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2.1 Knowledge Acquisition
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Engineers and Experts
Creating an ontology requires both ontology engineers and domain experts.

They need to formalize knowledge about a domain of interest, with the goal

of automating certain tasks.

The ontology engineer can formalize the domain knowledge, but does not

have (enough) domain knowledge.

The domain expert has the domain knowledge, but does not know how to

formalize it.

The ontology engineer needs to guide the expert in the creation of the

ontology.

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 2 of 77



Roadmap to Create an Ontology
1. Find out what the goals of the application are.

2. Define the scope of the ontology.

3. Gather knowledge about the domain.

4. Define all entities of the ontology.

5. Define all axioms of the ontology.

6. Evaluate the ontology against the goals.
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Competency Questions
“Questions that an ontology must be able to answer” (Grüninger, Fox,

1995)

• Informal description of the goals of the ontology

• First insights into the domain vocabulary

• The final ontology must answer the competency questions (evaluation).

Example competency questions:

What kinds of biological processes are there?

Which genes are involved in biological processes in the brain?

List all genes that are involved in three or more biological processes.

Which are the high-value customers?

Are basic kinship relations like parentage, grandparents, siblings

represented?
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Formalizing Competency Questions
To evaluate competency questions over the final ontology, they need to be

formalized.

What are the subclasses of BiologicalProcess?
What are the instances of

∃annotatedWith.∃annotationProcess.∃situatedIn.Brain?
What are the instances of (≥ 3 annotatedWith.>)?
What are the instances of HighValueCustomer?
Does the ontology contain the relations hasParent, hasGrandparent,hasSibling?

This can only be done once the vocabulary of the ontology is determined.
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Knowledge Acquisition
We (the ontology engineers) need to acquire knowledge from:

• domain experts:
– know a lot of the domain (coverage)

– are highly reliable (accuracy)

– typically don’t know much about ontology engineering

• documents:
– cover parts of the domain

– may be outdated

– cannot answer questions

– need to be interpreted

• databases:
– large amount of knowledge about individuals

– restricted knowledge about classes, relations, and axioms

– easy to import automatically

Knowledge Elicitation: Extract relevant knowledge in dialog with the domain

experts.
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Knowledge Elicitation
“There are known knowns; there are things we know we know. We also

know there are known unknowns; that is to say we know there are

some things we do not know. But there are also unknown unknowns –

the ones we don’t know we don’t know.” (Donald Rumsfeld, 2002)

Problem: How to obtain all relevant knowledge from the domain expert, if

we don’t know in advance what that knowledge encompasses?

Simply asking the expert to write all knowledge down has several problems:

• They know too much.
• They know too little about the application goals and the constraints of
OWL and DLs.

• Much of what they know is tacit (e.g., common assumptions that nobody
talks about). The knowledge is there, but hard to access and to describe.

• Even their knowledge may be incomplete, although they are better at
acquiring it.

• Their time is valuable.
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Challenges of Knowledge Elicitation
Knowledge elicitation techniques must

• minimize the time required

• minimize the requirement for the domain expert to learn ontology
engineering

• capture all essential knowledge

• capture tacit knowledge

• support multiple sources (building consensus between multiple experts)

• allow for the ontology engineers to learn the domain knowledge, so they
can understand enough of it

Knowledge elicitation works mostly in the realm of natural language.

The formalization of this knowledge comes later.
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Elicitation Techniques
Pre-representation:

• The starting point, before any ontology exists

• Focuses on generating protocols of interactions with the domain experts:
recording of interviews, reports, non-interview observations, other

documents

• Convert protocols into proto-formalizations

Post-representation:

• An initial formalization already exists

• Domain experts interact with it (guided by the ontology engineer)

• Interaction generates new questions, directions to expand
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Proto-Formalization: Protocol Analysis
After we have obtained the protocols:

• Find the key terms

• Discard terms that are out of scope (irrelevant for the goals)

• Harmonize the terms (capitalization, pluralization, orthography, etc.)

• Distinguish significant terms

• Explore the terms to discover new ones
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Example: Animals
Task: Generate a small ontology to describe the content of a children’s

book about animals.

Competency Questions:

• What are the types of animals?

• Where do the animals live?

• What do they eat?

• Are they dangerous?

• Are they big or small?

• Basic anatomy: legs, wings? feathers, fur?

• . . .whatever else may be in the book
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Example: Terms Extracted from Protocols
Horse

Wild

Trout

Farmed

Grass

Cow

Dangerous

Cat

Wheat

Carnivorous

Bear

Wolf

Goldfish

Sheep

Shark

Herring

Human

Pet

Dog

Tree
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Card Sorting
An informal procedure that identifies similarities between terms:

• Write down each concept on a card

• Organize them into piles

• Identify what the pile represents→ new concept→ new card
• Link the piles together

• Record the reasons for the sorting and the links

• Repeat

This works best in small groups, because everyone has a different idea how

to sort the piles.
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Example: Animals
Animal:

• Horse

• Cat

• Wolf

• Cow

• Bear

• Dog

• Sheep

Plant:

• Wheat

• Grass

• Tree

Fish:

• Herring

• Shark

• Trout

• Goldfish

Property:

• Pet

• Dangerous

• Carnivorous

• Wild

• Farmed

Links:

Fish are also animals.

Some animals eat plants.

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 14 of 77



Three Cards Trick
• Select 3 cards at random

• Identify which 2 cards are the most similar

• Write down why→ new term?
• Write down why the 3rd is different→ new term?

Again, doing this in a small group is better. Each person may have different

ideas about the similarity.
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Example: Animals
Shark Wolf Goldfish

New terms:

• Scales / Fur

• Fins / Feet

• Water / Land

• Swimming / Walking

• Carnivorous / Herbivorous

• Large / Small

• Gray / Gold
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20 Questions
(like the game)

• The ontology engineer picks a concept.

• The domain expert tries to guess it, by asking a series of yes/no
questions.

Different from the game, only the questions and their order are of interest.

It forces the domain experts to reveal the taxonomy of the domain.
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Example: Animals
Is it a living thing? yes

Is it a plant? no

Is it an animal? yes

Is it a mammal? . . .

We now know that plants and animals are living things, they are possibly

disjoint, and mammals are animals.
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2.2 Formalization
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Organize Terms
• Identify classes (nouns and adjectives) and relations (verbs)

• Organize terms into rough categories

General Animal Categories: Animal, Mammal

Specific Animals: Cat, Dog, Horse, Trout, Shark

Properties of Animals: Wild, Dangerous, Carnivorous, Pet

Plants: Tree, Grass, Wheat

Relations: eats, hasBodyPart, hasColor
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Class Hierarchy
• Before adding complex axioms, first define the class hierarchy
(SubClassOf/v axioms).

• Flesh out the hierarchy with common superconcepts, missing siblings.

• Ideally, much of this information was already elicited, otherwise we have

to ask the domain experts again.
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Example: Class Hierarchy
Living Thing

• Animal
– Mammal

– Cat

– . . .

– Fish

– Trout

– . . .

– Carnivorous

– Herbivorous

– Omnivorous

• Plant
– Tree

– Grass

– Wheat Once the class hierarchy is fixed, we can add definitions.
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Class Definitions
Identify which terms should be defined:

• Depends on the goals of the ontology.
• General terms like “Living Thing” probably don’t need a definition.
• Some terms are easier to define than others, e.g., “Cat” vs. “Carnivorous”.
• For some terms, the information about their place in the class hierarchy
is enough.

Intensional definitions consist of the superclass(es) and any distinguishing

characteristics.

A cat is a mammal that has claws, 4 legs, and a tail.

A carnivore is an animal that eats only meat.

A pet is a domesticated animal that lives with humans.

Extensional definitions:

EU ≡ {UK} t {France} t {Germany} t . . .
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Definitions (II)
Distinguish between full definitions (≡) and partial definitions (v)!

Animal ≡ LivingThing u ∃eats.LivingThing
Pet ≡ Animal u ∃livesWith.Human
Herbivorous ≡ Animal u ∀eats.Plant
Cow v Mammal u ∀eats.Grass
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Class Hierarchy (II)
In general, the class hierarchy is not a simple tree, but a directed acyclic

graph (there is multiple inheritance).

Cow v Mammal Cow v Herbivorous
(Mammal and Herbivorous are unrelated)

Instead of specifying all subclass-superclass relationships, it is easier to

specify only a tree and let the reasoner infer the implicit ones.

Grass v Plant
Herbivorous ≡ Animal u ∀eats.Plant
Cow v Mammal u ∀eats.Grass

This entails Cow v Herbivorous, so we do not have to explicitly add this
axiom to the ontology.

Definitions can affect the (inferred) class hierarchy.
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“Some” Does Not Mean “Only”
When writing definitions, it is not trivial to find the correct one.

A common modeling error is to swap ∀ and ∃:

Grass v Plant
Herbivorous ≡ Animal u ∀eats.Plant
Cow v Mammal u ∃eats.Grass

Cow is not subsumed by Herbivorous!
(A cow must eat “at least 1 Grass”, but could eat other things.)
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“Only” Does Not Mean “Some”
Cow v ∀eats.Grass

Cow is not subsumed by ∃eats.Grass, not even ∃eats.>.
(A cow can eat only Grass, but does not have to eat anything.)
Animal ≡ LivingThing u ∃eats.LivingThing
Mammal v Animal
Cow v Mammal u ∀eats.Grass

entails Cow v ∃eats.Grass.
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“And” Does Not Mean “Or”
“Cows eat grass and grain.”

Cow v ∀eats.(Grass u Grain) Grass v ¬Grain
Cow and ∃eats.> are disjoint!
(A cow can eat only things that are at the same time Grass and Grain, which
do not exist.)

Cow v ∀eats.(Grass t Grain) Grass v ¬Grain
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General Axioms and Annotations
• Declare disjoint classes!

• Declare domains and ranges, transitivity, . . . for object properties!

• Encode more specific knowledge, e.g., GCIs and complex role inclusions.

• Comment all entities and axioms, justify design choices (shared
conceptualization)!

Dom(eats) v LivingThing
Ran(eats) v LivingThing
rdfs:comment "We ignore the difference between living things and

parts of living things that are eaten (e.g., meat)."
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Domain and Range Restrictions
Be careful of declared domains and ranges. They affect all class expressions

using the property:

Ran(eats) v LivingThing (> v ∀eats.LivingThing)
Bird v ∃eats.Stone

means that some stones are living things (those that are eaten by birds).

If Stone and LivingThing are disjoint, then the ontology is inconsistent.
Dom(eats) v LivingThing (∃eats.> v LivingThing)
StoneEater v ∃eats.Stone

entails StoneEater v LivingThing.
If StoneEater and LivingThing are disjoint, then StoneEater is unsatisfiable.

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 29 of 77



Mereology
Mereology: The theory of parts, wholes, and their relations.

Partonomies (part-of hierarchies), are as important as taxonomies

(class hierarchies).

A partonomy is modeled by a dedicated object property (partOf).
Generally accepted properties:

Ref(partOf) Tra(partOf) Asy(partOf)
In other words, partOf is a partial order.
However, not all part-of relations are the same:

“The tail is part of the cat.”

“The tree is part of the garden.”

“The wheat is part of the bread.”
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Properties of Part-of Relations
Part-of relations can be classified according to the following properties:

Functional: Are parts restricted by their function or placement?

Homeomeric: Are parts the same kinds of things as the whole?

Separable: Can the parts be removed from the whole?

Part-of Relation Functional Homeomeric Separable

Component-Object X – X

Material-Object X – –

Portion-Object X X X

Place-Area X X –

Member-Collection – – X
Member-Partnership – – –
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Functional, Non-Homeomeric
Component-Object relation:

• separable

• “What are its parts?”

branch - tree

scene - movie

Material-Object relation:

• non-separable

• “What is it made of?”

wood - tree

flour - bread

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 32 of 77



Functional, Homeomeric
Portion-Object relation:

• separable

• not integral, but measurable parts; “some of”

slice - bread

meter - kilometer

Place-Area relation:

• non-separable

• usually between places and locations

garden - estate

Dresden - Germany

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 33 of 77



Non-Functional, Non-Homeomeric
Member-Collection relation:

• separable

• characterized by spatial/social/temporal proximity, not by similarity

tree - forest

Stefan Borgwardt - TU Dresden

Member-Partnership relation:

• non-separable

• members are defining parts of the whole

Ernie - Bert and Ernie

John - married couple

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 34 of 77



Several Part-of Relations
In an ontology, these different relations are given informative names to

distinguish them, e.g., by referring to their domains.

bodyPartOf partOfRegion memberOfUniversity
Generally, transitivity holds only along the same part-of relation.

(Stefan Borgwardt, TU Dresden) :memberOfUniversity
(TU Dresden,Dresden) :partOfRegion

. . . but sometimes also among different part-of relations.

materialOf ◦ partOf v materialOf
Sometimes it is more convenient to use the inverse (has-part) relation.

Car v ∃hasPart.Engine vs. Engine v ∃partOf.Car
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Not Part-of Relations
What is not a part-of relation:

Topological inclusion: “The wine is in the cellar.”

Class inclusion: “Frying is part of cooking.”

Attachment: “Fingers are part of the hand.” vs. “Earrings are part of

the ear.”

Ownership: “A bicycle has wheels.” vs. “I have a bicycle.”
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Direct Part-of
Often, it is more useful to refer to the direct parts only, instead of all

(indirect) sub-parts.

Piston v ∃directPartOf.Engine Engine v ∃directPartOf.Car
directPartOf is not transitive!
directPartOf v partOf Tra(partOf)

This separation allows us to use directPartOf in number restrictions.
> v ≤ 1directPartOf.> Car v ≤ 4hasDirectPart.Wheel u . . .

This is not possible for partOf, since non-simple roles are not allowed
in number restrictions!
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When to Introduce a New Class?
If a class expression is used often, introduce a new named class:

Shark v Fish u ∃hasRisk.(∃hasSeverity.Deadly)
Lion v Mammal u ∃hasRisk.(∃hasSeverity.Deadly)
Shark v Fish u Dangerous
Lion v Mammal u Dangerous
Dangerous ≡ ∃hasRisk.DeadlyRisk
DeadlyRisk ≡ ∃hasSeverity.Deadly

This keeps the ontology more readable, but is not necessary for more

specific characteristics of individuals:

Scout :Horse Scout :Agressive
There is no need for AgressiveHorse, unless this concept plays an
important role in the ontology.
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When To Stop Modeling?
It is easy to get lost trying to define all things in the smallest detail.

Dangerous ≡ ∃hasRisk.(∃hasSeverity.(Deadly u ∃hasCause. . . . ))
For this to be meaningful, the new terms have to be used in the ontology.

For example, every animal should be assigned a risk level, cause, etc.

Making this consistent through a large ontology gets harder with every

property that is added.

Decide whether the new class expression is necessary to achieve the

goals (check competency questions).

Often a particular expressivity is targeted, e.g., one of the tractable

OWL 2 Profiles.

Decide whether the new class expression is worth leaving this profile.
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When to Use Classes vs. Individuals
Individuals are the most specific concepts represented in an ontology.

Daisy :Cow Felix :Cat
If the application does not need to talk about specific animals, individuals

may instead be breeds or even the animal species themselves.

Shetland Cattle :Cow or Cow :Animal
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Individuals
Many ontologies do not have individuals, especially top-level ontologies.

Medical ontologies contain definitions of diseases, but no patient data.

However, many applications require reasoning about individuals.

Felix :Cat (Felix,Bob) : livesWith Bob :Human |= Felix :Pet
If the amount of individuals is much larger than the amount of classes and

properties in the ontology, then we need automated techniques to

• import assertions from legacy data sources (e.g., databases).
• extract assertions automatically from text (lower quality).

Importing assertions from databases is often done by so-called mappings:

PetOwner(x, y) x :Human, (y, x) : livesWith
where PetOwner is a table (predicate) in the database.
In general, this could be an arbitrary SQL (FO) query.
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Database Mappings
There are two ways to use mappings:

1. Create a complete ABox by a one-time import from the database.

2. Use the mappings in addition to the ontology for reasoning.

The second option is often taken by OWL 2 QL/RL ontologies, where

the mappings can be used to translate all reasoning tasks into

SQL/Datalog queries over the existing database.

This is well-suited for databases that change often.

Such a translation to SQL is not possible in general for OWL 2 DL

ontologies, since they are too expressive.

In such a case, we need to take Approach 1.

This means that either

• the ontology is used as the new primary data store, or

• the data is re-imported every time the database is updated.
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Ontology Reuse
It is important to reuse as much of existing ontologies as possible.

• Identify relevant existing top-level/core/domain ontologies.

• Evaluate whether they are compatible with the goals.
• Import the ontologies.

Advantages:

• Can use existing axioms for reasoning
• Enforce some structure (Process, TemporalRegion, Agent, . . . )
• Interoperability with other ontologies

Drawbacks:

• Imports the whole ontology, which may be more than needed

• Cannot adapt existing axioms
Alternatives: import only the vocabulary (using prefixes), or record links to

other ontologies in annotations (see Part 3: Ontology Integration)
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2.3 Ontology Learning
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Ontology Learning
So far, we have seen guidelines on how to construct an ontology by hand.

In Ontology Learning, one tries to (semi-)automatically construct an

ontology from available resources.

Ontology Learning from Text:

• See lecture Semantic Computing given by Dr. Dagmar Gromann
• Extract assertions and basic taxonomies (SubClassOf)
Concept Learning in DLs:

• Tries to learn concept definitions from assertions

Bob : Father (Bob, Fred) :hasChild  Father ≡ ∃hasChild.>
• As with most learning methods, this needs enough data
• Danger of overfitting: If the data contains much more sons than
daughters, we may end up with Father ≡ ∃hasChild.Male.

• Humans still need to determine whether the definitions make sense
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The Concept Learning Problem
Let O be a consistent ontology, I(O) be the set of individual names
occurring in O, and A ∈ C be the target concept name.
We denote the set of instances of A w.r.t. O by

IA(O) := {a ∈ I(O) | O |= a : A}.

The learning problem:

Given O and A, find a concept description CA 6≡O A, such that
• O |= a : CA for all a ∈ IA(O)
• O 6|= a : CA for all a ∈ I¬A(O)

(Lehmann, Hitzler, 2010)

• IA(O) are the positive examples, I¬A(O) the negative examples for A in O.
• Positive/negative examples may be explicitly contained in O, e.g.,
a : A, b :¬A ∈ O, or entailed by other axioms.
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Solving the Learning Problem
Given O and A, find a concept description CA 6≡O A, such that
• O |= a : CA for all a ∈ IA(O)
• O 6|= a : CA for all a ∈ I¬A(O)

To find CA, we can restrict the search to the vocabulary of O
(I(O) ∪ C(O) ∪ R(O)), which is finite.
However, the number of candidates for CA is still infinite.

An exact, but useless, solution is

⊔
a∈IA(O)

{a}.

To avoid overfitting (and simplify the search for CA), we restrict the
syntax of CA.
Then, an exact solution may not exist, but we look for approximations.
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Interlude: ALC
We consider the description logic ALC.

In ALC,
• only role names are allowed as roles (no inverse roles),

• concepts can be built only from concept names, >, ⊥, u, t, ¬, ∃,
and ∀ (no data properties, self restrictions, number restrictions, or
nominals),

• only concept axioms, concept and role assertions are allowed (no
role axioms or individual (in)equalities).
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Interlude: Tree Model Property in ALC
ALC has the tree model property, i.e., every concept C that is
satisfiable w.r.t. an ALC ontology O has a tree model I:
• I is a model of O,
• the directed graph GI = (ΔI ,

⋃
r∈R rI) is a tree, and

• the root of the tree belongs to CI .

Example: a model of A u ¬B u ∃r.(B u ∀r.A)
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Interlude: Negation Normal Form in ALC
An ALC concept is in negation normal form (NNF) if it contains
negation (¬) only directly in front of concept names.
Every ALC concept is equivalent (w.r.t. O = ∅) to an ALC concept in
NNF.

We can use the following normalization rules to transform subconcepts that

are not in NNF:

¬¬C  C
¬(C u D)  ¬C t ¬D
¬(C t D)  ¬C u ¬D
¬∃r.C  ∀r.¬C
¬∀r.C  ∃r.¬C

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 49 of 77



Interlude: Concept Size in ALC
The size of an ALC concept C is inductively defined as follows:
• size(A) = 1 for all A ∈ C (including > and ⊥),
• size(CuD) = size(CtD) = 1+ size(C)+ size(D) for all concepts C,D,
• size(¬C) = size(∃r.C) = size(∀r.C) = 1+ size(C) for all r ∈ R and
concepts C.

“the number of symbols it takes to write the concept”

size
(
∃r.(∃s.A u ∃r.∃s.>)

)
= 7
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Interlude: Role Depth in ALC
The role depth of an ALC concept C is inductively defined as follows:
• rd(A) = 0 for all A ∈ C (including > and ⊥),
• rd(¬C) = rd(C) for all concepts C,
• rd(C u D) = rd(C t D) = max{rd(C), rd(D)} for all concepts C,D,
• rd(∃r.C) = rd(∀r.C) = 1+ rd(C) for all r ∈ R and concepts C.

“the maximal nesting depth of role restrictions in the concept”

rd
(
∃r.(∃s.A u ∃r.∃s.>)

)
= 3
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Back to the Learning Problem
Given O and A, find a concept description CA 6≡O A, such that
• O |= a : CA for all a ∈ IA(O)
• O 6|= a : CA for all a ∈ I¬A(O)

Recall that we are interested in approximations.

Basic approach:

• Generate candidates for CA, called hypotheses
• Evaluate and rank the hypotheses

• Let the ontology engineer choose among the best hypotheses

• Add the new concept definition A ≡ CA to O
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Evaluating Hypotheses
Before describing how to generate hypotheses, we consider criteria for their

evaluation:

• Should have almost the same positive/negative instances as A
• Should be as short as possible, to be easier to understand (and also to
reduce overfitting)

Let O be an ontology, A ∈ C and CA be a concept.
fn(CA) := #{a ∈ IA(O) | O 6|= a : CA} false negatives

fp(CA) := #{a ∈ I¬A(O) | O |= a : CA} false positives

acc(CA) := 1−
fn(CA) + fp(CA)

#IA(O) + #I¬A(O) accuracy

score(CA) := acc(CA)− β · size(CA)
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How to Find Good Hypotheses?
Idea from Inductive Logic Programming (ILP):

Start with CA = >, and iteratively refine the concept.

A downward refinement operator ρ (w.r.t. O) maps each concept C to
a set of concepts ρ(C) ⊆ {D | D vO C}.
We write C →ρ D if D ∈ ρ(C).
We denote with→∗

ρ
the reflexive transitive closure of→ρ.

We say that D can be reached from C via→ρ if C →∗ρ D.

> →ρ B→ρ B u ∃r.> →ρ . . .
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Properties of Refinement Operators
Problem: There are infinitely many concept descriptions.

How to traverse the search space efficiently towards a good hypothesis?

A downward refinement operator ρ is . . .

• (locally) finite if ρ(C) is finite for all concepts C.
• proper if C →ρ D implies C 6≡O D.
• complete if C @O D implies that D→∗

ρ
E for some concept E ≡O C.

• ideal if it is finite, proper, and complete.

Intuitively,

• only finitely many new hypotheses need to be evaluated at each step

• new hypotheses are more specific than previous ones

• all more specific concepts can be reached (modulo equivalence)

Are there ideal refinement operators?
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Ideal Operators in ALC
Does ALC have finite, proper, and complete refinement operators?
Lemma

Every ALC ontology O has a complete, finite refinement operator.

Proof: Define ρ1(C) := {C u >} ∪ {D | size(D) ≤ size(C) and D @O C}.
• Finite: There are only finitely many concepts up to a given size.
• Complete: To reach any D @O C, we first increase the size of C:

C →ρ1 C u > →ρ1 . . .→ρ1 C u > u · · · u >
until size(C u > u · · · u >) ≥ size(D), and then C u > u · · · u > →ρ1 D.
Lemma

Every ALC ontology O has a complete, proper refinement operator.

Proof: Define ρ2(C) := {D | D @O C}.

These operators are not ideal, and also not efficient.
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No Ideal Operators in ALC (I)
Theorem

For ALC, there is no ideal refinement operator w.r.t. O = ∅.

Proof: Assume that ρ is an ideal refinement operator. Since ρ is finite and

proper, ρ(>) = {C1, . . . ,Cm} is finite and Ci @ > for all i, 1 ≤ i ≤ m.
We construct a concept C /∈ ρ(>) for which C @ >, but there exists no Ci
such that C v Ci @ >. This means that C cannot be reached from any
element of ρ(>), which contradicts the assumption that ρ is complete.
Let n := max{rd(Ci) | 1 ≤ i ≤ m}+ 1 and ∃rn be an abbreviation for n
nested “∃r” expressions. We set C := ¬∃rn.> t ∃rn+1.>.
Because rd(C) = n+ 1, we have C /∈ ρ(>). Moreover, C @ >: For I with
Δ
I = {d0, . . . , dn} and rI = {(di, di+1) | 0 ≤ i < n}, we have d0 /∈ CI .
Claim

There exists no concept D with C v D @ > and rd(D) < n.
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No Ideal Operators in ALC (II)
C := ¬∃rn.> t ∃rn+1.>

Claim

There exists no concept D with C v D @ > and rd(D) < n.

Proof: Assume that such a concept D exists. Since D @ >, we know that ¬D
is satisfiable, i.e., there is a tree model I with root d0 such that d0 /∈ DI .
Since C v D, we know that d0 /∈ CI , i.e., d0 ∈ (∃rn.>)I and d0 /∈ (∃rn+1.>)I .
Thus, there is an r-path of length n in I starting from d0, but no r-path of
length n+ 1:

d0
¬D,¬C

d1 dn
r r r
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No Ideal Operators in ALC (III)
C := ¬∃rn.> t ∃rn+1.>

Claim

There exists no concept D with C v D @ > and rd(D) < n.

d0
¬D,¬C

d1 dn
r r r

We create I ′ from I by adding dn+1 and setting rI
′
:= rI ∪ {(dn, dn+1)}.

Now d0 has an r-path of length n+ 1, and thus satisfies C and D in I ′:

d0
D, C

d1 dn dn+1
r r r r

Since D has role depth < n, it can only refer to domain elements that are up
to n steps away in the tree (Proof: Exercise). Since I and I ′ only differ in
elements that are more than n steps away from d0, the facts d0 /∈ DI and
d0 ∈ DI

′
contradict each other.

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 59 of 77



Refinement Operators in ALC
We have shown:

Theorem

For ALC, there is no ideal refinement operator w.r.t. O = ∅.

In particular, any complete and proper operator needs to have infinitely

many refinements of >:
{∃r.>,¬∃r.> t ∃r2.>, . . . ,¬∃rn.> t ∃rn+1.>, . . . }

We assumed that R contains at least one role name.
But without role names, ALC is essentially propositional logic: the concept
names A ∈ C can be seen as propositional variables, u as ∧, t as ∨, and
v as→. Without roles, different individuals cannot interact.

Since we want to learn ALC concepts and not propositional formulas,
it is reasonable to assume that R is not empty.
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Non-Ideal Operators for ALC
Which of the three properties (finite, complete, proper) do we give up?

Idea: Instead of imposing finiteness, generate only hypotheses up to size n,
and increase this limit only if there are no hypotheses that are good enough.

ρ
n
3
(C) := {D | D @O C and size(D) ≤ n} ?

We need a more practical operator that expands the concepts step-by-step,

and takes into account the existing axioms in O.

Next:

• We define the complete downward refinement operator ρc.

• We adapt it to a complete and proper operator.

• We discuss how to generate smaller hypotheses first.

(Lehmann, Hitzler, 2010)
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Definitions
The relation vO can be seen as a partial order on C. In the following,
the terms “minimal” and “maximal” refer to this partial order.

The set ↓(A) collects the lower neighbors of A ∈ C w.r.t. O, i.e., the
maximal concept names A′ ∈ C with O |= A′ @ A.
The set ↑(A) of upper neighbors is defined similarly.

Given r ∈ R, the atomic domain ADom(r) ∈ C is the unique minimal
concept name such that O |= Dom(r) v ADom(r).
The atomic range ARan(r) is defined similarly.

Note that ADom(r) and ARan(r)may be >.
However, often the domain or range of a role is defined to be a single

concept name, e.g., Dom(hasParent) vO Human, or
Ran(participatesIn) vO BiologicalProcess.
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Refinement with Context
If we want to refine the concept ∃r.D, we could replace D with a more
specific concept E. However, E should not be disjoint with the atomic
range of r, as this would yield an unsatisfiable concept:

∃r.E ≡O ∃r.(ARan(r) u E) ≡O ∃r.⊥ ≡O ⊥

For this reason, we define a family of refinement operators ρB relative to a
context B ∈ C.
Intuitively, the context B is implicitly present in the concept D that is refined.
That is, instead of D we are actually dealing with B u D.

For refining D in ∃r.D, the context is ARan(r).

Initially, however, the context is >: We set ρc(C) := ρ>(C) ∪ {⊥}.

Next, we define ρB(C) by induction on the structure of C.
To simplify this, we ensure that all refined concepts are in NNF.
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ρB(⊥)
The concept ⊥ cannot be refined anymore, so we set ρB(⊥) := ∅.
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ρB(>)
For >, there are several refinement options:
(a) concept names A ∈ ↓(>) that are not disjoint with B (B u A 6vO ⊥);
(b) ¬A, where A ∈ ↑(⊥) and ¬A is not disjoint with B;
(c) ∃r.> or ∀r.>, where ADom(r) is not disjoint with B, or ∀r.⊥.
We collect the concepts from (a)–(c) into the set MB.

Intuitively, these are the maximal concepts below > that are compatible
with the context B and do not contain disjunctions.
We then consider all disjunctions of concepts from MB:

ρB(>) := {⊥} ∪ {C1 t · · · t Cn | C1, . . . ,Cn ∈ MB}

• In C1 t · · · t Cn, elements of MB may occur multiple times.

• ⊥ can be seen as the empty disjunction.
• ∀r.> can be used in later refinement steps to generate concepts of
the form ∀r.C.
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ρB(C)
For all other concepts C, we set ρB(C) := ρ′B(C) ∪ {C u >}, where

ρ
′
B(A) := {A′ | A′ ∈ ↓(A), B u A′ 6vO ⊥}

ρ
′
B(¬A) := {¬A′ | A′ ∈ ↑(A), B u ¬A′ 6vO ⊥}

ρ
′
B(∃r.D) := {∃r.E | E ∈ ρARan(r)(D)}

ρ
′
B(∀r.D) := {∀r.E | E ∈ ρARan(r)(D)}

ρ
′
B(C1 u C2) := {C1 u D2 | D2 ∈ ρB(C2)} ∪ {D1 u C2 | D1 ∈ ρB(C1)}

ρ
′
B(C1 t C2) := {C1 t D2 | D2 ∈ ρB(C2)} ∪ {D1 t C2 | D1 ∈ ρB(C1)}

Lemma

ρc is a downward refinement operator.

Proof: Exercise
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ρc is Complete
Theorem

ρc is complete.

Proof: Assume that C @O D, which means that D u C ≡O C.
It is enough to show that a concept equivalent to D u C can be reached
via ρ> from D.
Since D u > ∈ ρ>(D), we only need to show that a concept equivalent to C
can be reached via ρ> from >.
In the case that C ≡O ⊥, we know that ⊥ ∈ ρ>(>) by the definition of ρ>.
Claim (Weak Completeness)

For all concepts C and all B ∈ C with B u C 6vO ⊥, we have > →∗ρB E for
some concept E with B u E ≡O B u C.

Instantiating B with >, we get exactly what we need: If C 6vO ⊥, then a
concept equivalent to C can be reached via ρ> from >.
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Weak Completeness for Concept Names
Claim (Weak Completeness)

For all concepts C and all B ∈ C with B u C 6vO ⊥, we have > →∗ρB E for
some concept E with B u E ≡O B u C.

Proof: We prove the claim by induction on the structure of C. (Note that C
can be neither > nor ⊥.)

• If C is a concept name, then we can reach it using the operator ↓(·):
> = A0 AO A1 AO · · · AO An = C

where Ai ∈ ↓(Ai−1) for all i ∈ {1, . . . , n}.
• No Ai can be disjoint with B, since then

B u C vO B u Ai vO ⊥.
Thus, > →ρB A1 →ρB A2 →ρB . . .→ρB An = C.

• The claim for negated concept names can be shown similarly.
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Weak Completeness for Existential Restrictions
• If C is of the form ∃r.D, for the induction hypothesis we assume that, for
all B′ ∈ C with B′ u D 6vO ⊥, we have > →∗ρB′ E′, where B′ u E′ ≡O B′ u D.

• ADom(r) cannot be disjoint with B, since otherwise
B u ∃r.D vO B u ∃r.> vO B u ADom(r) vO ⊥.

Thus, > →ρB ∃r.>.
• Similarly, ARan(r) cannot be disjoint with D, since otherwise

B u ∃r.D vO ∃r.D vO ∃r.(ARan(r) u D) vO ∃r.⊥ vO ⊥.
• Choosing B′ := ARan(r), the induction hypothesis yields that > →∗

ρARan(r)
E′

for some E′ with ARan(r) u E′ ≡O ARan(r) u D.
• By the definition of ρB, this means that ∃r.> →∗ρB ∃r.E′.
• We have shown that > →∗

ρB E for E := ∃r.E′, and
BuE = Bu∃r.E′ ≡O Bu∃r.(B′uE′) ≡O Bu∃r.(B′uD) ≡O Bu∃r.D = BuC.

• The claim for value restrictions ∀r.D can be shown similarly.
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Weak Completeness for Conjunctions
• If C is of the form C1 u · · · u Cn, for the induction hypothesis we assume
that, for all Bi ∈ C with Bi u Ci 6vO ⊥, we have > →∗ρBi Ei for some Ei with
Bi u Ei ≡O Bi u Ci (for all i ∈ {1, . . . , n}).

• B cannot be disjoint with any Ci, since otherwise
B u C vO B u Ci vO ⊥.

• Choosing Bi := B, the induction hypothesis yields that > →∗
ρB Ei for

concepts Ei with B u Ei ≡O B u Ci (for all i ∈ {1, . . . , n}).
• By the definition of ρB, we get

> →∗
ρB E1 →ρB E1 u > →

∗
ρB E1 u E2 →ρB . . .→

∗
ρB E1 u · · · u En,

where E := E1 u · · · u En, and
B u E ≡O (B u E1) u · · · u (B u En) ≡O (B u C1) u · · · u (B u Cn) ≡O B u C.
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Weak Completeness for Disjunctions
• If C is of the form C1 t · · · t Cn, for the induction hypothesis we assume
that, for all Bi ∈ C with Bi u Ci 6vO ⊥, we have > →∗ρBi Ei for some Ei with
Bi u Ei ≡O Bi u Ci (for all i ∈ {1, . . . , n}).

• We discard all Ci that are disjoint with B. We assume that there exists
m ∈ {1, . . . , n} such that exactly C1, . . . ,Cm are not disjoint with B.

• For all i ∈ {1, . . . ,m}, we have > →∗
ρB Ei for some Ei with B u Ei ≡O B u Ci.

• B u (E1 t · · · t Em) ≡O (B u E1) t · · · t (B u Em) t ⊥ t · · · t ⊥
≡O (Bu C1)t · · · t (Bu Cm)t (Bu Cm+1)t · · · t (Bu Cn)
≡O B u (C1 t · · · t Cn)

• If there is an i ∈ {1, . . . ,m} for which Ei = >, then B u > ≡O B u C, and
thus we can choose E := >.

• Otherwise, there exist E′i such that > →ρB E′i →∗ρB Ei (for all i ∈ {1, . . . ,m}).
• By the definition of ρB, we get

> →ρB E′1 t · · · t E′m →∗ρB E1 t · · · t Em.
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ρc is Complete, But Not Proper
We have shown:

Claim (Weak Completeness)

For all concepts C and all B ∈ C with B u C 6vO ⊥, we have > →∗ρB E for
some concept E with B u E ≡O B u C.

Theorem

ρc is complete.

But ρc is obviously not proper. For example, ρc(∃r.D) contains ∃r.D u >,
which is equivalent to ∃r.D.
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A Complete and Proper Operator
The operator ρ

↓
c is defined as follows: We have D ∈ ρ↓c (C) iff

C →ρc C1 →ρc . . .→ρc Cn →ρc D,
where C ≡O C1 ≡O · · · ≡O Cn and C 6≡O D.

Theorem

ρ
↓
c is a complete and proper downward refinement operator.

Since ρ
↓
c is not finite, we want to compute all refinements up to some size n,

and increase this number if necessary.

Can all D with C →
ρ
↓
c
D and size(D) ≤ n be computed in finite time?

Logic-Based Ontology Engineering, Part 2: Ontology Creation

Chair of Automata Theory // © Stefan Borgwardt Slide 73 of 77



Size Restriction (I)
Lemma

For all D ∈ ρc(C), we have size(D) ≥ size(C).
The length of chains C1 →ρc . . .→ρc Cn with size(C1) = · · · = size(Cn) is
bounded polynomially in the size of C1 and O.

Proof: Most refinement steps increase the size of the concept. The only

exception are those that replace a concept name (including >) by another
concept name. But the size is never decreased.

A (negated) concept name A is refined by replacing it with a lower (upper)
neighbor in the concept hierarchy. For each A, this can be done at most
size(O) times.
There are at most size(C1) concept names in C1.
After at most size(C1) · size(O) refinement steps with ρc, the size of the
concept must be increased.
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Size Restriction (II)
Lemma

For all concepts C in NNF and all n ∈ N, the set
{D ∈ ρ↓c (C) | size(D) ≤ n} can be computed in finite time.

Proof: There are only finitely many ρc-refinements of C up to length n, and
each of them can be reached by polynomially many refinement steps via ρc.

In ρ
↓
c , we only skip some steps that result in equivalent concepts.
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The Search Algorithm
We are looking for good hypotheses for the learning problem.

The search tree contains nodes of the form (C, n), where C is the current
hypothesis and n the bound on the size.
Algorithm (Concept Learning in DL-Learner (Lehmann, Hitzler, 2010))

Input: Ontology O, concept name A ∈ C, parameters β, γ
Output: A list of candidates for CA, ranked by their score
• Start with the single node (>, 0)
• While there is a node (C, n) with fn(C) < γ ·#IA(O):
– Choose a node (C, n) with maximal score
– Add all nodes (D, n+ 1) with D ∈ ρ↓c (C) and size(D) = n+ 1 as
children of (C, n)

– Replace (C, n) by (C, n+ 1)

• Stop the algorithm at any time, and return all computed concepts
ranked by their score
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Optimizations
Avoid redundancy, e.g.,

> →ρc A→ρc A u > →ρc A u B and > →ρc B→ρc B u > →ρc B u A

A u B→ρc A u B u > →ρc A u B u A

> →ρc ∃r.> t ∃r.> →∗ρc ∃r.C t ∃r.D and > →ρc ∃r.> →∗ρc ∃r.(C t D)

Restrict the allowed constructors (u, t, ¬, ∃, ∀) to decrease the search space

In EL (the sublogic of ALC restricted to u and ∃), every ontology has
an ideal downward refinement operator.
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