Thesis topics

Paul Walther

07.02.2020
General scope: Physical Layer Security

- Wireless Network Security
 - Classical Encryption (Computational Security)
 - Symmetric Encryption
 - Asymmetric Encryption
 - Physical Layer Security (Information-Theoretic Security)
 - Keyless Security
 - Secret Key-Based Secrecy
General scope: Physical Layer Security
Channel Reciprocity based Key Generation

Wireless Network Security

Classical Encryption (Computational Security)
- Symmetric Encryption
- Asymmetric Encryption

Physical Layer Security (Information-Theoretic Security)
- Keyless Security
- Secret Key-Based Secrecy
Soft decision ECC for Information Reconciliation
PLS/CRKG

Reciprocal measurements do have **slight differences**
Currently removed in Information Reconciliation after Quantization

ECC codes can work with **real valued data**

Tasks:
- Implement appropriate soft decision ECC code
- Realize reconciliation with existing measurements
- Compare metrics against hard decision baseline
Secure Key Bit Analysis for Channel Model Attack

PLS/CRKG

Attack CRKG by *precalculation* of transmission properties

Analysis regarding *impact* on resulting key material

Analytical approach:
- Calculate Mutual Information

Tasks:
- Select appropriate feature extraction approach
- Apply to measurements and simulation data
- Evaluate regarding Mutual Information
Secure Key Bit Analysis for Channel Model Attack
PLS/CRKG

Attack CRKG by **precalculation** of transmission properties

Analysis regarding **impact** on resulting key material

Practical approach:

Compare resulting keys

Tasks:

- Select and implement processing steps
- Apply to measurements and simulation data
- Compare resulting key material
Attacking CRKG with Machine Learning

PLS/CRKG

Use ML to represent **room structure**

Regression to mean of AB/BA

Input passive measurements

Only „rough“ matches needed for success

Tasks:

- Design appropriate learning model
- Train with synthetic data and/or measurements
- Evaluate with measurements regarding reciprocity/secure key bits
EVK measurements
PLS/CRKG

Impulse Responses deliver more entropy than RSSI
UWB development platform to gather reciprocal measurements

Tasks:
- Modify SDK examples for CRKG protocol
- Perform measurements
- Evaluate regarding reciprocity
Implementing/Evaluating the Whips MAC scheme

Stateful MAC scheme based on PRF
Increasing security, varying security levels and resynchronization capabilities

Tasks:
- Design evaluation of varying security levels
- Implement MAC scheme in defined use cases
- Evaluate performance and security guarantees