

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Logic-Based Ontology Engineering

Exercise Sheet 8

Summer Semester 2018

20th June 2018

Dr.-Ing. Stefan Borgwardt, PD Anni-Yasmin Turhan

Exercise 8.1 Clearly, the \mathcal{ELH} concept $(\exists r.A) \sqcap (\exists r.B)$ subsumes $\exists r.(A \sqcap B)$. Using the similarity measure σ_d from the lecture, we can generalize this fact for the concepts

- $C_1 = (\exists r_1.A_1) \sqcap (\exists r_1.B_1)$
- $C_2 = \exists r_2 . (A_2 \sqcap B_2)$

which are already expanded w.r.t. their respective ontologies \mathcal{O}_1 and \mathcal{O}_2 . Let the weighting factor β be 0.6 and the primitive measures σ'_a and σ'_b be defined as follows:

	(A_1, A_2)	(B_1, B_2)	(A_1, B_2)	(B_1, A_2)	(r_1, r_2)
σ'_a	1	1	0	0	1
σ_b'	0.9	0.6	0.4	0.3	0.7

Compute the directed similarities $\sigma_d(C_1, C_2)$ and $\sigma_d(C_2, C_1)$ using ...

- (a) ... the primitive measure σ'_a . What does this measure essentially encode?
- (b) ... the primitive measure σ'_b .

Exercise 8.2 Given the ontology $\mathcal{O} = (\emptyset, \mathcal{T}, \mathcal{R})$ with abbreviations for the axioms as follows:

$$\mathcal{T} = \{ C \sqcap \exists s. E \sqsubseteq F \sqcap D_1,$$

$$C \sqsubseteq A \sqcap B,$$

$$D \equiv D_1 \sqcap \exists r. A_1 \sqcap \exists r. A_2,$$

$$A \sqsubseteq D_1 \sqcap \exists s. (A_1 \sqcap A_2),$$

$$B \sqsubseteq D,$$

$$F \sqsubseteq \exists r. (A_1 \sqcap A_2) \}$$

$$\mathsf{T}_6$$

 $\begin{aligned} \mathcal{R} &= \{ \ s \sqsubseteq r, & & \\ & \textit{ran}(s) = E \ \} & & & \\ \hline \mathbf{R}_2 \end{aligned}$

(a) Compute all justifications for the consequence

 $C \sqcap \exists s. \top \sqsubseteq D \text{ w.r.t. } \mathcal{O}.$

(b) Use the Hitting Set Tree (HST) algorithm to compute all diagnoses.

Exercise 8.3 Prove that $\text{Just}_{\mathcal{O}}(\alpha) = \text{MHS}_{\mathcal{O}}(\text{Diag}_{\mathcal{O}}(\alpha))$.