A simplified anatomy of a layer 3 router...

Routing table

<table>
<thead>
<tr>
<th>Dest</th>
<th>Next hop</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.0/16</td>
<td>192.168.1.1</td>
<td>3</td>
</tr>
<tr>
<td>10.0.0.0/8</td>
<td>10.1.0.0</td>
<td>2</td>
</tr>
<tr>
<td>192.168.2.0/28</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Forwarding table

<table>
<thead>
<tr>
<th>Dest</th>
<th>Out iface</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.0/16</td>
<td>eth1</td>
</tr>
<tr>
<td>10.0.0.0/8</td>
<td>eth2</td>
</tr>
<tr>
<td>192.168.2.0/28</td>
<td>eth3</td>
</tr>
</tbody>
</table>
A Network operating system. Separate the control plane from the data plane
- If one of the red links is congested, apply rate-limiting to the authentication service
- If all red links are congested, migrate the authentication service to edge server 3
- Notification service -> ANY : BLOCK;
- Ticket Booking service <-> Authentication service : ALLOW;

Network security policy

Master orchestrator

Network controller Container scheduler Web API Node Monitor
Security controller VNF manager Database Service monitor

Infrastructure layer

Firewall Authentication service Rate limiter
Edge server 1

Migrate

Edge server 3

Firewall Notification service
Edge server 2

Ticket booking service
Containers and edge services

Virtual Machines

Containers

Figure: Containers vs VMs[2]
Utility models for edge clouds

Figure: Containers as a unit of composition[6]
f = f₁ + f₂
EDGE

GATEWAY API

Middle tier client library doesn’t support batching

Single request asking for 1,000 objects not in cache

Middle

Middle Tier Service
Middle Tier Service
Middle Tier Service

Results in 2 RPC calls per object, or 2,000 RPC calls

Backend

Backend Tier Service
Backend Tier Service
Backend Tier Service

Middle tier has to call 3 backend services, or 6,000 calls.