
Description of the CPEC SHK position

Project description and long-term goals

Demonstrator: Constant Speed Assistant

The lane change assistant will help robots (e.g., in form of an autonomous
fork lift or car) to maintain a constant speed - if traffic permits. The target
speed is set per robot and per destination. For example, in the case of a fork
lift, depending on what is transported (weight and size) the fork lift need to
set different speeds. The autonomous fork lifts are operating in a big
warehouse and hence, we do not want to slow down the fork lifts. Hence, we
have a constant speed assistant that ensures that fork lifts can go with their
maximum speed whenever possible. Each fork lift is autonomous and
executes the tasks it should work on.

In our demonstrator setup, the fork lifts will run on a three lane racetrack.
Like on the freeway, the robots will drive on the right most lane of the race
track and will change lanes if there is an obstacle with a lower speed in
front. Obstacles can be passed on the right or left - at any speed. On the right
should only be needed if robots have not activated the constant speed
assistant. A robots must change lane if this would help to reach the target
speed of the robot. Changing lanes must be safe, i.e., no crash must happen.

Motivation

The motivation of this work is to investigate on how we can detect and deal
with software bugs as well as bugs in Machine Learning based models.
We need to be able to deal with these bugs. Traditionally, one uses
replications like TMR (triple modular redundancy) that permits to tolerate
the fault of a minority of the processes. However, TMR cannot tolerate
software bugs since if a software bug is activated, it would be activated in all
three copies: TMR must ensure a deterministic execution of the replicas and
hence, even Heisenbugs are most likely activated in all three replicas.

Moreover, if we want to address software bugs, we can follow a N-version
approach - in which we have N-versions instead of only 1 software version.
This can be combined with TMR. However, this raises the question if it
would not be more cost effective to spend the resources used to implement
the N versions into one 1 version only to ensure that the likelihood that a
software bug is activated is negligible. The answer to this question depends
on the tools and teams used to build the N versions versus the 1 version and
also from N.

From a commercial perspective, one wants to reduce the replicas from three
to two even one only. Moreover, we would like to decouple the versions (aka
variants) such that we reduce the chances of common mode failures of the
replicas. The version can use different algorithms and hence, the might come
up with different ways to control the robots. For example, one variant might
change lane earlier while other variants might change lane later. This implies
that we cannot just compare the outputs of the two variants since they, for
example, might decide to change lanes at different points in time. However,
how can we detect that a copy is faulty, i.e., violates the specification and
potential the safety of the system?

Our objective is to design a two channel system, i.e., contains two replicas
with independently developed software variants.

Architecture

The software architecture of the robots is as follows:

1. Channel 1 and 2: Constant Speed Assistant (CSA1 and CSA2)
1. An CSA gets inputs from the sensors, the last command to the

motors that were issued and computes a new set of commands
for the motors.

2. An CSA can be written in Rust (or Python or C if needed)
3. An CSA also produces logic statement (an **explication**)

that describe why a certain action was taken.
2. A supervisor:

1. The supervisor gets the motor commands and explications CSA

1 and CSA2
2. The supervisor checks that the explication is consistent with the

motor commands
3. The supervisor decides on which motor command(s) to forward

to the motors and forwards this to the CSA

Example:

Variant 1: might issue the following explications:

lane(v1, left, minSpeed1, maxSpeed1) # changing to the left
lane, the speed needs to be in this range ; if not
permitted, minSpeed > maxSpeed
lane(v1, my, minSpeed2, maxSpeed2) # keeping this lane,
the speed needs to be in this range
lane(v1, right, minSpeed3, maxSpeed3) # changing to the
right lane, the speed needs to be in this range

action(v1, left, L1, speed_1); # lane and speed

Variant 2: might issue the following explications:

lane(v2, left, min2Speed1, maxSpeed2)
lane(v2,my, minSpeed2, maxSpeed2)
lane(v2,right, minSpeed3, maxSpeed3)

action(v2, right, v2speed_2); # lane and speed

Supervisor:

exists action(_,L, S) in {actions} such that for lane(v1,
L, m1, M1) and lane(v2, L, m2, M2) => m1 <= S <= M1 and m2
<= S <= M2

Task 1:
• get yourself familiarized with the existing software

Task 2: „implement a way to execute the action from
above“

• design an implement a software module for Lego Robots that follow
lanes and changing lanes / speed if requested.

• the API to this model is as follows:

setLaneAndSpeed(targetLane : int, targetSpeed: float):
- we have lanes 0, …, n ; 0 is the right most lane
- the speed is in meters per second

When calling this function, the robot is supposed to change the lane to
targetLane (unless it is already in the correct lane) and
changes speed to targetSpeed unless it is already on the target speed.

Task 3: „implement a way to generate the lane predicate
from above“

• define a software module that - given the available software and
hardware sensors, determines for a robot currently in Lane i:
⁃ the minimum and maximum speed permitted in lanes i-1, i, i+1

(minimum will typically be 0, maximum is determined by the
speed of the vehicle ahead)

⁃ if a lane does not exists, the maximum speed is smaller than the
minimum speed

• one can query this information via a function
getPermittedLaneSpeeds

Task 4: „implement a way to generate to propose an

action“
⁃ define a software module that suggests a targetLane and targetSpeed

⁃ this module provides an API to set the targetSpeed:
setTargetSpeed(Speed: float)

⁃ this module generates a preferred:
getPreferredLaneAndSpeed -> (targetLane : int,
targetSpeed: float)

Task 5: „put everything together… without supervisor“
⁃ integrate Tasks2-4 with existing implementation to run on

LegoRobots.

