

▪ Issues with Mobile-IP (theoretic) and load testing (local)

▪ Large management overhead at router-level

▪ Processing overhead at access routers

▪ (e.g., big ISP running a large AS with numerous IP-Ranges and DHCP)

▪ Universal deployment needed (cf. the situation today…)

▪ ISPs don’t really have an incentive in blocking any traffic

Identify Malicious Nodes: DDoS Attack-Tree

▪ Rooted Tree with
▪ Victim (V) (root of the tree)
▪ Routers (R)
▪ Attackers (Ai)

V

A A A A A A

RR

R

Questions with forged IP addresses:

▪ Where are malicious nodes?

▪ Which router (ISP) is on attack path?

Identifying Malicious Nodes: Assumptions

▪ Packets are subject to reordering and loss

▪ Resources at routers are limited

▪ Routers are usually not compromised

▪ Attackers may generate any packet

▪ Attackers are aware of tracing

▪ Multitude of attacking packets (usually many)

▪ Routes between A and V are stable (in the order of seconds)

▪ Multiple attackers can act in collusion

Identify Malicious Nodes: Proposed Solutions

Simple classification of solutions:

▪ Network Logging

▪ Log information on processed packets and path

▪ Attack Path Traceback

▪ Trace attack path through network

▪ Other / Related

▪ Attack Mitigation/Avoidance

Requirements / Evaluation Metrics

1. Involvement of ISP (required or not)

2. Amount of necessary packets to trace attack

3. Effect of partial deployment

4. Resource overhead
▪ Processing overhead at routers
▪ Memory requirements
▪ Bandwidth overhead

5. Ease of Evasion

6. Protection

7. Scalability

8. Performance towards Distributed DoS

9. Performance towards packet transformations

Involvement of ISP

▪ ISPs don‘t really have an incentive in preventing „attack-traffic“:

• Paid by number of transmitted bytes

• Receive complaints about service failures (churn!)

• Which traffic is „malicious“ and which is not?

• „Malicious“ for whom?

▪ Incentives of ISPs:

• Infrastructure is expensive

• Management-/ down times are expensive

• Administrators are expensive

Amount of Packets Needed to Track Source

▪ Different types of attacks:

▪ Bandwidth resource exhaustion

▪ Continuous stream of packets for the time span of the attack

▪ Packet flood to bring link / host down

▪ One attacker / multiple attackers (multiple attack paths)

▪ Well targeted packets (resource destruction, e.g. Teardrop attack)

▪ Which attacker can be traced?

Effect of Partial Deployment

▪ What if only a few ISPs deploy the mechanism (at first)?

▪ Still some benefit?

▪ Attackers in the deploying ISPs traceable?

▪ Ingress of attack packets traceable?

▪ Cooperation of „islands“ possible – gain in knowledge if two ISPs deploy mechanism which are
connected through a third transit domain?

Resource Overhead

▪ Resources in the network are scarce (memory, processing)!

▪ How much processing overhead is implied for the routers

▪ Additional packet analysis

▪ Additional functions

▪ How much information has to be stored at routers / in the network

▪ Log of all processed packets?

▪ If mechanism needs communication:

▪ In band / out of band?

▪ How much extra bandwidth is needed to distribute information?

Ease of Evasion, Protection & Scalability

▪ Ease of Evasion:
▪ How easy is it for an attacker to evade the mechanism?
▪ Can the attacker send special packets that mislead the mechanism?

▪ To stay transparent

▪ To mislead an investigator

▪ Attack the mechanism itself

▪ Protection:
▪ What if an attacker subverts one or many network elements on the path: Can the mechanism still

produce meaningful results?

▪ Scalability:
▪ Does the mechanism scale with growing network sizes?
▪ How much extra configuration is needed (only at new, or at all devices?)
▪ How much do the elements depend on each other?

Performance: DDoS and Packet Transformation

▪ Ability to handle DDoS:

▪ Can the mechanism produce meaningful results, if a victim is attacked on different paths?

▪ Ability to handle packet transformation:

▪ Does the mechanism produce meaningful results (results at all) if the packets are transformed
due to:

▪ Network Address Translation (NAT)

▪ Packet fragmentation

▪ Packet duplication

▪ Tunneling

Identifying Malicious Nodes: Proposed Solutions

▪ Network Logging
▪ Local network logging
▪ Aggregated network logging
▪ Source Path Identification („Hash-based IP-Traceback“)

▪ Attack Path Traceback
▪ Input Debugging
▪ Controlled Flooding
▪ ICMP Traceback
▪ Probabilistic Packet Marking („IP-Traceback“)

▪ Other / Related
▪ Hop-Count Filtering
▪ Aggregate Based Congestion Control (ACC)
▪ Secure Overlay Services

Logging Approaches

▪ Log information on processed packets and path

▪ Network logging

▪ Local network logging:

▪ All routers log all traffic

▪ Too much overhead!

▪ Does not scale

▪ Aggregated network logging

▪ Source Path Identification („Hash-based IP-Traceback“)

Aggregated Network Logging

▪ Centralized approach:

▪ Introduction of „Tracking Router“ (TR)

▪ Forwarding all traffic through TR (via GRE)

▪ TR logs all traversing traffic

▪ Creates one single point of failure! Does not scale! (Altough: SDN…)

TR

Physical Link
GRE Overlay Link

[Stone: „Centertrack: An IP Overlay Network for Tracking DoS Floods“]

Source Path Identification

▪ Source Path Identification Engine (SPIE, aka Hash-based IP Traceback)

▪ Storage of compressed data in specialized devices

▪ DGA generate digests of data (Data Generation Agent)

▪ SCAR for storage and retrieval (SPIE Collection & Reduction Agents)

▪ STM for central management (SPIE Traceback Manager)

DGA

DGA

DGA
DGA

DGA

SCAR

DGA

DGA

DGADGA

SCARTraceback
Manager

[Snoeren et al.: „Single-Packet IP-Traceback“]

Source Path Identification (2)

▪ „Store all information on traversed packets?“

▪ No! What do we need to store?

▪ Store digests of:

▪ Constant fields in IP Header (16 bytes)

▪ First 8 bytes of payload

▪ Still a lot, compress:

Hashed in

Bloom Filters

Type of ServiceVersion IHL Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options (if any)

Source Path Identification: Bloom Filters (1)

▪ 24 bytes of each packet hashed with k hash functions hi

▪ Hash values stored in filter:

▪ To store hi(P), write a 1 into
position 2hi(P) in bloom filter

…P

h1(P)

h2(P)

hk-1(P)

hk(P)

1
1

1

)()()(

1

)()()(

0

2...22)()(

2...22)(

21

00201

nknn

k

PhPhPh

nn

PhPhPh

ororororPBFPBF

orororPBF

−=

=

Source Path Identification: Bloom Filters (2)

▪ During normal operation DGAs maintain bloom filters, if bloom filter more than 70% “full” (70% of
the bits are set to “1”), sent to SCAR

▪ Detection if a specific packet was processed:

▪ Hash packet with k hash functions hi

▪ If any of the corresponding bits in all stored bloom filters is 0: Packet has not been processed

▪ All bits of a bloom filter are 1: Packet most probably traversed the DGA

▪ Path retrieval:

▪ Victim contacts STM with pattern “P” of attack packet

▪ STM distributes pattern “P” to SCARs

▪ SCARs perform k hashes h1(P).. hk(P) to test which DGA forwarded matching packet

Traceback Approaches

▪ Trace attack path backwards through network

▪ Attack Path Traceback

▪ Input Debugging

▪ Controlled Flooding

▪ ICMP Traceback

▪ Probabilistic Packet Marking („IP-Traceback“)

Input Debugging

▪ During attack:
▪ Trace attack-path „by hand“
▪ Contact administrator / ISP
▪ Admin matches ingress port for a given packet pattern of egress port
▪ Repeat until source is found…

▪ Disadvantages:
▪ Cumbersome (what if admin X is not available?)
▪ Slow
▪ Expensive (manual intervention)
▪ Not scalable

…Yet the most applied method until today…

Controlled Flooding

▪ During Single Source DoS-Attacks, traversed backbone links on the attack path are (heavily) loaded

▪ Traceback attack path by testing links:
▪ Measure incoming attack traffic
▪ From victim to approximate source:

▪ Create load on suspect links in the backbone

▪ Measure difference in incoming attack traffic: if less attack packets arrive, the link is on the attack path…

▪ Need possibility to create load on links to test with access on end-hosts around the backbone (chargen-service on
multiple foreign end-hosts)

▪  DoS of the backbone in itself

▪ Testing high speed backbone links using end-hosts difficult (how many dsl-links do you need to saturate one CISCO-
12000-Link (10Gbps)?

[Burch & Cheswick: „Tracing Anonymous Packets to Their Approximate Source“]

ICMP Traceback

▪ Assumption:
▪ DoS attacks are composed of packet floods
▪ Traceback on probabilistic sample of traffic possible

▪ Approach:
▪ Routers give destination information about path of packets
▪ For 1 in 20k IP packets routers send additional ICMP iTrace to destination

▪ Information in the iTrace-Packet:
▪ TTL → 255 (number of hops between router and destination)
▪ Timestamp
▪ Address of router
▪ Ingress (previous hop) and Egress ports (next hop on path)
▪ Copy of payload of traced packet (for identification)

[Bellovin: „ICMP Traceback Messages“]

ICMP Traceback: Open Issues

▪ Signaling out of band → additional traffic (even at low rate)

▪ Large amount of packets needed to reconstruct the full attack path
(Tradeoff: Amount of ICMP packets vs. speed of path detection)

▪ Victim needs to analyze large amount of iTrace messages

▪ Firewalls (often) drop ICMP messages

▪ Evasion: Possibility to create fake iTrace messages (easy to evade)
(Potential solution: set up a PKI and let each router sign iTrace messages…)

Probabilistic Packet Marking (aka „IP Traceback“,
PPM)

Approach similar to ICMP Traceback:

• Mark forwarded packets with a very low probability

• In-band signaling to avoid additional bandwidth needs
(mark packets directly)

▪ Different marking methods possible

▪ Different signaling (encoding) methods possible

[Savage et al.: „Network Support for IP Traceback“]

PPM Marking: Node Append

▪ Similar to IP Record Route: append each node‘s address to IP packet

▪ → Complete attack path in every received packet

Marking Procedure at router R:
For each packet w, append R to w

Path Reconstruction Procedure at victim v:

for any packet w from attacker

extract path (R1,..,Rj) from the suffix of w

▪ Pros and Cons:
▪ Converges quickly, easy to implement
▪ High bandwidth overhead (especially for small packets)
▪ Possible additional fragmentation of IP packets

PPM Marking: Node Sampling (1)

▪ Similar to ICMP Traceback, but use additional IP header field

Marking Procedure at router R:
For each packet w, with probability p write R into w.node

Path Reconstruction Procedure at victim v with additional node table NodeTbl (node,
count):

For each packet w from attacker, z  w.node

if z in NodeTbl

increment z.count

else

insert (z,1) in NodeTbl

sort NodeTbl by count

extract path (R1,..,Rj) from ordered fields in NodeTbl

▪ Routers close to victim have higher probability of marking: the higher the count in NodeTbl the closer the router

PPM Marking: Node Sampling (2)

▪ Issues of node sampling:

▪ Additional IP header field needed

▪ Routers far away from victim contribute only few samples (marks are overwritten) and large
number of packets needed to recover complete path

(p=0.51, d=15: > 42k packets needed to completely reconstruct attack path)

▪ In DDoS with multiple attackers different paths can not easily be distinguished

PPM Marking: Edge Sampling, Marking

▪ Mark packets with:

▪ Backbone edge e (u,w) (start router u, end router w) and distance d(u,v)

▪ Victim v can deduct graph of edges e and reconstruct attack tree

Marking Procedure at router R:

For each packet w, with probability p

write R into w.start and 0 into w.distance

else // probability 1-p

if w.distance = 0 then

write R into w.end

increment w.distance

PPM Marking: Edge Sampling, Reconstruction

▪ In order to reconstruct the attack tree

Path Reconstruction Procedure at victim v with additional
attack tree t:

for each packet w from attacker

if w.distance = 0 then

insert edge (w.start, v, 0) into t

else

insert edge (w.start, w.end, w.distance) into t

remove all edges (x,y,d) with d ≠ d(x,v) in t

extract path (R1,..,Rj) enumerating acyclic paths in t

PPM Encoding

▪ With IP routers using IP addresses, marking of w.start, w.end, w.distance needs 32 + 32 + x bits.

▪ Solution: coding edge as IP(w.start) XOR IP(w.end)

(last hop known (w.distance = 0), others determined through XOR at victim)

→ 32 bit („edge-id“) + x bits (distance)

▪ Transmit only fragment of edge-ids with every packet and mark with higher probability (together
with hashed values of the router’s edge IP address to distinguish edges → 64 bit per edge)

▪ Edge-ID fragment 8 bits, offset 3 bits, distance 5 bits → 16 bits

a bb 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

v

a

b

d(a,v) = 2

+

PPM Encoding: Encapsulation in IP header

▪ Using the „Identification“ field for in-band signaling (16 bit)

▪ But the ID-Field is needed!? In case of fragmentation:
▪ Downstream marking: send ICMP Echo Reply („packet lost“)
▪ Upstream marking: set „don‘t fragment“ flag

Version IHL Type of Service Total Length

Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options (if any)

Payload

offset distance edge fragment

0 2 3 7 8 15

Identification

PPM Advantages and Disadvantages

☺ Stable

☺Meaningful results under partial deployment

☺ No bandwidth overhead

☺Low processing overhead

Works mainly for bandwidth exhaustion attacks
▪ Many packets needed for reconstructing attack path
▪ Fragmented packets can not be traced (e.g. Teardrop attack, however, Teardrop is not

bandwidth exhaustion anyway)

 Victim under attack needs rather high amount of memory (many packets!) and processing time

 In order to avoid spoofing, authentication needed (PKI, signatures)

Related Techniques for Mitigation / Avoidance

▪ Hop-Count Filtering

▪ Aggregate Based Congestion Control (ACC)

▪ Secure Overlay Services

Aggregate Based Congestion Control

▪ Is it possible, to restrain attack traffic in the backbone?

▪ Traffic is very diverse in the backbone, in general

▪ However, attack traffic forms an aggregate of similar traffic

(Identified by analyzing the dropped traffic:

select the destination addresses with more than twice the mean number of drops and

cluster these destination addresses to 24bit prefixes)

▪ ACC/pushback is a reactive approach:

▪ If router/link is congested, can an aggregate be identified?

▪ If there is an aggregate, limit the rate of aggregate traffic

▪ If the aggregate persists, perform „pushback“: inform upstream routers to limit rate of the
aggregate

[Mahajan, Bellovin & Floyd: „Controlling High Bandwidth Aggregates in the Network “]

Background: Transport Layer Security
▪ Transport layer provides end-to-end communication

between application processes

▪ Main tasks

▪ Isolation of higher protocol layers

▪ Transparent transmission of user data

▪ Global addressing of application processes

▪ Overall goal: provisioning of an efficient
and reliable service

▪ Transport layer security protocols aim on enhancing
service of the transport layer by assuring additional
security properties

▪ Security protocols at transport layer: SSL, TLS, DTLS, SSH

▪ History

▪ SSL was designed in the early 1990’s to primarily protect HTTP sessions

▪ In 1996 the IETF decided to specify a generic Transport Layer Security (TLS) protocol that is based on SSL

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI-Model by layer

Resilient Networks – Winter Term 2020 (KIT/TUD)104

SSL/TLS Security Services
▪ Peer entity authentication:

▪ Prior to any communications between client and server, authentication protocol is run to authenticate the peer entities

▪ Upon successful completion of authentication dialogue SSL session is established

▪ User data integrity:

▪ A MAC based on a cryptographic hash function is appended to user data

▪ The MAC is computed with a negotiated secret in prefix-suffix mode

▪ Either MD5 or SHA can be negotiated for MAC computation

▪ User data confidentiality:

▪ If negotiated upon session establishment, user data is encrypted

▪ Different encryption algorithms can be negotiated: RC4, DES, 3DES, IDEA

Bob

msg

KA,B

MAC

K‘A,B

Resilient Networks – Winter Term 2020 (KIT/TUD)105

Remote-Triggered Black Hole Filtering (2) - S/RTBH

Source-Based Remotely
Triggered Black Hole Filtering
(S/RTBH)

▪ Goal: Block all incoming
traffic from a particular
address (space)
▪ Before traffic enters the

target network, at BGP router
level

▪ Configure BGP-speaking
routers to discard respective
traffic that is not coming from
the “expected” interface

▪ Trigger router speaks iBGP
(interior BGP) with border
routers

▪ Routers use Unicast Reverse
Path Forwarding (uRPF)

[CI05]

Resilient Networks – Winter Term 2020 (KIT/TUD)106

Remote-Triggered Black Hole Filtering (3) - S/RTBH

▪ Leveraging Unicast Reverse Path Forwarding (uRPF) (RFC 5635)

▪ Routers perform a route lookup of the source address upon packet reception

▪ Loose Mode:

▪ Requires: egress interface for route lookup exists in Forwarding Information Base (FIB) at all [or, != /dev/null]

▪ iBGP updates to explicitly invalidate routes to suspicious source addresses by setting their next hop to /dev/null (or null0)

▪ Strict Mode:

▪ Requires: ingress interface == egress interface for route lookup

▪ (+) Might filter spoofed packets / (-) Problems with asymmetric routing

[CI05]

Resilient Networks – Winter Term 2020 (KIT/TUD)107

Recapitulation: Source Identification of IP Traffic

▪ Problem: nodes may lie about their IP address

▪ Spoofing enables attackers to perform DoS/DDoS attacks

▪ If the source of an attack can be identified, attack traffic can be restrained

▪ Different approaches to identify attacker / routers / ISP on attack path:
▪ Logging in the network

▪ „Aggregated network logging“

▪ Source Path Isolation („Hash-based IP Traceback“)

▪ Traceback of packet flow

▪ Controlled Flooding

▪ ICMP Traceback

▪ Probabilistic Packet Marking („IP Traceback“)

▪ Other Means (Mitigation/Avoidance of attacks)

DDoS Mitigation in the Wild

▪ Business model: being a DDoS (/security) shield.

▪ Companies like Cloudflare or Imperva Incapsula
▪ Content Delivery Networks

▪ Operation of IDSs/IPSs and Firewalls

Source: https://www.cloudflare.com/

Resilient Networks – Winter Term 2020 (KIT/TUD)110

Some Upcoming Challenges

▪ The introduction of Internet protocols in classical and mobile telecommunication networks also
introduces the Internet’s DoS vulnerabilities to these networks

▪ Programmable end-devices (e.g., smartphones) may constitute a large base of possible slave nodes for
DDoS attacks on mobile networks

▪ Software defined radio implementation may allow
new attacking techniques:

▪ Hacked smart phones answer to arbitrary paging requests

▪ Unfair / malicious MAC protocol behavior

▪ ...

▪ The ongoing integration of communications and automation may enable completely new DoS threats

Resilient Networks – Winter Term 2020 (KIT/TUD)111

Conclusion

▪ Increasing dependence of modern information society on availability of communication services

▪ While some DoS attacking techniques can be encountered with “standard” methods, some can
not:
▪ Hacking, exploiting implementation weaknesses, etc. may be encountered with firewalls,

testing, monitoring etc.
▪ Malicious protocol deviation & resource depletion is harder to defend against

▪ Designing DoS-resistant protocols emerges as a crucial task for network engineering:
▪ Network protocol functions and architecture will have to be (re-)designed with the general

risk of DoS in mind
▪ Base techniques: stateless protocol design, cryptographic measures like authentication,

cookies, client puzzles, etc.

References (1)
[CSI00] Computer Security Institute and Federal Bureau of Investigation. 2000 CSI/FBI Computer Crime and Security Survey. Computer Security

Institute Publication, March 2000.

[Akamai16] Akamai. (2016). akamai’s [state of the internet] Q1 2016 report, 77. https://doi.org/10.1017/CBO9781107415324.004

[Dar00] T. Darmohray, R. Oliver. Hot Spares For DoS Attacks. ;login:, 25(7), July 2000.

[JuBr99] A. Juels und J. Brainard. Client Puzzles: A Cryptographic Countermeasure Against Connection Depletion Attacks. In Proceedings of the 1999
Network and Distributed System Security Symposium (NDSS’99), Internet Society, March 1999.

[Mea00] C. Meadows. A Cost-Based Framework for the Analysis of Denial of Service in Networks. 2000.

[MVS01] D. Moore, G. M. Voelker, S. Savage. Inferring Internet Denial-of-Service Activity. University of California, San Diago, USA, 2001.

[NN01] S. Northcutt, J. Novak. Network Intrusion Detection - An Analyst’s Handbook. second edition, New Riders, 2001.

[TL00] P. Nikander, T. Aura, J. Leiwo. Towards Network Denial of Service Resistant Protocols. In Proceedings of the 15th International Information
Security Conference (IFIP/SEC 2000) Beijing, China, 2000.

[BA03] A. Belenky, N. Ansari:"On IP Traceback", in IEEE Communications Magazine, July 2003

[BC00] Burch & Cheswick: „Tracing Anonymous Packets to Their Approximate Source“, Proceedings of the 14th USENIX conference on System
administration, 2000

[Bel01] Bellovin: „ICMP Traceback Messages“, Internet-Draft draft-ietf-itrace-01.txt, 2001

Resilient Networks – Winter Term 2020 (KIT/TUD)113

References (2)

[JWS03] Jing & Wang & Shin: „Hop-Count Filtering: An Effective Defense Against Spoofed DDoS Traffic“,
Proceedings of the 10th ACM conference on Computer and communications security, 2003

[KMR02] Keromyits & Misra & Rubenstein: „SOS: Secure Overlay Services“, Proceedings of ACM SIGCOMM,
2002

[MBF01] Mahajan & Bellovin & Floyd: „Controlling High Bandwidth Aggregates in the Network“, Technical
report, 2001

[RSG98] Reed, Syverson & Goldschlag: „Anonymous Connections and Onion Routing“, IEEE Journal on Selected
Areas in Communications, 1998

[Sav01] Savage et al.: „Network Support for IP Traceback“, IEEE/ACM Transactions on Networking (TON), 2001

[Sto00] Stone: „Centertrack: An IP Overlay Network for Tracking DoS Floods“, Proceedings of 9th USENIX
Security Symposium, 2000.

[Sno02] Snoeren et al.: „Single-Packet IP-Traceback“, IEEE/ACM Transactions on Networking (TON), 2002

[Ros14] Rossow, Christian. "Amplification Hell: Revisiting Network Protocols for DDoS Abuse." NDSS. 2014.

[JiWa+] Cheng Jing, Haining Wang, Kang G. Shin: „Hop-Count Filtering: An Effective Defense Against Spoofed
DDoS Traffic“, CCS, 2003

c Cisco “Remotely triggered black hole filtering- destination based and source based” , Whitepaper,
https://www.cisco.com/c/dam/en_us/about/security/intelligence/blackhole.pdf

Source: https://www.cisco.com/c/dam/en_us/about/security/intelligence/blackhole.pdfResilient Networks – Winter Term 2020 (KIT/TUD)114

