

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Logic-Based Ontology Engineering

Summer Semester 2018

Exercise Sheet 11 - Modularization

11th July 2018

Dr.-Ing. Stefan Borgwardt, PD Anni-Yasmin Turhan

Exercise 11.1 Let $\Sigma = \{A, B, C, D, r\}$ and let \mathcal{O}_1 be defined as $\mathcal{O}_1 = (\emptyset, \mathcal{T}, \emptyset)$, with

$$\mathcal{T} = \{ C \sqsubseteq D \sqcap E, \\ D \sqsubseteq \exists r. (A \sqcap B), \\ E \sqsubseteq \forall s. \bot \}.$$

- (a) Devise an ontology \mathcal{O}_2 s.t. $\mathcal{O}_1 \neq \mathcal{O}_2$, such that \mathcal{O}_2 is a Σ -conservative extension of \mathcal{O}_1 .
- (b) Give reasons why \mathcal{O}_2 is a Σ -conservative extension.

Exercise 11.2 Let $\Sigma = \{A, B, C, r\}$ and let $\mathcal{O}_i = (\emptyset, \mathcal{T}_i, \emptyset)$ for $1 \leq i \leq 3$, with

$$\mathcal{T}_{1} = \{ E \sqsubseteq F \sqcap D, \qquad \mathcal{T}_{2} = \{ (\forall r.A) \sqcap (\exists r.B) \sqsubseteq \exists r.(A \sqcap B), \qquad \mathcal{T}_{3} = \{ B \sqsubseteq B \sqcup E, \\ D \sqsubseteq \exists s.F, \qquad A \sqsubseteq \forall r.\top, \qquad C \sqsubseteq \exists s.D, \\ T \sqsubseteq \forall r.\top \ \} \qquad D \sqsubseteq D_{1} \sqcap \exists r.A_{1}, \qquad D \sqsubseteq \exists s.F, \\ B \sqsubseteq (B \sqcup \neg B), \qquad F \sqsubseteq \exists r.(A_{1} \sqcap A_{2}) \}$$

Which of the three \mathcal{O}_i are Σ -safe? Give reasons.