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Logic-Based Ontology Engineering
Part 1: Introduction to Ontology Engineering, OWL 2, and Description Logics



Organizational Matters
Web page:
https://tu-dresden.de/ing/informatik/thi/lat/studium/
vorlesungen/sommersemester-2018/logic-based-ontology-engineering

• 2 SWS lectures (Dr.-Ing. Stefan Borgwardt) and2 SWS tutorials (PD Anni-Yasmin Turhan)
• Wednesdays 9:20–10:50 (2. DS) and 13:00–14:30 (4. DS)
• not on 23 May and 6 June
• for the exact schedule see the web page
• slides, exercise sheets on the web page
• some exercises use the ontology editor Protégé
• exam regulations: see module descriptions
• MCL-ILS: written exam together with Deduction Systems
• feel free to ask questions
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Goals
After this lecture, you will know more about
• what an (OWL) ontology is
• how to create an ontology
• how to link ontologies
• how to debug ontologies
• logic-based techniques for these tasks
What do you already know about
• first-order logic?
• description logics?
• OWL?
• the Semantic Web?
• ontology tools?

Logic-Based Ontology Engineering, Part 1: IntroductionChair of Automata Theory // © Stefan Borgwardt Slide 2 of 78



Outline
Part 1: Introduction
1.1 Introduction to Ontologies
1.2 Ontology Engineering
1.3 OWL 2 and Description Logics

Part 2: Ontology Creation
Part 3: Ontology Integration
Part 4: Ontology Maintenance
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1.1 Introduction to Ontologies
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Ontology in Philosophy
“The branch of metaphysics concerned with the nature and relationsof being.” (Oxford Dictionaries)

• What kinds of things exist?
• What categories of things, similarities, differences, exist?
• What is the identity of an object? When does it start and end to exist?
• How can things be related to each other?
• Ontology does not talk about specific objects.
Computer Science adopted this notion via Mathematical Logic, KnowledgeRepresentation and Reasoning, Artificial Intelligence.
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Ontology in Computer Science
Computer scientists are more pragmatic:
“For AI systems, what ‘exists’ is exactly that which can be represented.”(Gruber, 1993)
“An ontology is a formal, explicit specification of a sharedconceptualization.” (Staab, Studer, 2009)

• An ontology represents an abstract, simplified view of the relevantentities (objects, concepts, and relations) that exist in the domain ofinterest.
• It is a computational artifact designed for a specific purpose.
• In contrast to Ontology in Philosophy, data, i.e., knowledge about specificobjects, plays a central role.
• A shared, formal language allows for automated processing, reuse andintegration.
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Conceptualization
Objects / Individuals:
Stefan Borgwardt, LBOE, APB/E005, TU Dresden

Concepts / Classes / Categories:
Person, Lecture, Room, Building, University

Relations / Properties / Attributes:
attends, gives, is part of, is a, belongs to, is employed by

Axioms / Constraints:
APB/E005 is part of APB, which belongs to TU Dresden.
Every lecture is a course. Every room is part of a building.
Every lecture is a given by a person employed by a university.
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Shared Conceptualization
An ontology is founded on a shared understanding of the domain terms:objects, concepts, and relations should be interpreted in the same way byevery user.
What is a company? Is it a person? Is a university a company?
This depends on the context: application domain, purpose of theontology, legal system in which it is used, . . .

• Such information can be part of an informal consensus between theinvolved parties: domain experts, ontology developers, end users.
• To allow automated processing of the ontology, however, also thecomputer needs access to this information.
• This is where the formal specification comes in.
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Specification
There are many specification languages, from informal to formal ones:
• Lists of terms, glossaries
• Folksonomies, collaborative tagging
• Thesauri, informal hierarchies
• XML Document Type Description (DTD)
• Database schemas, XML Schema
• Entity Relationship Model (ERM), Unified Modeling Language (UML)
• Resource Description Framework Schema (RDFS), Formal taxonomies
• Logic Programming, Frame logic (F-logic)
• Description logics, Web Ontology Language (OWL)
• Modal logics, First-order logic
• Higher-order logics, Common Logic
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Formal Specification
Most popular are relational specification languages, based on first-orderlogic (but the syntax and semantics may differ).
• objects are constants
• concepts are unary predicates
• relations are n-ary predicates, n ≥ 2
partOf(APB/E005,APB)
belongsTo(APB, TU Dresden)
∀x.Lecture(x)→ Course(x)
∀x.Room(x)→ ∃y.partOf(x, y) ∧ Building(y)

An ontology represents a set of possible worlds (a.k.a. models).
Our knowledge is usually incomplete, i.e., we don’t know which of thesemodels describes (an abstract view of) the real world.
On what level the abstraction takes place depends on the application.

Logic-Based Ontology Engineering, Part 1: IntroductionChair of Automata Theory // © Stefan Borgwardt Slide 9 of 78



Using Ontologies
The power of ontologies lies in automated inference mechanisms.
• Concepts from an ontology can be used to annotate data (databases,web pages, text), to make it easier to search and browse information.

In a university database, a search for “Course” can automaticallyreturn all lectures, seminars, etc.
• Structured queries can retrieve complex information, similar to SQL.

SeminarRoom(x) ∧ partOf(x,APB) ∧
∃y.Course(y) ∧ takesPlace(y, x,Wed 2.DS)

• Formal properties of the ontology can hint at modeling errors in thedomain knowledge.
If the ontology is inconsistent, then either the ontology does notcorrectly reflect the domain knowledge, or the knowledge itself isfaulty.
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Application Areas of Ontologies
Research:

• Artificial Intelligence
• Databases
• Natural Language Processing
• Software Engineering
• Biology, Medicine

Industry:
• E-Commerce
• Semantic Web
• Library Systems
• Geographic Information Systems
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Popular Ontologies
Upper ontologies:
• WordNet
• Basic Formal Ontology
• Cyc, SUMO, DOLCE
Core ontologies:
• Common Core Ontologies (Time Ontology, Agent Ontology, . . . )
• Dublin Core (metadata, e.g., for library systems)
• FOAF Core (people)
Domain ontologies:
• NCI Thesaurus, UMLS Metathesaurus (medicine)
• GoodRelations (e-commerce)
Application ontologies:
• Gene Ontology (biological processes, gene functions, interactions)
• ICD, SNOMEDCT (medical billing, statistics)
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WordNet Ontology
• Developed at Princeton University, Departments of Psychology /Computer Science, since the 1980s
• 155.000 English words are grouped into 117.000 sets of synonyms(“synsets”) according to their meanings
• Concepts: Word,WordSense, Synset, . . .
• Relations: word, containsWordSense, antonymOf, hyponymOf, . . .
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WordNet Axioms
“‘funny’ can be have the sense ‘humorous’, as opposed to ‘humorless’.”
word(funny-sense-1, funny)
containsWordSense(synset-humorous-1, funny-sense-1)
containsWordSense(synset-humorous-1, amusing-sense-2)
gloss(synset-humorous-1, “provoking laughter”)
antonymOf(funny-sense-1,humorless-sense-1)
word(funny-sense-2, funny)
containsWordSense(synset-strange-1, funny-sense-2)
containsWordSense(synset-strange-1,odd-sense-4)
gloss(synset-strange-1, “deviating from the usual or expected”)
antonymOf(funny-sense-2, familiar-sense-2)
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Basic Formal Ontology (BFO)
• Developed by a community of researchers, started around 2003
• Contains definitions of high-level classes (35) and relations.
• Concepts: Occurrent, Continuant,MaterialEntity, TemporalRegion, . . .
• Relations: continuantPartOf, hasContinuantPart, existsAt, . . .
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BFO Axioms
“Every material entity exists at some time.”
∀x.MaterialEntity(x)→ ∃t.TemporalRegion(t) ∧ existsAt(x, t)
“The parts of a material entity must be material entities.”
∀x, y.MaterialEntity(x) ∧ hasContinuantPart(x, y)→MaterialEntity(y)
“A process is an occurrent that has temporal proper parts and thatspecifically depends on some material entity at some time.”
∀x.Process(x)↔ (Occurent(x) ∧ ∃y.properTemporalPartOf(y, x) ∧

∃z, t.MaterialEntity(z) ∧ specificallyDependsOnAt(x, z, t))
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Common Core Ontologies
• Developed by non-profit R&D company CUBRC, since 2010
• Extensions of BFO to more specialized domains
Time Ontology:
“A day is a temporal interval. An hour occurs during a day. The relation‘during’ is transitive.”
∀x.Day(x)→ OneDimensionalTemporalRegion(x)
∀x.Hour(x)→ ∃y.intervalDuring(x, y) ∧ Day(y)
∀x, y, z.intervalDuring(x, y) ∧ intervalDuring(y, z)→intervalDuring(x, z)
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Common Core Ontologies
• Developed by non-profit R&D company CUBRC, since 2010
• Extensions of BFO to more specialized domains
Agent Ontology:
“An agent is an organization or person that acts in some process. Agroup of agents consists only of agents, and contains at least oneagent.”
∀x.Agent(x)↔((Organization(x) ∨ Person(x)) ∧ ∃y.agentIn(x, y) ∧ Process(y))
∀x.GroupOfAgents(x)→ ObjectAggregate(x) ∧(

∃y.hasPart(x, y) ∧ Agent(y)) ∧ (
∀z.hasPart(x, z)→ Agent(z))
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NCI Thesaurus
• Medical Terminology developed by the US National Cancer Institute (NCI)
• Contains 133.000 concepts and 100 relations
“A cellular process is a biological process that takes place in a cell.”
∀x.CellularProcess(x)→BiologicalProcess(x) ∧ ∃y.hasAssociatedLocation(x, y) ∧ Cell(y)
“The concepts ‘gene’ and ‘organism’ are disjoint.”
∀x.Gene(x)→ ¬Organism(x)
“A cancer gene is a gene that plays a role in the formation of a cancer.”
∀x.CancerGene(x)→Gene(x) ∧ ∃y.playsRoleIn(x, y) ∧ Tumorigenesis(y)
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Gene Ontology (GO)
• Developed by the Gene Ontology consortium since 1998
• Knowledge about biological processes and their interactions
• Contains 63.000 concepts and 300 relations
∀x.DNAMetabolicProcess(x)↔(MetabolicProcess(x) ∧ ∃y.hasParticipant(x, y) ∧ DNA(y))
∀x.MAPKCascade(x)→MetabolicProcess(x) ∧ ∃y.partOf(x, y) ∧ CellCommunication(y)
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GO Annotations
• Associate concrete genes to their biological functions, as supported bythe current biological knowledge
• Not formally a part of GO, but can be formulated as axioms in thevocabulary of GO
annotatedWith(A-kinase anchor protein 9, x,Homo sapiens,R-HSA-5673001, 2017/11/18)MAPK cascade(x)
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Biomedical Ontology Repositories
In the biomedical area, there is a large number of specialized ontologies formany disciplines.
• BioPortal: https://bioportal.bioontology.org/
• The OBO Foundry: http://www.obofoundry.org/
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Ontologies as Graphs of Knowledge
The term “Knowledge Graph” is often used when talking about ontologies,but is not quite the same. Such a graph represents objects and concepts asnodes, and (binary) relations as edges in a graph.

Room Building University

EducationInstitute

APB/E005 APB TU DresdenpartOf
isA isA isA

belongsTo

isApartOf

Drawbacks:
• Difficult to represent ∀x.Room(x)→ ∃y.partOf(x, y) ∧ Building(y).
• Difficult to distinguish objects from concepts.
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The Concept Hierarchy (a.k.a. Taxonomy)
Abstracting even further, an ontology is reduced to a hierarchy of concepts,which is a directed acyclic graph. This is the backbone of the ontology.

University

PublicUniversityPrivateUniversity

EducationInstitute PublicInstitutePrivateInstitute

Institute

Logic-Based Ontology Engineering, Part 1: IntroductionChair of Automata Theory // © Stefan Borgwardt Slide 24 of 78



Outline
Part 1: Introduction
1.1 Introduction to Ontologies
1.2 Ontology Engineering
1.3 OWL 2 and Description Logics

Part 2: Ontology Creation
Part 3: Ontology Integration
Part 4: Ontology Maintenance

Logic-Based Ontology Engineering, Part 1: IntroductionChair of Automata Theory // © Stefan Borgwardt Slide 25 of 78



1.2 Ontology Engineering
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Challenges
• How to build ontologies with 100.000+ concepts?
• How to make sure that every user understands the concepts in the sameway?
• How to link ontologies together?

Both the NCI Thesaurus and GO contain a concept calledCellularProcess, but they are different entities.
• How to repair ontologies when they are faulty?

An old version of SNOMEDCT implied that everyAmputationOfFinger is an AmputationOfHand, via a combinationof 6 out of 350,000+ axioms.
• How to ensure that an ontology stays up-to-date?
• How to add new concepts/axioms to an ontology without affecting theold inferences?
• How to display large ontologies to the user?
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The Ontology Life Cycle
user requirements knowledge acquisition

formalization

integration

evaluationdocumentation

usage

maintenance
other ontologieserrors/updates
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Logic-Based Ontology Engineering
• Ontology engineering methods support knowledge engineersthroughout the ontology life cycle.
• Logic-based techniques can automate some tasks.
• In this lecture, we will discuss some techniques for the following tasks:
– ontology creation (from user requirements to a formalization)– ontology integration (linking to other ontologies)– ontology maintenance (handling errors and updates)
. . . based on OWL 2 and Description Logics.

• There are many other approaches with different advantages anddrawbacks.
• Creating and maintaining ontologies is similar to large softwareengineering projects. We will not discuss project management (feasibilityanalysis, scheduling, risk management, etc.) in this lecture.
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Ontology Editors
• Protégé https://protege.stanford.edu/

• Vitro https://github.com/vivo-project/Vitro/

• TopBraid Composer https://www.topquadrant.com/tools/

• OntoStudio http://www.semafora-systems.com/

• NeOn toolkit http://neon-toolkit.org/

• SWOOP https://github.com/ronwalf/swoop/

Plugins for Protégé:
• Ontograf https://github.com/protegeproject/ontograf/

• VOWL http://vowl.visualdataweb.org/

• OWLAx https://github.com/md-k-sarker/OWLAx

• DL-Learner
https://github.com/SmartDataAnalytics/DL-Learner-Protege-Plugin
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1.3 OWL 2 and Description Logics
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Web Ontology Language (OWL)
OWL is a World Wide Web Consortium (W3C) Recommendation and one ofthe most successful ontology languages.
The OWL 2 Direct Semantics (a.k.a. OWL 2 DL) is given by description logics(DLs), which are decidable fragments of first-order logic.
http://www.w3.org/TR/owl2-overview/
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OWL in the Semantic Web
User interface and applications

Trust

Proof
Cryptography

Unifying Logic

Querying:
SPARQL

Ontologies:
OWL

Rules:
RIF/SWRL

Taxonomies: RDFS

Data interchange: RDF

Syntax: XML

Identifiers: URI Character Set: UNICODE
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History of OWL
1956 Semantic Networks
1992 Description Logics
2001 DAML+OIL
2004 RDF, RDF/S
2004 OWL 1, OWL Lite, OWL DL, OWL Full
2008 (OWL 1.1)

2009/2012 OWL 2, Profiles: OWL 2 QL, OWL 2 RL, OWL 2 EL
We will cover only the main features of OWL 2 here.
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Syntaxes
Functional-Style Syntax
SubClassOf( Lecture Course )

RDF/XML Syntax
<owl:Class rdf:about="Lecture"><rdfs:subClassOf rdf:resource="Course"></owl:Class>

OWL/XML Syntax
<SubClassOf><Class IRI="Lecture"><Class IRI="Course"></SubClassOf>
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Syntaxes
Turtle Syntax
Lecture rdfs:subClassOf Course

Manchester Syntax (used by Protégé)
Class: LectureSubClassOf: Course

(DL Syntax)
Lecture v Course

(FOL Syntax)
∀x.Lecture(x)→ Course(x)
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Entity Declarations
Every entity of an OWL ontology must be declared to be of a certain type:

Individual: APB/E005
Class: Room
ObjectProperty: belongsTo

In description logics, these are represented by the following disjoint sets:
individual names: I = {APB/E005, . . . }
concept names: C = {Room, . . . }
role names: R = {belongsTo, . . . }

Together, these sets form the vocabulary of the ontology.
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Interpretations
A DL interpretation is a tuple I = (ΔI , ·I), where
• ΔI is a non-empty set, called the domain of I ,
• ·I is an interpretation function that assigns meanings to names:
– each a ∈ I is interpreted as an element aI ∈ ΔI ,– each A ∈ C is interpreted as a set AI ⊆ ΔI ,– each r ∈ R is interpreted as a binary relation rI ⊆ ΔI ×ΔI .

Interpretations represent possible worlds:

d
APB/E005

Room, Lecture
e

APB, LBOE

Building
f

TU Dresden

University
partOf belongsTo
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Interpretations: Example
d

APB/E005

Room, Lecture
e

APB, LBOE

Building
f

TU Dresden

University
partOf belongsTo

I = {APB/E005, APB, LBOE, TU Dresden}
C = {Room, Lecture, Building, University, Company}
R = {partOf, belongsTo}
Δ
I = {d, e, f} RoomI = {d} partOfI = {(d, e)}
APB/E005I = d LectureI = {d} belongsToI = {(e, f )}
APBI = e BuildingI = {e}
LBOEI = e UniversityI = {f}
TU DresdenI = f CompanyI = ∅
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Interpretations: Example
d

APB/E005

Room, Lecture
e

APB, LBOE

Building
f

TU Dresden

University
partOf belongsTo

f is called belongsTo-successor / belongsTo-filler of e
e is called belongsTo-predecessor of f

The purpose of the ontology’s axioms is to specify which interpretations arepermitted, e.g., by stating that rooms cannot be lectures.
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Complex Expressions
Before we can define axioms, we need to introduce more complexexpressions built from classes and object properties.
Class expressions are interpreted as sets, and object property expressionsare interpreted as binary relations.
An object property expression is either an object property or an inverseobject property of an object property r:

Syntax: inverse r
DL syntax: r−
DL name: inverse roleSemantics: (r−)I = {(d, e) | (e, d) ∈ rI}

inverse belongsTo
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Basic Class Expressions
Apart from declared classes, OWL 2 contains the following built-in classes:

Syntax: owl:Thing owl:Nothing
DL syntax: > ⊥
DL name: top concept bottom concept
Semantics: ΔI ∅

All classes are class expressions. Given two class expressions C,D, thefollowing are also class expressions:
Name: conjunction disjunction negation
Syntax: C and D C or D not C

DL syntax: C u D C t D ¬C
Semantics: CI ∩ DI CI ∪ DI Δ

I \ CI

Room and owl:Thing not Building
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DL Notation
In Description Logics, different terms are used:

(named) object property  role name
object property (expression)  role

(named) class  concept name
class (expression)  concept (description)
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Class Expressions: Object Property Restrictions
Class expressions can define restrictions on outgoing object properties, i.e.,restrict the classes of object property successors.
If C is a class expression and r is an object property expression, then thefollowing are also class expressions:

Name: existential restriction value restrictionSyntax: r some C r only C
DL syntax: ∃r.C ∀r.C
Semantics: {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI} {x | ∀y.(x, y) ∈ rI → y ∈ CI}

partOf some Building (inverse partOf) only MaterialEntity
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Class Expressions: Cardinality Restrictions
Cardinality restrictions (also called number restrictions) can restrict thenumber of outgoing object property connections.
If C is a class expression, r is an object property expression, and n is anatural number, then the following are also class expressions:

Name: at-least restriction at-most restrictionSyntax: r min n C r max n C
DL syntax: ≥ n r.C ≤ n r.C
Semantics: {

x |
#{y ∈ CI | (x, y) ∈ rI} ≥ n

} {
x |

#{y ∈ CI | (x, y) ∈ rI} ≤ n
}

Student and (attends min 2 Lecture) belongsTo max 1 owl:Thing
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Class Expressions: Nominals and Self Restrictions
Given an individual a and an object property expression r, the following arealso class expressions:

Name: nominal self restrictionSyntax: {a} r Self
DL syntax: {a} ∃r.Self
Semantics: {aI} {x | (x, x) ∈ rI}

• “r some {a}” can also be written as “r value a”.
• “{a1} or . . .or {an}” can also be written as “{a1,. . . ,an}”.
partOf some {APB} partOf value APB loves Self
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Example dMale eFemale

fMale gFemale hFemale
Mary

iMale jFemale kMale

child child

child childchild

child

child chil
d child

(∃child.>)I = {d, e, f , g} (child−)I = {(f , d), (f , e), (i, f ), . . . }
(Female u ∃child.>)I = {e, g} (Male u ∃child−.∃child.Female)I = {f , k}
(≥ 2 child.Female)I = {d, e} (¬∃child−.>)I = {d, e}
(∃child.Self)I = ∅ (∃child.{Mary})I = {d, e}
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Class Axioms
We can use class and object property expressions to formulate axioms.
An axiom α defines a set of models, which are interpretations I that satisfythe axiom, written I |= α.
If C and D are class expressions, then the following is a class axiom:

Name: general concept inclusion (GCI)
Syntax: Class: C

SubClassOf: D, . . .DL syntax: C v D
Semantics: I |= C v D holds iff CI ⊆ DI
In Manchester syntax, axioms are grouped under entity declarations,into a frame. This means that C can only be a named class.
The ontology editor Protégé allows general class axioms with thesyntax C SubClassOf D, where C can be a complex class expression.
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Class Axioms II
If C and D are class expressions, then the following is a class axiom:

Name: equivalence axiom
Syntax: Class: C

EquivalentTo: D
DL syntax: C ≡ D
Semantics: CI = DI

A special equivalence axiom is a class definition C ≡ D, where C is a namedclass.
Lecture v Course
Room ≡ Structure u ∃partOf.Building u ∃partOf−.Door
∃hasNiece.> v ∃hasSibling.>
C ≡ D is equivalent to the two GCIs C v D and D v C.
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Object Property Axioms
If r, s, s1, . . . , sn are object property expressions, then the following areobject property axioms:

Name: role inclusion complex role inclusion
Syntax: ObjectProperty: r ObjectProperty: r

SubPropertyOf: s SubPropertyChain: s1 o . . .o snDL syntax: r v s s1 ◦ · · · ◦ sn v rSemantics: rI ⊆ sI sI1 ◦ · · · ◦ sIn ⊆ rI

owns v belongsTo− belongsTo− v owns partOf ◦ partOf v partOf
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Object Property Axioms II
If r, s are object property expressions, then the following are also objectproperty axioms:

Name: role disjointness role reflexivity
Syntax: ObjectProperty: r ObjectProperty: r

DisjointWith: s Characteristics: Reflexive
DL syntax: Dis(r, s) Ref(r)
Semantics: rI ∩ sI = ∅ {(x, x) | x ∈ ΔI} ⊆ rI

Dis(hasDaughter,hasSon) Ref(hasRelative)
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Assertions I
Assertions are axioms about named individuals, also called facts.
Given a, b ∈ I, a concept C, and a role r, the following are assertions:

Name: class assertion [negative] object property assertion
Syntax: Individual: a Individual: a

Types: C Facts: [not] r b
DL syntax: a : C (a, b) : [¬]r
Semantics: aI ∈ CI (aI , bI) ∈ rI [(aI , bI) /∈ rI ]
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Assertions II
Given a, b ∈ I, the following are also assertions:

Name: individual equality individual inequality
Syntax: Individual: a Individual: a

SameAs: b DifferentFrom: bDL syntax: a ≈ b a 6≈ b
Semantics: aI = bI aI 6= bI

APB/E005 :Room (APB, TU Dresden) :belongsTo APB 6≈ APB/E005
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Additional Axioms: Syntactic Sugar
Syntax DL syntax Equivalent axioms

DisjointWith: Dis(C,D) C v ¬D or C u D v ⊥
DisjointUnionOf: C ≡ D1 t · · · t Dn, D1 v ¬D2, . . .
EquivalentTo: r ≡ s r v s, s v r

Domain: Dom(r) v C > v ∀r−.C or ∃r.> v C
Range: Ran(r) v C > v ∀r.C or ∃r−.> v C

InverseOf: r ≡ s−

Characteristics:Irreflexive Irr(r) ∃r.Self v ⊥
Functional Fun(r) > v ≤ 1 r.>
Symmetric Sym(r) r v r−
Asymmetric Asy(r) Dis(r, r−)
Transitive Tra(r) r ◦ r v r
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Models and Reasoning
A DL ontology is a triple O = (A, T ,R), where
• A is an ABox, a set of assertions,
• T is a TBox, a set of class axioms,
• R is an RBox, a set of object property axioms.
An interpretation is a model of O if it is a model of all its axioms.
We sometimes write ontologies as sets O = A ∪ T ∪R.
O is consistent if it has a model.
O entails an axiom α (O |= α) if every model of O is also a model of α.
An inconsistent ontology entails all axioms (also > v ⊥)!

In fact, O is inconsistent iff O |= > v ⊥.
Logic-Based Ontology Engineering, Part 1: IntroductionChair of Automata Theory // © Stefan Borgwardt Slide 54 of 78



Other Reasoning Problems
Let C,D be concepts and a ∈ I.

• If O |= C v D, we say that C is subsumed by D w.r.t. O. C vO D
• If O |= C ≡ D, we say that C is equivalent to D w.r.t. O. C ≡O D
• If C vO D and C 6≡O D, C is strictly subsumed by D w.r.t. O. C @O D
• If O |= C u D v ⊥, we say that C and D are disjoint w.r.t. O.
• If O |= a : C, then a is an instance of C w.r.t. O.
• If O 6|= C v ⊥, then C is satisfiable w.r.t. O.
• If all concept names in O are satisfiable w.r.t. O, then O is coherent.
• Classification is the task of computing all entailments of the form
O |= A v B, where A,B ∈ C.

• Materialization is the task of computing all entailments of the form
O |= a : A and O |= (a, b) : r, where a, b ∈ I, A ∈ C, and r ∈ R.
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Examples
The ontology
{Felix :Cat, Cat v Animal, (Felix, Toby) :hasFather,
∃hasFather.> v Human}

is consistent and coherent, and entails Felix :Human.
{Felix :Cat, Cat v Animal, (Felix, Toby) :hasFather,
∃hasFather.> v Human, Human v ¬Animal}

is inconsistent.
{Human v ¬Animal, Werewolf v Human uWolf, Wolf v Animal}

is consistent, but not coherent, becauseWerewolf is unsatisfiable.
Disjointness axioms are very useful for debugging ontologies.Inconsistent or incoherent ontologies indicate modeling errors.
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Reasoning without an Ontology
Certain equivalences and subsumptions hold w.r.t. any ontology(in particular the empty ontology ∅).
We write ≡ instead of ≡∅ and v instead of v∅.
Examples:

C v >
∃r.C v ∃r.>
C u D v C

∃r.(C u D) v (∃r.C) u (∃r.D)

¬(C u D) ≡ ¬C t ¬D
∃r.C ≡ ¬∀r.¬C

≤ n r.C ≡ ¬(≥ (n+ 1) r.C)
≥ 1 r.C ≡ ∃r.C
≤ 0 r.C ≡ ∀r.¬C
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OWL 2 DL
OWL 2 DL corresponds to the description logic SROIQ. To retaindecidability, this logic imposes several restrictions on the use of roles.

• The RBox must be regular.
• Number restrictions, self restrictions, and disjoint role axioms canonly contain simple roles.
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Regular RBoxes
Let R−(O) be the set of all roles in O = (A, T ,R) and their inverses, wherethe inverse of r− is r.
The RBoxR is regular if there is a strict partial order < on R−(O) such that
• r < s iff r− < s for all r, s ∈ R−(O), and
• for all w v r ∈ R, w has one of the following forms:
– r ◦ r (transitivity),– r− (symmetry),– r1 ◦ · · · ◦ rn, r ◦ r1 ◦ · · · ◦ rn, or r1 ◦ · · · ◦ rn ◦ r such that ri < r for all
i ∈ {1, . . . , n}.

Intuitively, there should be no non-trivial cyclic relationships between roles.
The RBox {hasFather ◦ hasBrother v hasUncle,

hasChild ◦ hasUncle v hasBrother} is not regular.
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Simple Roles
OWL 2 DL corresponds to the description logic SROIQ. To retaindecidability, this logic imposes several restrictions on the use of roles.

• The RBox must be regular.
• Number restrictions, self restrictions, and disjoint role axioms canonly contain simple roles.

The set of non-simple roles is inductively defined as follows:
• If r1 ◦ · · · ◦ rn v r ∈ R with n ≥ 2, then r and r− are non-simple.
• If s v r ∈ R and s is non-simple, then r and r− are non-simple.
All other roles are simple.
Transitive roles and roles that have transitive subroles are not simple.
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Query Answering and SPARQL
SPARQL is a very expressive SQL-like query language that can be used toquery RDF data and OWL ontologies.
For OWL, this requires more complex reasoning than entailment of axioms.
In DLs (and database theory), this corresponds to conjunctive queries.
SeminarRoom(x) ∧ partOf(x,APB) ∧

∃y.Lecture(y) ∧ takesPlace(y, x,Wed 2.DS)
The decidability of answering conjunctive queries is unknown for OWL 2 DL.
Conjunctive query answering is not well supported by automated reasoners.
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OWL 2 Profiles
In full SROIQ, reasoning is 2-NEXPTIME-complete. Further restricting theexpressivity of the logic improves the complexity of reasoning.
There are three OWL 2 Profiles, called OWL 2 EL, OWL 2 QL, and OWL 2 RL,which roughly correspond to description logics of the EL and DL-Litefamilies, and to Description Logic Programs (DLP).
Reasoning in these profiles is possible in polynomial time.
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OWL 2 EL
OWL 2 EL allows only the following:
• roles: only role names
• concepts: concept names, conjunction, existential restriction,nominals, self restriction
• axioms: GCIs, concept disjointness, complex role inclusions,domain and range restrictions, reflexive roles, all assertions

This profile covers many biomedical ontologies with a large number ofconcepts and roles.
LiverCancer ≡ TumorOfLiver u
∃associatedMorphology.MalignantNeoplasm u ∃findingSite.Liver

findingSite ◦ partOf v findingSite
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OWL 2 QL
OWL 2 QL allows only the following:
• roles: role names and inverse roles
• concepts: concept names, unqualified existential restriction (onlywith owl:Thing)
• axioms: GCIs, concept disjointness, role inclusions (but not complexones), domain and range restrictions, role disjointness, reflexiveand irreflexive roles, all assertions except individual equality andnegated role assertions

This profile is suitable for SPARQL query answering in applications with alarge number of individuals and assertions (a.k.a. “data”).
∃employedBy v Employee ∃employedBy− v Company
Employee u Company v ⊥ employedBy− v employs
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OWL 2 RL
OWL 2 RL allows all roles and axioms except equivalence axioms, butnot >, and only GCIs of the form C v D, where
• C may be a concept name, nominal, conjunction, disjunction,existential restriction
• Dmay be a concept name, value restriction, existential restrictionover a nominal, at-most restriction with n = 0 or n = 1
(> can be used inside role restrictions)

This profile trades the expressivity of existential restrictions anddisjunctions against faster reasoning, and can be implemented usingrule-based reasoning engines (cf. Datalog).
Human uMale v Man Man u ∃hasChild.> v Father
Human v ∀hasChild.Human Human v ≤ 1hasFather.>
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OWL 2 Reasoners
OWL 2 DL:
• Konclude http://derivo.de/en/products/konclude/
• Pellet https://github.com/stardog-union/pellet/
• FaCT++ https://bitbucket.org/dtsarkov/factplusplus/
• HermiT https://github.com/phillord/hermit-reasoner/
• PAGOdA https://www.cs.ox.ac.uk/isg/tools/PAGOdA/
OWL 2 EL:
• ELK https://github.com/liveontologies/elk-reasoner/
• CEL https://lat.inf.tu-dresden.de/systems/cel/
OWL 2 QL:
• ontop https://github.com/ontop/ontop/
• Mastro http://www.dis.uniroma1.it/~mastro/
OWL 2 RL:
• RDFox http://www.cs.ox.ac.uk/isg/tools/RDFox/
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Additional Features: Datatypes
OWL 2 also includes the datatypes defined by XML Schema:
xsd:integer xsd:decimal xsd:float xsd:string

A literal represents a constant value of a specific datatype.
"Lecture" "Lecture"@en-US -1.2E-2F "-10"ˆˆxsd:integer

In description logics:
A concrete domain is a setΔD of values, together with collections ofdatatypes and literals.
Each literal ` is associated to a unique value `D ∈ ΔD, e.g.,"-10"ˆˆxsd:integer represents the number -10.
A datatype T is interpreted as a set of values TD ⊆ ΔD, e.g., xsd:integerrepresents the set of all integers.
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Data Properties and Axioms
Using data properties, individuals can be assigned data values:
DataProperty: hasSize
In DLs, they are called concrete role names: Rc = {hasSize, . . . }

The definition of interpretations I is extended to assign each rc ∈ Rc abinary relation rIc ⊆ ΔI ×ΔD.Data properties can also have SubPropertyOf and DisjointWith axioms, butnot SubPropertyChain and no Characteristics other than Functional.
There are also data property assertions about values for named individuals.

(APB/E005, 30) :hasSize Fun(hasSize)
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Class Expressions: Data Property Restrictions
The expressions some, only,min, andmax can also be used for dataproperties, but with a datatype in place of a class.
For example, if v is a data property and T a datatype, then the following is aclass expression:

Name: existential (datatype) restriction
Syntax: v some T

DL syntax: ∃v.T
Semantics: {x | ∃y.(x, y) ∈ vI ∧ y ∈ TD}
hasSize some xsd:integer hasName max 1 xsd:string

Similar to nominals, if ` is a literal, then {`} denotes a datatype thatrepresents the singleton set {`D} ⊆ ΔD.
hasSize some {30} hasSize value 30
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OWL 2 is more than Description Logics
In addition to being a modeling language for ontologies (with semanticsbased on DLs), OWL 2 has several features for managing ontologies:
• All entities are identified by an International Resource Identifier (IRI) thatis unique across ontologies.
• Ontologies can be imported into other ontologies.
• All entities can be annotated by non-logical statements containingadditional information.
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OWL 2 Features: IRIs
Every entity (class, property, individual) and even the ontology itself isuniquely identified by an IRI, often in the form of a URL.
http://inf.tu-dresden.de/university-ontology#Lecture uo:Lecturehttp://inf.tu-dresden.de/university-ontology#Course uo:Course

URLs should be dereferenceable, i.e., lead to a web page about the entity.
Prefix definitions are used to abbreviate IRIs.
Prefix: uo: http://inf.tu-dresden.de/university-ontology#

Standard prefixes:
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
owl: http://www.w3.org/2002/07/owl#
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OWL 2 Features: Imports
Like other entities, ontologies are declared using their IRI.
They can import all entities and axioms of other ontologies (via the IRI).
Ontology: http://inf.tu-dresden.de/university-ontology.owlImport: http://purl.obolibrary.org/obo/bfo.owl

Imports are transitive, so importing an ontology that imports the BFO alsogrants access to all BFO entities and axioms.
The import closure of an ontology O is a set containing O and all theontologies that O imports (directly or indirectly).
The axiom closure of O is the smallest set that contains all the axiomsfrom each ontology O′ in the import closure of O.
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Imports vs. IRIs
Importing an ontology adds all its entities and axioms to the currentontology.
One can always use the entities of another ontology by referring totheir unique IRI, without importing its axioms.

This allows to “overwrite” existing axioms, since the new ontology is acompletely new collection of axioms over the same vocabulary.
This is problematic, as there are no automated checks forinconsistency/incoherence of the new axioms w.r.t. the old ones.
Referring to entities of other ontologies without importing them iscommonplace when dealing with pure vocabularies (without axioms).
For example, the standard prefixes rdf:, rdfs:, xsd:, and owl: containonly entity declarations, and nearly every OWL ontology uses them.
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OWL 2 Features: Annotations
Annotations provide additional information about ontologies, entities, andaxioms via annotation properties.
Class: CourseAnnotations: rdfs:label "Course"@en-USrdfs:label "Kurs"@de-DErdfs:comment "A course offered by a university."

dc:creator Stefan Borgwardt
dc:issued "2018-03-07"ˆˆxsd:daterdfs:seeAlso ubo:Course

Annotations have no semantics, but help the user to keep track ofprovenance, intuitive meaning, and external links to other ontologies.
Protégé uses rdfs:label annotations to display entities, if they areavailable.
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Note: Binary vs. n-ary Relations
OWL 2 and description logics can only express unary and binary relations.This is not without loss of generality, but n-ary relations with n ≥ 3 canpartially be simulated.
annotatedWith(A-kinase anchor protein 9, x,Homo sapiens)
 

Annotation(a112),hasAnnotation(A-kinase anchor protein 9, a112),annotationProcess(a112, x),annotationSpecies(a112,Homo sapiens)
This process is called reification.
Of course, it is more cumbersome to formulate axioms over thisrepresentation.
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Note: Open World vs. Closed World
OWL and DLs make the open-world assumption, i.e., facts that are notexplicitly stated are simply unknown.
The ontology ({(Bob, Fred) :hasChild}, ∅, ∅) does not entailBob : Father nor Bob :¬Father.
The ontology ({(Bob, Fred) :hasChild}, {∃hasChild.> v Father}, ∅)entails Bob : Father.

Databases make the closed-world assumption, i.e., facts that are notexplicitly stated are assumed to be false.
Consider the database that contains only the fact hasChild(Bob, Fred).
The formula ¬Father(Bob) is satisfied in this database.
The formula ∀x.(∃y.hasChild(x, y))→ Father(x) is not satisfied.

A database represents only one interpretation. An ontology has a largenumber of possible interpretations, which are constrained by axioms.
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A Complete Ontology
Prefix: uo: http://inf.tu-dresden.de/university-ontology.owl#
Ontology: http://inf.tu-dresden.de/university-ontology.owl
ObjectProperty: uo:partOfCharacteristics: Transitive
Class: uo:BuildingDisjointWith: uo:University, uo:Room
Class: uo:RoomDisjointWith: uo:UniversitySubClassOf: uo:partOf some uo:Building
Class: uo:University
Individual: uo:APB/E005Types: uo:RoomFacts: uo:partOf uo:APB
Individual: uo:APB
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A Complete Ontology
O = (A, T ,R) with
A = {APB/E005 :Room, (APB/E005,APB) :partOf}
T = {Room v ¬University, Room v ∃partOf.Building,Building v ¬University, Building v ¬Room}
R = {partOf ◦ partOf v partOf}

In the rest of the lecture, we will mainly use DL syntax.
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