Resilient Networking

Disclaimer: this lecture has been created with very valuable input from Jussi Kangasharju

Module 2 – Background on Graphs (Winter Term 2020)
Thorsten Strufe
Module Outline

- **Background 1: Graph Analysis**
 - Why bother with theory?
 - Graphs and their representations
 - Important graph metrics
 - On robustness and resilience

- **Background 2: Crypto**
 - Stream ciphers and the OTP
 - Block ciphers and their operation modes
 - Key agreement
 - Asymmetric Crypto
 - Integrity
Some questions...

- How robust is the Internet?
- Why do darknets work?
- What do the existing networks actually look like, and why?
- What would an ideal computer network look like?

Gnutella snapshot, 2000
Graphs

▪ Graph families and models
 ▪ Random graphs
 ▪ Small world graphs
 ▪ Scale-free graphs

▪ Graph theory and real computer networks
 ▪ How are the graph properties reflected in real systems?
 ▪ Users/nodes are represented by vertices in the graph
 ▪ Edges represent connections in overlay / routing table entries

▪ Concept of self-organization (how/why do they evolve?)
 ▪ Network structures emerge from simple rules
 ▪ E.g. also in social networks, www, actors playing together in movies
What is a Graph?

- **Definition of a graph:**

 Graph $G = (V, E)$ consists of two finite sets, set V of vertices (nodes) and set E of edges (arcs, links) for which the following apply:

 1. If $e \in E$, then exists $(v, u) \in V \times V$, such that $v \in e$ and $u \in e$
 2. If $e \in E$ and above (v, u) exists, and further for $(x, y) \in V \times V$ applies $x \in e$ and $y \in e$, then $\{v, u\} = \{x, y\}$

Example graph with 4 vertices and 5 edges

Side note:

Edges can have (multiple) “weights” $w : E \rightarrow \mathbb{R}$
Properties of Graphs

- An edge $e \in E$ is directed if the start and end vertices in condition 2 above are identical: $v = x$ and $y = u$

- An edge $e \in E$ is undirected if $v = x$ and $y = u$ as well as $v = y$ and $u = x$ are possible

- A graph G is directed (undirected) if the above property holds for all edges

- Graph $G_1 = (V_1, E_1)$ is a subgraph of $G = (V, E)$, if $V_1 \subseteq V$ and $E_1 \subseteq E$ (such that conditions 1 and 2 are met)
How are Graphs Implemented?

- Adjacency/Incidence Matrix

- Adjacency/Incidence List
 - (Plus specialized others..)

```
1  0  1  0
2  1  0  1
3  0  1  0
```

```
(1,2)  
(2,1),(2,3) 
(3,2)  
1:2    
2:1,3 
3:2    
```

VERY good book is: Sedgewick: Algorithms in C, part 3 (Graph Algorithms)
Some Examples of Computer Networks

- Early Computer Networks Aloha (or WSN, for that matters)
- Network Layers 1,2
Examples: The Internet

- Globally internetworked computers (Layer 3)
Examples: Overlays (Layer 7 (?))

- A **CLIQUE** is a graph that is fully connected \((u,v) \in E\) for all \(u \in V\) and \(v \in V, u \neq v\)

- A (P2P) Overlay \((V_o,E_o)\) (in general) is a subgraph such that \(V_o=V\) and \(E_o \subseteq E\) (edges are selected edges from a CLIQUE graph)

- **Why?** Considering the nodes to be on the Internet, they all can create connections between each other...
Important Graph Metrics

- **Order**: the number of vertices in a graph: $|V|$
- **Size** of the graph is the number of edges $|E|$

- **Distance**: $d(v, u)$ between vertices v and u is the length of the shortest path between v and u

- **Diameter**: $d(G)$ of graph G is the maximum of $d(v, u)$ for all $v, u \in V$

- The **density** of a graph is the ratio of the number of edges and the number of possible edges.
Graph Metrics: Vertex Degree

- In graph $G = (V, E)$, the **degree** of vertex $v \in V$ is the total number of edges $(v, u) \in E$ and $(u, v) \in E$
 - Degree is the number of edges incident to a vertex

- For directed graphs, we distinguish between **in-degree** and **out-degree**
 - In-degree is number of edges with the vertex as end-point
 - Out-degree is number of edges going with the vertex as starting point

- The degree of a vertex can be obtained as:
 - Sum of the elements in its row in the incidence matrix
 - Length of its vertex incidence list

- The **degree distribution** is the distribution over all node degrees
 (given as a frequency distribution or (often) complementary cumulative distribution function CCDF (Komplement der Verteilungsfunktion))
Graph Metrics: Degree Distribution (Examples)

Human Protein Interaction [biomedcentral.com]
The Internet (AS-level) [pacm.princeton.edu]
Online Social Network (xing crawl) [strufe10popularity]

Resilient Networks – Winter Term 2020 (KIT/TUD)
Routing and Graph Metrics on Path Length

- **Routing**: Define strategy to find path from s to d
 commonly local strategy, based on address/distances,
 usually “greedy”

- **All pairs shortest paths (APSP)**: $d(v, u)$ | all $v,u \in V$

- **Hop Plot**: Distance distribution over all distances $Hist(\text{APSP}(G))$

- **Average CHARACTERISTIC path length (CPL)**: Sum of the distances over all pairs of nodes divided by the number of pairs

- **For defined routings (usually greedy) on directed graphs**: Characteristic Routing Length (CRL): average length of paths found (potentially stochastic...)
Important Graph Metrics: Connectivity

- **Edge connectivity**: is the minimum number of edges that have to be removed to separate the graph into at least two components.

- **Vertex connectivity**: the minimum number of nodes.

- How can we calculate them?
- Which of both is higher?
- In which cases are they the same?
- So where do you attack, naively? ;-)

- Homework: check maxflow, Menger‘s Theorem
Graph Metrics: Network Clustering

- **Clustering coefficient**: number of edges between neighbors divided by maximum number of edges between them
 - k neighbors: $k(k-1)/2$ possible edges between them

$$C(i) = \frac{2E(N(i))}{d(i)(d(i)-1)}$$

$E(N(i)) =$ number of edges between neighbors of i

$d(i) =$ degree of i

- What if: a node has only one neighbor? 😊

- Variations exist: *local, average, global CC*

Classes of Graphs

- Regular graphs
- Random graphs
- Graphs with Small-World characteristic
- Scale-free graphs

- ...Graphs with plenty more characteristics
 - (dis-) assortativity
 - Rich-club connectivity
 - ...
Regular Graphs

- Regular graphs have traditionally been used to model networks, they have
 - constant node degree (discrete degree distribution of a single value)
 - potentially different topologies
- However, the model does not reflect real nets well
Random Graphs

- Random graphs are first widely studied graph family
 - Many overlay networks choose neighbors more or less randomly

- Two different generators generally used:
 - Erdös and Renyi
 - Gilbert

- Gilbert’s definition: Graph $G_{n,p}$ (with n nodes) is a graph where the probability of an edge $e = (v, w)$ is p

Construction algorithm:
- For each possible edge, draw a random number in (0,1)
- If the number is smaller than p, then the edge exists
- (p can be function of n or constant)
Basic Properties of Random Graphs

Giant Connected Component

Let \(c > 0 \) be a constant and \(p = c/n \).

If \(c < 1 \) every component of \(G_{n,p} \) has order \(O(\log N) \) with high probability.

If \(c > 1 \) then there is one component of order \(n^*(f(c) + O(1)) \) where \(f(c) > 0 \), with high probability. All other components have order \(O(\log N) \).

- **English**: Giant connected component emerges with high probability when average degree is about 1

Node degree distribution

- If we take a random node, how high is the probability \(P(k) \) that it has degree \(k \)?
- Node degree is Poisson distributed
 - Parameter \(c = \) expected number of occurrences

\[
P(k, c) = \frac{c^k e^{-c}}{k!}
\]

Clustering coefficient

- Clustering coefficient of a random graph is asymptotically equal to \(p \) with high probability
Utility of Random Graphs

- Random Graphs are useful
 - Easy to analyze
 - Good approximation of reality with regards to some properties

- Random Graphs are wrong models of reality
 - Many properties of real-world networks diverge considerably from this random case
Milgram's Small World Experiment
Six Degrees of Separation

- Famous experiment from 1960’s (S. Milgram)

- Send a letter to random people in Kansas and Nebraska and ask people to forward letter to a person in Boston
 - Person identified by name, profession, and city

- **Rule**: Give letter only to people you know by first name and ask them to pass it on according to same rule
 - Note: Some letters reached their goal

- Letter needed six steps on average to reach the destination

- Graph theoretically: Social networks have dense local structure, but (apparently) small diameter
 - Generally referred to as “small world effect”
 - Usually, small number of persons act as “hubs”
Small-World Network Model

- Developed/discovered by Watts and Strogatz (1998)
 - Over 30 years after Milgram’s experiment!

- Watts and Strogatz looked at three networks
 - Film collaboration between actors, US power grid, Neural network of worm *Caenorhabditis elegans* (“C. elegans”)

- Measured characteristics:
 - Clustering coefficient as a measure for ‘regularity’, or ‘locality’ of the network
 - If it is high, short edges exist with high probability
 - The average path length between vertices

- Results:
 - Grid-like networks:
 - High clustering coefficient \Rightarrow high average path length
 (edges are not ‘random’, but rather ‘local’)
 - Most real-world (natural) networks have a high clustering coefficient
 (0.3-0.4), but nevertheless a low average path length
Small-World Graph Generator (W&S)

- Put all n nodes on a ring, number them consecutively from 1 to n
- Connect each node with its k clockwise neighbors
- Traverse ring in clockwise order

- For every edge
 - Draw random number r
 - If $r < p$, then re-wire edge by selecting a random target node from the set of all nodes (no duplicates)
 - Otherwise keep old edge

- Different values of p give different graphs
 - If p is close to 0, then original structure mostly preserved
 - If p is close to 1, then new graph is random
 - Interesting things happen when p is somewhere in-between
Regular, Small-World, Random

Regular

Small-World

Random

\[p = 0 \]

\[p = 1 \]
Utility of Small World Property

- Small world property
 - Explains why short paths exist

- Does not explain, how and why they are found?
Kleinberg’s Small-World Navigability Model

- Small-world model explains why short paths exist

- Missing piece in the puzzle: why can we find these paths?
 - Each node has only local information
 - Even if a shortcut exists, how do people know about it?
 - Milgram’s experiment:
 - Some additional information (profession, address, hobbies etc.) is used to decide which neighbor is “closest” to recipient
 - Results showed that first steps were the largest

- Kleinberg’s Small-World Model
 - Set of points in an \(n \times n \) grid
 - Distance is the number of “steps” separating points
 - \(d(i, j) = |x_i - x_j| + |y_i - y_j| \)
Kleinberg’s Topologies

- Take \(d \)-dimensional grid in which all nodes are connected to all neighbors along each axis
- Additionally connect nodes in higher distance with probability decreasing with distance

iow: the probability that node \(j \) is selected as neighbor for \(i \) is proportional to \(d(i, j)^{-r} \), with clustering exponent \(r \)
Intuition of Navigation in Kleinberg’s Model

- **Simple greedy routing**: nodes only know local links and target position, always use the link that brings message closest to target
 - If $r=2$, expected lookup time is $O(\log^2 n)$
 - If $r\neq 2$, expected lookup time is $O(n^\varepsilon)$, where ε depends on r

- Kleinberg has shown: Number of messages needed is proportional to $O(\log^2 n)$ iff $r=s$ ($s =$ number of dimensions)
 - Idea behind proof: for any $r > s$ there are too few long edges to make paths short
 - For $r < s$ there are too many random edges \Rightarrow too many choices for passing message, greedy may not deterministically converge to destination
 - The message will make a (long) random walk through the network
Problems with Small-World Graphs

Small-world graphs explain why:
- Highly clustered graphs can have short average path lengths ("short cuts")

Small-world graphs do NOT explain why:
- This property emerges in real networks
 - Real networks are practically never ring-like

Further problem with small-world graphs:
- Nearly all nodes have same degree
- Not true for random graphs
- What about real networks?
Real World Measurements: World Wide Web

- Links between documents in the World Wide Web
 - 800 Mio. documents investigated (S. Lawrence, 1999)

- What was expected so far?
 - Number of links per web page: $\langle k \rangle \sim 6$
 - Number of pages in the WWW: $N_{WWW} \sim 10^9$

- Probability “page has 500 links”: $P(k=500) \sim 10^{-99}$
- Number of pages with 500 links: $N(k=500) \sim 10^{-90}$
WWW: result of investigation

\[P(out(k)) \sim k^{-\gamma_{out}} \]

\[\gamma_{out} = 2.45 \]

\[P(in(k)) \sim k^{-\gamma_{in}} \]

\[\gamma_{in} = 2.1 \]

\[P(k=500) \sim 10^{-6} \]

\[N_{WWW} \sim 10^9 \]

\[\Rightarrow N(k=500) \sim 10^3 \]
Real-World Measurements: The Internet

- Faloutsos et al. study from 99: Internet topology examined in 1998
 - AS-level topology, during 1998 Internet grew by 45%

- Motivation:
 - What does the Internet look like?
 - Are there any topological properties that don’t change over time?
 - How to generate Internet-like graphs for simulations?

- 4 key properties found, each follows a power-law;
- Sort nodes according to their (out)degree
 1. **Out degree** of a node is proportional to its rank to the power of a constant
 2. Number of nodes with same out degree is proportional to the out degree to the power of a constant
 3. Eigenvalues of a graph are proportional to the order to the power of a constant
 4. Total number of pairs of nodes within a distance d is proportional to d to the power of a constant
Conclusion: Power Law Networks

- “Power Law” relationships
 - For the Internet...
 - For Web pages
 - The probability \(P(k) \) that a page has \(k \) links (or \(k \) other pages link to this page) is proportional to the number of links \(k \) to the power of \(y \)

- General ”Power Law” Relationships
 - A certain property \(k \) is – independent of the growth of the system – always proportional to \(k^{-a} \), where \(a \) is a constant (often \(2 < a < 4 \))

- Power laws very common (”natural”)
 - power law networks exhibit small-world-effect (always?)
 - E.g. WWW: 19 degrees of separation
 - (R. Albert et al., Nature (99); S. Lawrence et al., Nature (99))

- Also termed: scale-free networks
Barabasi-Albert-Model

How do power law networks emerge?

- In a network where new vertices (nodes) are added and new nodes tend to connect to well-connected nodes, the vertex connectivities follow a power-law

Barabasi-Albert-Model: power-law network is constructed with two rules
1. Network grows in time
2. New node has preferences to whom it wants to connect

Preferential connectivity modeled as
- Each new node wants to connect to \(m \) other nodes
- Probability that an existing node \(j \) gets one of the \(m \) connections is proportional to its degree \(d(j) \)

New nodes tend to connect to well-connected nodes

Another way of saying this: “the rich get richer”
Resilience of Scale-Free Networks

- Random failures vs. directed attacks
Resilience of Scale Free Networks

- **Experiment**: take network of 10000 nodes (random and power-law) and remove nodes randomly

- **Random graph**:
 - Take out 5% of nodes: Biggest component 9000 nodes
 - Take out 18% of nodes: No biggest component, all components between 1 and 100 nodes
 - Take out 45% of nodes: Only groups of 1 or 2 survive

- **Power-law graph**:
 - Take out 5% of nodes: Only isolated nodes break off
 - Take out 18% of nodes: Biggest component 8000 nodes
 - Take out 45% of nodes: Large cluster persists, fragments small

- Networks with power law exponent < 3 are very robust against random node failures
 - ONLY true for random failures!
The consequence...

\[L: \text{"Average Connected Distance"} \]
Summary of Graph Analyses...

- The network structure of a network influences:
 - average necessary number of hops (path length)
 - possibility of greedy, decentralized routing algorithms
 - stability against random failures
 - sensitivity against attacks
 - redundancy of routing table entries (edges)
 - many other properties of the system build onto this network

- Important measures of a network structure are:
 - average path length
 - the degree distribution
 - clustering coefficient
 - Various resilience metrics (with differing foci)
Questions?
Module Outline

- Some background

- Symmetric crypto:
 - Stream ciphers and the OTP
 - Block ciphers and their operation modes

- Key agreement

- Asymmetric Crypto

- Integrity
Terminology: Cryptology (Kryptologie)

- **Cryptology**:
 - Science concerned with communications in secure and usually secret form
 - Derived from the Greek
 - *kryptós* (hidden) and
 - *lógos* (word)

- Cryptology encompasses:
 - **Cryptography** (*gráphein* = to write): principles and techniques by which information can be concealed in ciphertext and later revealed by legitimate users employing a secret key

 - **Cryptanalysis** (*analýein* = to loosen, to untie): recovering information from ciphers without knowledge of the key
Terminology: Cipher (Chiffren)

- **Cipher (Chiffren):**
 - Method of transforming a message (plaintext) to conceal its meaning (and to transform it back)

- Ciphers are one class of cryptographic algorithms (E,D)
- The transformation usually takes the message and a *(secret) key* as input

- Unfortunately: sometimes also used as synonym for the concealed *ciphertext (Chiffrat)!*
Achieving the security goals

- Recall CIA:
 - **Confidentiality**: only authorized access to information
 - **Integrity**: detection of message modification
 - **Availability**: services are live and work correctly

- Where crypto can (trivially) help:
 - **Confidentiality**: Encryption transforms plaintext to conceal it
 - **Integrity**: Append signature that proves legit sender’s knowledge

- Immediate:
 -Hide content or properties (*content, parties, parameters*)
 -Prove a claim (*message/entity authentication, commitments, ZKP*)

- Secondary:
 -Generate (shared) randomness
 - (Enforce) collaboration (*key agreement, secret sharing, threshold crypto*)
The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.

- i.o.w: E, and D will inevitably be discovered at some stage
 - All algorithms should be public
 - security must rely on secrecy of the key only
Confidential Communication

Spaces
- \mathcal{M}: plaintext space (e.g. words over an alphabet)
- \mathcal{C}: space of ciphertexts
- \mathcal{K}: space of keys

Algorithms of a private-key (symmetric) encryption scheme
- $KGen$: generates some (usually random) key k
- E: encrypts a plaintext m using key k and outputs the ciphertext c
- D: decrypts a ciphertext c using key k and outputs the plaintext m

Correctness for all $k \in \mathcal{K}$, $m \in \mathcal{M}$:
$$\text{Dec}(k, \text{Enc}(k, m)) = m$$
Classifying Encryption Algorithms

- Type of operation
 - *Substitution*: substitute letters by other letters (or symbols)
 - *Transposition*: permute letters according to some scheme

- Number of keys
 - *Symmetric*: secret key
 - *Asymmetric*: „public key“, pair of public and private key

- Processing of plaintext
 - *Stream ciphers*: operate on streams of bits
 - *Block ciphers*: operate on b-bit blocks
Constructing a Stream Cipher

- Idealized OTP:
 - Premise:
 - PRNG is a function $G: \{0,1\}^s \rightarrow \{0,1\}^n$, $n >> s$
 - Deterministic algorithm from seed space to key space (looking random)

- Idea:
 - OTP: $E(k,m): c = m \oplus k$ $D(k,c): m = c \oplus k$ with random k
 - In reality: stream of key bits from PRNG (seeded with „k“)
Security Definitions

- **Semantic Security**
 - An „efficient“ algorithm cannot find any information in the CT (the CT is polynomially indistinguishable from a CT with PS)

- **Provable Security**
 - Reduction of construction to some mathematical problem which is *assumed* to be hard (then so is breaking the construction)

- **Perfect Secrecy**
 - The ciphertext does not reveal *any* information about the PT
 - Caveat: *Key must be random and as long as the message*
Information Theoretic Security

- Shannon (1949): „CT should not reveal any information about PT“

- Def: A cipher \((E,D)\) over \((\mathcal{K}, \mathcal{M}, \mathcal{C})\) has **perfect secrecy** if

 - \(\forall m_0, m_1 \in \mathcal{M}\) (with \(\text{len}(m_0) = \text{len}(m_1)\))
 - \(\forall c \in \mathcal{C}\) and \(k \leftarrow \mathcal{K}: \mathcal{R}\)

 \[\Pr[E(k,m_0) = c] = \Pr[E(k,m_1) = c] \]

- *So being an attacker, what do I learn?*
- No CT attack can tell if msg is \(m_0, m_1\) (or any other message)
- \(\rightarrow\) No CT only attacks
Semantic Security

- For $b=0,1$ define experiments $\text{EXP}(0)$ and $\text{EXP}(1)$ as:

 $$\text{Adv}_{\text{SS}}[A,E] := | \Pr[\text{EXP}(1) = 1] - \Pr[\text{EXP}(0) = 1] | \in [0,1]$$

 (i.o.w.: $| \Pr[b' = b] - \Pr[b' \neq b] |$)

- E is called **semantically secure** if for all eff. A, $\text{Adv}_{\text{SS}}[A,E]$ is negligible.

- We define „efficient“ to be PPT, we also talk of „PPT adversaries“
Towards Block Ciphers: Properties of Functions

- A little refresher on functions...

\[f: X \rightarrow Y \]
\[X = \{a, b, c\} \quad Y = \{1, 2, 3, 4\} \quad y = f(x) \quad Im(f) = \{1, 2, 4\} \]
Functions, Functions, Functions

- $X = \{1,2,3,\ldots,10\}$
 $f(x) = x^2 \mod 11$
- $f: X \rightarrow Y$
 $Y = \{1,3,4,5,9\}$
- f is called "onto" (surjective): $Y = \text{Im}(f)$ or:
 $\forall y \in Y \exists x \in X: y = f(x)$
- "one-to-one" (injective): $\forall x_1, x_2 \in X: f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- bijection: $f(x)$ is $1-1$ and $\text{Im}(f) = Y$

For bijection f there is an inverse: $g = f^{-1}: g(y) = x$ ($= f(g(x))$)
Hint: (Trapdoor) One-way Functions

- Finding the inverse f^{-1} is not always „easy“

- **One way functions:**
 - A function $f: X \rightarrow Y$ is called a
 - one-way-function, if $f(x)$ is „easy“ to compute
 - for all $x \in X$, but for “essentially all” elements
 - $y \in \text{Im}(f)$ it is computationally infeasible to find the preimage x.

- **Trapdoor one-way functions:**
 - A trapdoor one-way function is a one-way function that, given some additional trapdoor information, is feasible to invert.
(Pseudo Random) Permutations, Involutions

- **Permutations and Involutions:**
 - A permutation π is a bijective function from a domain to itself:
 $\pi: X \rightarrow X \quad \text{Im}(f) = X$
 - A permutation π with: $\pi = \pi^{-1}$ (or: $\pi(\pi(x)) = x$)
 - is called an *involution*.

- **Pseudo Random Functions (PRF):**
 - $F: K \times X \rightarrow Y$
 - on „domain“ X and „range“ K, with „efficient“ algorithm to evaluate $F(k,x)$

- **Pseudo Random Permutation (PRP):**
 - Permutation $E: K \times X \rightarrow X$
 - has efficient deterministic algorithm to evaluate $E(k,x)$ and
 - efficient inversion algorithm $D(k,x) = E^{-1}$
Stream Ciphers and Block Ciphers

- **Goal:**
 - Build a secure PRP for b-bit blocks

- **Examples:**
 - 3DES: \(n = 64, k = 168 \)
 - AES: \(n = 128, k = 128,192,256 \)
The Advanced Encryption Standard

- **1997:** NIST publishes request for proposal
- **1998:** 15 submissions
- **1999:** NIST chooses 5 finalists
- **2000:** NIST chooses Rijndael as AES
- **Key sizes:** 128, 192, 256 bits
 Block size: 128 bits
- **Best known (theoretical) attacks in time** \(\approx 2^{99} \)
AES Substitution-Permutation Network

Not a Feistel network:

\[\text{input} \oplus S_1 S_2 S_3 \cdots S_{16} \oplus k_1 \oplus S_1 S_2 S_3 \cdots S_{16} \oplus k_2 \oplus \cdots \oplus k_n \oplus \text{output} \]
AES-128 scheme

4x4 input

10 rounds

k_0, k_1, k_2, ..., k_{10}

key

16 bytes

key expansion: 16 bytes → 176 bytes

4x4 output

invertible
Building Block Ciphers (Modes of Operation)

- So far we have seen PRFs and PRPs (3DES, AES)

- **Goal:**
 - Use secure PRPs
 - Build „secure“ encryption of arbitrarily long message
Electronic Code Book Mode (*insecure!*)

- Encrypt each block with the keyed PRP:

```
<table>
<thead>
<tr>
<th>m[0]</th>
<th>m[1]</th>
<th>...</th>
<th>m[L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(k)</td>
<td>F(k)</td>
<td>...</td>
<td>F(k)</td>
</tr>
<tr>
<td>c[0]</td>
<td>c[1]</td>
<td>...</td>
<td>c[L]</td>
</tr>
</tbody>
</table>
```

- ECB encryption is *deterministic*
- ⇒ identical PT is encrypted to identical CT:

- *Is this “secure” (how)?*
Randomized Counter Mode R-CTR

- Let $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF.
- $E(k,m)$: choose a random $IV \in \{0,1\}^n$ and do:

<table>
<thead>
<tr>
<th>IV</th>
<th>m[0]</th>
<th>m[1]</th>
<th>...</th>
<th>m[L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(k,IV)</td>
<td>F(k,IV+1)</td>
<td>...</td>
<td>F(k,IV+L)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV</th>
<th>c[0]</th>
<th>c[1]</th>
<th>...</th>
<th>c[L]</th>
</tr>
</thead>
</table>

 ciphertext

- Variation: Choose 128 bit IV as: nonce $||$ counter, to avoid repetition

- Remarks:
 - E, D can be parallelized and $F(k,IV+i)$ can be precomputed
 - R-CTR allows random access, any block can be decrypted on its own
 - Again: F can be any PRF, no need to invert
Intermediate Summary

- You know the different classes of encryption algorithms
- You understand Kerckhoff’s principle
- You’ve been introduced to the idea of the OTP and stream ciphers
- You know semantic security and the difference to perfect secrecy
- You recall properties of functions
- You can explain what (Trapdoor) One-way functions are
- You can explain AES
- You saw different modes of operation and know their properties
Key Agreement (/ Authentication)

- „Key Distribution“:
 - Secure Channel

How many keys have to be exchanged in a system with N participants?
Interlude: The Dolev - Yao Adversary Model

- Mallory has full control over the communication channel
 - Intercept/eavesdrop on messages (passive)
 - Relay messages
 - Suppress message delivery
 - Replay messages
 - Manipulate messages
 - Exchange messages
 - Forge messages

- But:
 - Mallory *can’t* break (secure) cryptographic primitives!

E.g. reverse a secure hash, find collisions, break AES...
Attacks on Key Agreement

• Man-in-the-middle attack

• Replay attack
KDC: a Very Simple Protocol

- Simple Key Exchange:
 - TTP knows / generates all keys
 - Eve won’t break encryption, but Mallory may actively interfere
 - ...

\[K_a, K_b \]

\[\{K\}_{K_b}, \{K\}_{K_a} \]

\[\{K\}_{K_b} \]
Impersonation / MitM – Step 1
Impersonation / MitM – Step 2

\[B, D, \{K'_d, K'_b\} \]

\[^\text{„A“}, \{K’\}_b \]
Impersonation / MitM - Result

- Hence: Prevent MitM/replay -> authenticated key exchange
- -> Authenticate both parties (*requires trust in KDC*)
- -> ensure „freshness“ of messages
- (and exchange a key...)
Schroeder-Needham Key Exchange

- Impersonation/MitM prevented by explicit addressing (Alice and Bob)
- Replay prevented by Nonce
- If Malory has broken old key, she can impersonate Alice (prevented by timestamps for „freshness“)
Key Agreement

- Don’t exchange keys, calculate them!

- **Goal:**
 - Exchanged information should be public

- Initial idea (due to Merkle, ’74):
 - Alice creates 2^{32} puzzles (containing index P_i and key) (O(n))
 - Bob selects random puzzle, „calculates“ index P_j and key (O(n))
 - Bob informs Alice of P_j, both know key.

- What is the complexity for Mallory? $O(n^2)$

Can we do better? Polynomial advantage?

Ralph Merkle, Martin Hellman, Whitfield Diffie
Let's generate keys: Diffie-Hellman

- Consider \mathbb{Z}_p^* generated by g, and $\varphi(p) = p-1$

- Alice chooses $a \leftarrow \{1,...,(p-1)\}$, Bob chooses $b \leftarrow \{1,...,(p-1)\}$

- Alice can calculate: $(g^b)^a = g^{ab}$ = Bob calculates: $(g^a)^b$

- Computational Diffie Hellmann Problem (CDH (ECDH)):
 - Given p, g, g^a, g^b
 - Output g^{ab}

Assume absence of MitM
Public key encryption

A public-key encryption system is a triple of algorithms (G, E, D):

- $G()$: randomized alg. outputs a key pair (pk, sk)
- $E(pk, m)$: randomized alg. that takes $m \in M$ and outputs $c \in C$
- $D(sk, c)$: det. alg. that takes $c \in C$ and outputs $m \in M$ or ⊥

Correctness: $\forall (pk, sk) \text{ output by } G:\n
\forall m \in M: \quad D(sk, E(pk, m)) = m$
RSA – The core idea

- Observation 1:
 - For large primes p and q, $n = p \cdot q$ is simple
 - Factoring n to p and q is hard

- Observation 2:
 - Given p, q, finding e, d, such that $x^{e \cdot d} = x^1$ is simple
 - Extracting the e-th root in \mathbb{Z}_n is hard
RSA – Key Generation

- Each participant
 - Chooses two independent, large random primes p, q
 - Calculates $N = p \cdot q$ and $\varphi(N) = N-p-q+1 = (p-1)(q-1)$
 - Chooses random e, with $2 < e < \varphi(N)$, $gcd(e, \varphi(N)) = 1$
 - And calculates d such that $e \cdot d = 1 \mod (\varphi(N))$

- Subsequently:
 - Store (p,q,d) (as secret key sk)
 - Publish (N,e) (as public key pk)
RSA – Encryption and Decryption

Encryption
- Given \(pk = (N,e) \):
- \(RSA(pk, m) : \mathbb{Z}_N^* \to \mathbb{Z}_N^* \); \(c = RSA(e,m) = m^e \) (in \(\mathbb{Z}_N \))

Decryption
- Given \(sk = (p,q,d) \):
- \(m = RSA^{-1}(pk, c) = c^{1/e} = c^d = RSA(d,c) \) (in \(\mathbb{Z}_N \))
Public key encryption using S-TDF (ISO)

- (G, F, F^{-1}): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K, M, C)
- $H: X \rightarrow K$: a hash function

Encryption ($E(\text{pk}, m)$):

- $x \leftarrow^R X$
- $y \leftarrow F(\text{pk}, x)$
- $k \leftarrow H(x)$
- $c \leftarrow E_s(k, m)$

Output (y, c)

Decryption ($D(\text{sk}, (y, c))$):

- $x \leftarrow F^{-1}(\text{sk}, y)$
- $k \leftarrow H(x)$
- $m \leftarrow D_s(k, c)$

Output m
Intermediate Summary

- You recall the key exchange problem
- You understand the idea of key agreement
- The Diffie-Helman key agreement is easy for you
- You know RSA and you can explain asymmetric and hybrid crypto
Integrity and Authenticity

- So far messages can be kept confidential
- *Integrity* of messages not given

\[c_1 = m \oplus k \]

\[c_2 = m \oplus k \oplus p \]

From: Bob

E: $(m \oplus k)$

From: Eve

D: $(c \oplus k)$

File1 → HDD

File2

File1'
Message Integrity

- **Algorithms:**
 - Tag S: \(M \to T \)
 \[M = \{0,1\}^n ; S = \{0,1\}^t \quad \text{with} \quad n \gg t \]
 - Verify V: \(M \times T \to \{\text{yes, no}\} \)

- **Consider your problem:**
 - MDC: Transmission error (bit flips) \(\to \) \(\text{CRC/FEC} \)
 - MAC: Strategic adversary \(\to \) Alice and Bob need a secret: message message tag
Interlude: Collision Resistant Hash Functions

- **Goal:**
 - Map a message of arbitrary length to a (short!) characteristic digest (fingerprint)

- Hash \(H: M \rightarrow S \) with \(M = \{0,1\}^* \) and \(S = \{0,1\}^s \)
 - has an efficient algorithm to evaluate \(H(x) \)
 - is an „onto“ function (surjective, \(Im(H) = S \))
 - maps uniformly to \(S \)
 - creates chaos (slight changes in \(m \) yield large differences in \(s \))
Cryptographic Hash Functions

- Hash functions and security:
 - Compression is irreversible

- We require:
 - Collision resistance
Cryptographic Hash Functions

- We require (ctd.)
 - Pre-image resistance

- 2nd pre-image resistance
The Merkle-Damgard construction

- Given a compression function \(h : \{0,1\}^{2s} \rightarrow \{0,1\}^s \) and
- Input \(m \in \{0,1\}^* \) of length \(L \) and \(PB: = \underbrace{1000...0}_64 \text{ bits} \ll L \)
- Construct \(H \) of \(B = \lceil L/s \rceil \) iterations of \(h \):

- If \(h \) is a fixed length CRHF, then \(H \) is an arbitrary length CRHF

Proof: either \(M = M' \), or \(H_{B-i}(m[B-i]) = H_{B-i}(m'[B-i]) \)

- no collision
- collision on \(h \)
Nested MAC

- Let \(F: K \times X \rightarrow X \) be a PRF, define new PRF \(F_{\text{NMAC}}: K^2 \times X^{\leq L} \rightarrow X \)

- Cascade:
 - Why the last encryption with second key?
 - Otherwise: \(\text{cascade}(k, m | | m') = \text{cascade}(\text{cascade}(k, m) | | m') \)
The HMAC (RFC 2104)

- Hashing is fast, but $H(k|\, |m)$ insecure
- Solution: encase message with keys!

\[
\text{HMAC: } S(k,m) = H(k\oplus\text{opad} \, \| \, m[0] \oplus \text{opad} \, \| \, m[1] \oplus \text{opad} \, \| \, m[2] \oplus \text{opad} \, \| \, \text{PB})
\]

(used in TLS, IPsec,...)
Keccak – SHA3

- Specification of two modes:
 - SHA-2 replacement: fixed length output of 224, 256, 384, 512 bits
 - Variable length output: output of arbitrary length
 - Keccak[r,c] with internal permutation Keccak-f[b]

- Construction of two phases
 - Absorb: block-wise input of message
 - Squeeze: output of required bits as hash value
Keccak State – the Sponge

- Keccak[r,c] parameters:
 - bit rate r, capacity c
 - word length $w = 2^l$ for $l=0,1,...,6$
 - $b = r+c = 5 \times 5 \times w$
 - $c = 25, 50, 100$ (6 for 64-bit systems)
 - $100, 200, 400$
 - $800, 1600$
Permutation in Several Rounds

- Keccak permutes state in $12 + 2l$ rounds
 - 32 bit processor -> Keccak-f[800] -> 22 rounds
 - 64 bit processor -> Keccak-f[1600] -> 24 rounds
 - (Keccak-f[25] -> 12 rounds)

- Five operations for each round:

```
\begin{array}{c}
\text{r} \\
\text{c} \\
\text{s} \quad \text{θ} \quad \text{χ} \quad \pi \quad \text{ρ} \quad \text{ι} \\
\text{s}
\end{array}
```

\[\text{s} \oplus \text{s} \oplus \text{s} \oplus \text{s} \oplus \text{s} \]
Using SHA3 and SHAKE for Integrity

- Can we implement a secure MAC as:
 - SHA-3(k || m)?
 - How?

- Why?
SHA3 for Confidentiality and Integrity

- Stream ciphers are malleable... Can we achieve authenticated encryption with SHA3?
- How?
Concluding: Security through MACs

- MACs verify integrity of messages
- $S(k, m) ; V(k, m, t)$ → secret key must be used, known to verifier

- MAC hard to forge without secret key, but *integrity purely mutual*:
 - Once key is disclosed, receiver can create arbitrary new tags!
 - \Rightarrow Proof of origin not towards third parties (no non-repudiation!)

- How can we achieve *non-repudiation*?
 - Signature construction from asymmetric crypto
 - \Rightarrow only party in possession of private key can “sign”
 - e.g.: tag$=$ RSA $(pk, h(m)) = h(m)^d \quad (in \ \mathbb{Z}_N)$
Summary of Message Integrity

▪ You can explain the goals and ideas of message integrity

▪ You can explain the Merkle-Damgard construction

▪ You can construct and explain the details of NMAC, and HMAC
Summary

- You know who we are
- You know what to expect from the lecture
- You have seen some trends that are happening
- You have been introduced to Alice, Bob, Eve, and Mallory
- You understand what threats are ... and what this means
- You can tell security goals (CIA!) from security services
- You know how to perform a network security analysis using threat trees ;-)
Papers we want to read:

Questions?