Security & Privacy by Design – Introduction to Topics at the Chair of Privacy & Data Security

TU Dresden

dud.inf.tu-dresden.de

Stefan Köpsell (stefan.koepsell@tu-dresden.de)
Job Offer (SHK/WHK)

Tasks:
- Support the Chair regarding IT-infrastructure related tasks
- Administration of Machines and Users
- Develop Web-Application
- Support our IoT-Lab
- Help with developing skill for our robot
- Support the research....

Skills:
- broad knowledge in IT
- ability to program
- responsible
- selforganising
Master/Diplom topic

Topic: Holistic View on Secure Software Updates for IoT Devices

Problem:
• IoT devices will need updates over their whole lifetime
• IoT device lifetime >> lifetime of producer

Task:
• Think about supporting pre-conditions like componentized software architecture, common (secure) operating system etc.
• How to organise software updates if company is not longer available
 • Open Source community
 • Governmental agency?
• How to protect intellectual property of produces and at the same time ensuring access to the source code
• Economic, legal implications?
• How can IT-security support all this?
Topic: Fingerprinting / detecting hypervisors and possibly countermeasures

Problem:
• Virtualisation based environments are used for malware analysis
• How could malware detect this?
• (How) can we prevent this detection?

Task:
• State-of-the-Art literature review related to the topic
• Analysis of exemplary hypervisor
 • SuperNOVA – hypervisor by Cyberus Technologies (Dresden)
 • In co-operation with that company
• Proposals for countermeasures
Topic: Mix on Trusted Execution Environment (TEE)

Problem:
• Operating Mix in Cloud
 • On has to trust the cloud provider
• Solution: Trusted Execution Environment
 • Intel SGX (assumption: secure)

Task:
• port the existing Mix implementation so that it can run in a TEE
 • Utilise the SCONE runtime/compile framework developed by Prof. Fetzer
• Decompose the current design so that only necessary parts run in TEE
 • Reduced trusted execution base (TCB)
• Think about remaining problems (e.g. observation of memory access patterns), their influence on anonymity and how to solve that
Topic: Mixe on network card

Problem:
• Enhance the performance of anonymous communication

Task:
• Port the existing Mix implementation so to that the main message loop can run directly on a programmable network card
 • Programming languages: P4 / C
Topic: Mixe using DPDK/QAT

Problem:
• Enhance the performance of anonymous communication

Task:
• Port the existing Mix implementation so to it can utilise DPDK/QAT
 • Technologies which allow very fast network packet processing
 • Technologies which include hardware assisted cryptographie
Topic: Analysing Malicious Software despite of TEEs

Problem:
• Trusted Execution Environments (TEEs) can be utilised by malicious software (malware, bots, command&control server) to hinder their analysis/reverse engineering

Task:
• Think about if and how the fundamental conflict can be solved between:
 • TEE: no outsider should be able to tamper with
 • Analysing malicious software: outsider wants to get access/reverse engineer
• State-of-the-Art literature review
• Proposal for system/security architecture balancing the different interessts
Good work, but I think we might need just a little more detail right here.