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3.1 Matching, Alignments, and
Similarity
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Problem Setting
NCI Thesaurus:

Class: http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C20480Annotations: rdfs:label "Cellular Process"
Gene Ontology:

Class: http://purl.obolibrary.org/obo/GO_0009987Annotations: rdfs:label "cellular process"
has_exact_synonym "cell physiology"

How can we find and represent correspondences between entities in

different ontologies?
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The Solution
UMLS Metathesaurus (not in OWL format):

C0007613 "Cell physiology"

Related (other): C1325880

Atom: http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C20480

C1325880: "cellular process"

Atom: http://purl.obolibrary.org/obo/GO_0009987

The goal of ontology integration is to provide an automated way of

finding such correspondences, to foster reuse and transfer of

knowledge.
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Applications of Ontology Integration
• Ontology creation

• Ontology evolution, versioning (see Part 4: Ontology Maintenance)

• Schema integration
– several local information sources are linked to a single ontology

– queries over the ontology are translated into queries over the local

sources; the answers are translated back

• Schema merging
– local information sources have to be merged into a single one

– more than just linking: all entities have to be merged

– much stronger requirements on correctness

• Web service composition, query answering on the Deep Web

The main challenge is that the information sources (ontologies) are

very heterogenous, due to various factors.
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Types of Heterogeneity
Syntactic:

• different ontology languages
• use automatic translations where possible
Terminological:
• different naming conventions, synonyms
• different languages or technical jargon
• techniques from natural language processing
Semantic:
• differences in modeling
• different coverage (disease vs. medicine vs. anatomy)
• different granularity (disease names vs. detailed definitions)
• different perspective (diagnosis vs. disease classification)
Semiotic:

• different usage
• hard to handle automatically
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Methods for Linking Ontologies
• Importing one ontology into the other: too strong

• Using prefixes: imports only the vocabulary, too weak

• Annotate entities with links to another ontology: no logical semantics

• Create a third ontology, called alignment

Matching:

“The process of finding relationships or correspondences between

entities of different ontologies” (Euzenat, Shvaiko, 2013)

Alignment:

“a set of correspondences between two or more ontologies”; “the

output of the matching process” (Euzenat, Shvaiko, 2013)
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Matching: The Big Picture
O1 O2

A

Given two ontologies O1 and O2, an alignment A is a third ontology that
shares the vocabularies of O1 and O2.
A contains bridge axioms that relate one or more entities of the ontologies.

C20480 ≡ GO_0009987
C20480 ≡ ∃relatedTo.GO_0009987
∃involvedIn.C20480 v ∃involvedIn.GO_0009987
In this lecture, O1, O2, and A are OWL 2 DL ontologies.
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Complex Bridge Axioms
Depending on the granularity and perspective, the same entity may be

modeled as a concept in O1, and an individual in O2.

In WordNet, the word process is an individual, an instance of the
conceptWord.
In BFO, Process is a concept.

We cannot add an axiom to say that process and Process are equivalent.
We need more complex axioms:

Process v ∃hasSyntacticRepresentation.{process}
Complex correspondences are harder to find automatically.

We focus on simple correspondences with entities of the same type.
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Simple Alignments
Let O1 and O2 be two ontologies.

A correspondence between O1 and O2 is a tuple (e1, r, e2, c), where
• either e1, e2 ∈ C, e1, e2 ∈ R, or e1, e2 ∈ I;
• e1 occurs in O1 and e2 occurs in O2;
• r ∈ {≡,v,w,⊥, G};
• c ∈ [0, 1] is a confidence value.

A (simple) alignment of O1 and O2 is a set of correspondences
between O1 and O2.

• The confidence values are due to the imprecise nature of automatic
matching algorithms.
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Simple Alignments as Ontologies
Ignoring the confidence values, correspondences can be seen as simple

bridge axioms. In this way, a simple alignment can be used as an ontology:

e1, e2 ≡ v ⊥ G

A1, A2 ∈ C A1 ≡ A2 A1 v A2 Dis(A1, A2) a : A1, a : A2
r1, r2 ∈ R r1 ≡ r2 r1 v r2 Dis(r1, r2) (c, d) : r1, (c, d) : r2
a1, a2 ∈ I a1 ≈ a2 a1 ≈ a2 a1 6≈ a2 a1 ≈ a2

• Disjointness is crucial to detect inconsistency or incoherence in the
ontology O1 ∪ O2 ∪ A (see also Part 4: Ontology Maintenance).

• Non-disjointness generalizes the coherence requirement:
(A1, G, A2, c) indicates that A1 u A2 should be satisfiable.
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Alignments of Individuals and Roles
Individuals:

• Easy to identify based on names, titles, ID numbers

• Simple automated techniques result in high-quality alignments

Roles:

• Typically fewer roles than concept names

• Typically less information available (role hierarchy, characteristics)

• Manual matching is better suited

Individual and role alignments are used to compute better alignments

for concept names.

In the following, we mainly consider correspondences between

concept names.
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Matching Techniques (I)
Matching techniques can be classified based on which types of

information about entities are used to find correspondences.

Element-level techniques consider the entities of each ontology in isolation

from their relations with other entities:

• String-based (string similarity measures, normalization)

• Language-based (lexical analysis of phrases)

• Linguistic resources (dictionaries or thesauri, e.g., WordNet)

• Constraint-based (types of outgoing roles, number restrictions)
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Matching Techniques (II)
Structure-level techniques consider the relations of entities with other

entities:

• Upper ontologies (alignment supported by third ontology)

• Graph-based (similarity of connected entities)

• Semantic (similarity of interpretations, reasoning)

• Extensional (statistical properties of instances)

Logic-Based Ontology Engineering, Part 3: Ontology Integration

Chair of Automata Theory // © Stefan Borgwardt Slide 13 of 54



Similarity Measures
Many matching techniques are based on computing similarity measures.

A similarity measure σ between two sets M1 and M2 is a function
σ : M1 ×M2 → [0, 1].

A value of σ(m1,m2) = 1 indicates thatm1 andm2 are very similar.

Our goal are concept name similarity measures, where M1 = C(O1)
andM2 = C(O2). Often, concept name similarity measures are defined
via other similarity measures, e.g., between strings.

Given a similarity measure σ between M1 and M2, and functions
f1 : N1 → M1 and f2 : N2 → M2, the similarity measure induced by σ, f1,
and f2 is σ′ : N1 × N2 → [0, 1], where σ′(n1, n2) := σ(f1(n1), f2(n2)).

For example, f1/f2 could assign string labels to concept names, and so
induce a concept name similarity measure from a string similarity measure.
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Defining Similarity Measures
• Many different ways to define similarity measures

• Different methods are better for different domains

• A string-based similarity measure ignores most of the information about
the entities in the two ontologies

• Identify desirable properties of similarity measures
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Properties of Similarity Measures
Let σ be a concept name similarity measure.

σ is equivalence invariant if for all A,B ∈ C(O1) and C,D ∈ C(O2) with
A ≡O1 B and C ≡O2 D, we have σ(A, C) = σ(B, C) and σ(A, C) = σ(A,D).

Symmetry is important when looking for equivalences. However, a single

similarity measure cannot be symmetric, since it is defined over two

different domains (C(O1) and C(O2)).
A family of (concept name) similarity measures (σO1,O2) is a collection
of similarity measures σO1,O2 that can be computed by an algorithm

that takes arbitrary ontologies O1 and O2 as parameters.
Such a family is symmetric if σO1,O2(A,B) = σO2,O1(B, A) holds for all
O1,O2, A,B.
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Similarity vs. Distance
The distance measure δ induced by a similarity measure σ is also a

function δ : M1 ×M2 → [0, 1], defined by δ(m1,m2) := 1− σ(m1,m2).

Here, δ(m1,m2) = 1 indicates the maximal distance betweenm1 andm2, i.e.,
total dissimilarity.

The two representations σ and δ are equivalent, but sometimes it is

more convenient to use distance measures rather than similarity

measures, or vice versa.
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Similarity 6= Equivalence
Caution: High similarity does not necessarily mean equivalence.

Close siblings in the concept hierarchy are similar, but often disjoint.

Cow Bull Ox
The interpretation of a similarity value also depends on the method

that computes it.

(In the end, Matching, like Ontology Learning, can only support, not replace,

human ontology engineers.)
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Combining Similarity Measures: Sequential
Many techniques produce only “initial” similarity measures, which need to

be refined further.

Sequential composition:

The output σ of one algorithm is used as input for a second algorithm,

which computes a new similarity measure σ
′
.

• Element-level similarities can be input for a structure-level method.

• The second algorithm needs to be able to use σ in the computation.

• Some methods use the same algorithm to iteratively refine a similarity
measure several times. This raises the question of when a fixpoint is

reached, or if the computation diverges.
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Combining Similarity Measures: Parallel
Parallel composition:

Several similarity measures σ1, . . . ,σn are computed by different
algorithms, and then combined by an aggregation operator

⊗ : [0, 1]n → [0, 1]:

σ(m,m′) := σ1(m,m′)⊗ · · · ⊗ σn(m,m′)

• If σ1, . . . ,σn are equivalence invariant or symmetric, then so is σ.

• The same operators can also be applied to distance measures.

We present some aggregation operators for 2 similarity measures

σ1,σ2, but they can be defined for any n ≥ 2.
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Aggregation: Triangular Norms and Conorms
A triangular norm is a binary operator ⊗ : [0, 1]× [0, 1]→ [0, 1] that is
associative, commutative, monotone in both arguments, and has the

neutral element 1.

• Triangular norms decrease the arguments: x ⊗ y ≤ min{x, y}.
• We get high similarity values only if both inputs are high.
• If one argument is 0, the result is 0.

• Suitable when both σ1 and σ2 overestimate the “true” similarity.
• Examples: min{x, y} x · y max{x + y − 1, 0}

A triangular conorm is a binary operator ⊕ : [0, 1]× [0, 1]→ [0, 1] that
is associative, commutative, monotone in both arguments, and has

the neutral element 0.

• Suitable when σ1,σ2 underestimate the similarity.
• Examples: max{x, y} x + y − x · y min{x + y, 1}
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Aggregation: Weighted Sum and Product
Given weights w1,w2 ∈ [0, 1] with w1 + w2 = 1,
• the weighted sum of x1, x2 ∈ [0, 1] is defined as
x1 ⊕ x2 := w1 · x1 + w2 · x2.

• the weighted product of x1, x2 ∈ [0, 1] is defined as
x1 ⊗ x2 := xw1

1
· xw2
2
.

• Generalize arithmetic mean and geometric mean, respectively

• Monotone, but not associative or commutative

• Idempotent, i.e., x ⊕ x = x ⊗ x = x
• In general neither increasing nor decreasing the arguments

• Individual weight for each similarity measure
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Aggregation: Minkowski Distance
For p ≥ 1, the (normalized) Minkowski distance of x1, x2 ∈ [0, 1] is
defined as

p

√
xp
1
+ xp

2

2
.

• Usually applied to distance measures δ1, δ2 in orthogonal dimensions,
e.g., δ1 compares concept labels and δ2 compares role successors

• For p = 1: (1− x1) + (1− x2) is the Manhattan distance.
• For p = 2:

√
(1− x1)2 + (1− x2)2 is the Euclidean distance.

• The factor p
√
1

2
normalizes the measure to the interval [0, 1].
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From Similarity to Alignment
Given a concept name similarity measure σ, each concept name

A ∈ C(O1)may be similar to several concept names from C(O2), but
for an alignment we keep only the best correspondences.

Threshold τ ∈ [0, 1]:

To obtain an alignment A, add each correspondence (A,≡,B,σ(A,B))
such that

• σ(A,B) ≥ τ (hard threshold).
• σ(A,B) ≥ maxσ− τ with maxσ := max{σ(A′,B′)} (delta threshold).
• σ(A,B) ≥ τ ·maxσ (proportional threshold).
• it is among the τ · |C(O1)| · |C(O2)| correspondences with the
highest similarity (percentage threshold).

• σ(A,B)
max{σ(A,B′)} ≥ τ and

σ(A,B)
max{σ(A′,B)} ≥ τ (normalized threshold).
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From Similarity to Bijective Alignment (I)
Some applications require a bijective alignment, where each concept name

has exactly one ≡-correspondence to a concept name from the other
ontology.

(We assume without loss of generality that both ontologies have the same

number of concept names.)

This requires to find a globally optimal alignment, rather than choose

correspondences based on locally optimal similarity values.

Greedy Algorithm:

1. add some (A,≡,B,σ(A,B)) with σ(A,B) = maxσ to A;
2. set σ(A,B′) := 0 and σ(A′,B) := 0 for all A′,B′;
3. repeat until finished.
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From Similarity to Bijective Alignment (II)
Stable Marriage Problem:

Find bijective alignment A such that, for all (A,≡,B,σ(A,B)) and
(C,≡,D,σ(C,D)) in A, it holds that

σ(A,B) ≥ σ(A,D) or σ(C,D) ≥ σ(C,B),
i.e., A cannot be improved by permutations.

→ Gale-Shapley algorithm

Maximum Weight Graph Matching:

Find bijective alignment A such that, for all bijective alignments A′,∑
(A,≡,B,σ(A,B))∈A

σ(A,B) ≥
∑

(A,≡,B,σ(A,B))∈A′

σ(A,B),

i.e., Amaximizes the sum of all used similarity values.

→ Hungarian method
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3.2 Element-Level Matching
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Element-Level Techniques
Element-level techniques consider the entities of each ontology in isolation

from their relations with other entities:

• String-based (string similarity measures, normalization)

• Language-based (lexical analysis of phrases)

• Linguistic resources (dictionaries or thesauri, e.g., WordNet)

• Constraint-based (types of outgoing roles, number restrictions)
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String-Based Techniques
• Compute similarity of entities based on similarity of the IRIs or rdfs:labels
• First normalize: remove upper case, spaces, punctuation, (diacritics)
• More informative measures are harder to compute

Hamming distance: δ(v,w) := 1

n · |{i ∈ {1, . . . , n} | vi 6= wi}|, where we
assume that v = v1 . . . vn and w = w1 . . .wn.

Substring similarity: σ(v,w) := 2|u|
|v|+|w| , where u is the longest common

substring of v and w.

n-gram similarity: σ(v,w) := |n-gram(v)∩n-gram(w)|
|v|−n+1 , where n-gram(v) is the

set of n-letter substrings of v.

Levenshtein (edit) distance: minimal number of operations (insert,

delete, replace a letter) that produce w from v (divided by |v|).
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Bags of Words
Instead of single words, one can compare bags (multisets) of words, e.g.,

from rdfs:comment annotations or other texts associated with the entities.

A multiset over a domain D is a function M : D→ N.
M(d) is the multiplicity of an element d ∈ D in M.
The size of M is |M| :=

∑
d∈DM(d)

Here, D is the set of all words, and M is usually finite, i.e., |M| <∞.

Let V ,W be two multisets of words.

Jaccard measure: σ(V ,W) := |V∩W|
|V∪W|
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The TF-IDF Measure
Given a collection W1, . . . ,Wn of multisets (each represents one document):

tf(v,W) := W(v)
|W| term frequency

idf(v) := log n
|{Wi|v∈Wi}| inverse document frequency

tf-idf(v,W) := min{1, tf(v,W) · idf(v)}
σ(V ,W) := max{tf-idf(v,W), tf-idf(w, V) | v ∈ V ,w ∈ W}

• Term frequency: How often does the word v appear in the document W
(relative to the size of W)?

• Inverse document frequency: How rare is the word v?
– 0 if v appears in every Wi
– 1 if v appears in half of the Wi ’s
– 2 if v appears in a quarter of the Wi ’s

• The tf-idf value indicates how “central” v is to the meaning of the
document W .
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Language-Based Techniques
• Improve string-based (and other) techniques

• Normalize phrases, e.g.,Warm-Blooded Animal according to their
grammatical structure (not just bags of words)

• Linguistic analysis:
– Tokenization: Split phrase into words: Warm Blooded Animal
– Lemmatization: Use word stems: Warm Blood Animal
– Term extraction: Normalize word order based on lexical types (noun

phrases, verb phrases): Animal with Warm Blood→Warm BloodAnimal
– Stopword elimination: Remove non-functional words (e.g., with)

String- and language-based techniques are not accurate when dealing with

similar-looking words and synonyms:

σ("article", "particle") vs. σ("article", "news story") ?
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Linguistic Resources
String-based techniques are not designed to deal with

• synonyms
• hyponyms (more specific words)
• hypernyms (more general words)
• different languages
• abbreviations

(Multi-lingual) dictionaries or thesauri provide this information.

Different resources are appropriate for different ontologies; here we

discuss WordNet.

Caution: Using synonyms to find correspondences increases the

chance of false positives, in case the word senses do not match.

Word sense disambiguation tries to identify the word sense based on

the context.
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The Linguistic Resource WordNet
Uses of WordNet for matching:

• compute similarity based on synsets

• compute distance based on hypernym (superclass) structure

• compute distance based on gloss entries

• direct translation of semantic relations

We do not use WordNet as an ontology, but as a repository of

information about the (English) language.

Hypernymy in WordNet is not modeled as subsumption, but via the

transitive role hyponymOf.

Let Σ(v) be the set of all synsets containing a word v (via some word sense),
≤ be the “hypernym” relation between synsets, and
Γ(v) be the bag containing all words of all glosses of synsets in Σ(v).
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Synonyms and Hypernyms in WordNet
synonymy: σ(v,w) :=

{
1 if Σ(v) ∩ Σ(w) 6= ∅,
0 otherwise.

cosynonymy (Jaccard): σ(v,w) := |Σ(v)∩Σ(w)|
|Σ(v)∪Σ(w)|

Reznik semantic similarity:

σ(v,w) := max{− logπ(s) | s1 ∈ Σ(v), s2 ∈ Σ(w), s1 ≤ s, s2 ≤ s}

• s is a synset summarizing the information shared between v and w.
• π(s) is the probability of s, as determined by some external
measure, e.g., the term frequency in some text corpus.

• − logπ(s) is the information content (or entropy) of s
• has to be normalized
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Glosses in Wordnet
Gloss overlap (Jaccard): σ(v,w) := |Γ(v)∩Γ(w)|

|Γ(v)∪Γ(w)|

Derive v-correspondences from glosses:
“article (nonfictional prose forming an independent part of a

publication)”→ (Article,v,Prose, c)
c is derived from the similarity of the label of Article to the word
"article", and the label of Prose to "prose", e.g., via some aggregation
operator.
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Direct Translation of WordNet Relations
We can add a correspondence

• (A,≡,B, c) if (the labels of) A,B belong to the same synset.
• (A,v,B, c) if B is a hypernym of A.
• (A,⊥,B, c) if A,B are antonyms or siblings in the partonomy of
WordNet.

WordNet contains three part-of relations of types Member-Collection,

Material-Object, and Component-Object

We can directly form complex bridge axioms:

A v ∃memberOf.B
A v ∃substanceOf.B
A v ∃partOf.B
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Constraint-Based Techniques
• Similar to structure-level techniques, but only consider the “immediate
surrounding structure” of the entities, e.g., outgoing roles

• Mainly used as pre-processing step

• Can identify incompatible entities early

• Criteria:
– Number and range of (concrete) roles

– Cardinality restrictions: Let [n,m] and [n′,m′] be (tight) lower and
upper bounds on the cardinality of two roles, i.e.,

A vO1 ≥ n r.> A vO1 ≤mr.> B vO2 ≥ n′ r′.> B vO2 ≤m′ r′.>:

σ([n,m], [n′,m′]) := max{0, min(m,m′)−max(n,n′)
max(m,m′)−min(n,n′)} (“Jaccard similarity”)
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Summary on Element-level Matching
String-based and constraint-based techniques generate first

alignments of low quality.

Language-based techniques and linguistic resources can improve the

quality, but suffer from increased number of false positives, due to

multiple word senses or different translations.
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3.3 Structure-Level Matching
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Structure-Level Techniques
Structure-level techniques consider the relations of entities with other

entities:

• Upper ontologies (alignment supported by third ontology)

• Graph-based (similarity of connected entities)

• Semantic (similarity of interpretations, reasoning)

• Extensional (statistical properties of instances)
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Upper Ontologies
Use (existing) alignments to a third ontology, e.g., the UMLS Metathesaurus:

O1 O3 O2

A1 A2

A

Compute A as composition of A1 and A2, for example:

A1 A2  A

(A1,≡, A3, c1) (A3,v, A2, c2)  (A1,v, A2, c1 ⊗ c2)
(A1,v, A3, c1) (A3,⊥, A2, c2)  (A1,⊥, A2, c1 ⊗ c2)
(A1, G, A3, c1) (A3,v, A2, c2)  (A1, G, A2, c1 ⊗ c2)

... where ⊗ is an aggregation operator.
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Local Graph-Based Techniques
• Consider each ontology as a graph, where nodes are concept names
• Edges labels: v, existential/universal restrictions on roles, disjointness
• Find similarities between the two graphs G1,G2
Assuming that the roles have already been aligned, we can consider

one relation at a time.

We thus consider graphs G1,G2 with only one unlabeled edge relation.
We also assume that a preliminary similarity measure is available.

Similarity of entities induced by the similarity of the sets of

• direct successors
• reachable entities, i.e., direct and indirect descendants
• “ultimate” descendants
• direct/indirect predecessors

How to compute the similarity of sets?
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Similarity Aggregation for Sets
Given a similarity measure σ

′
for entities, compute a similarity measure for

sets of entities:

Single linkage: σ(M,N) := max
(A,B)∈M×N

σ
′(A,B)

Full linkage: σ(M,N) := min
(A,B)∈M×N

σ
′(A,B)

Average linkage: σ(M,N) := avg

(A,B)∈M×N
σ
′(A,B)

Hausdorff similarity:

σ(M,N) := min
{
min
A∈M

max
B∈N
σ
′(A,B), min

B∈N
max
A∈M
σ
′(A,B)

}

Logic-Based Ontology Engineering, Part 3: Ontology Integration

Chair of Automata Theory // © Stefan Borgwardt Slide 42 of 54



Global Graph-Based Techniques
For two directed graphs G1 = (V1, E1) and G2 = (V2, E2), a common
subgraph is a triple (W1,W2, f ), where W1 ⊆ V1, W2 ⊆ V2, and
f : W1 → W2 is an isomorphism between the subgraphs induced by W1
and W2, respectively.
A maximum common subgraph is a common subgraph, where

• the sets W1,W2 are maximal w.r.t. ⊆, and
• avg

v1∈W1
σ
′(v1, f (v1)) ≥ τ

• The isomorphism f can be interpreted as a bijective alignment between
(parts of) O1 and O2.

• Similar to maximum weight graph matching (see Section 3.1), but also
considers role connections.

• Different maximum common subgraphs may not be compatible.
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Semantic Techniques
Use semantics to evaluate similarity:

A ≡O1 ∃r.B C ≡O2 ∃s.D σ
′(B,D) = 0.8 σ

′(r, s) = 0.9
→ σ(A, C) = σ(∃r.B,∃s.D) = ?

Again, we assume that a preliminary similarity measure σ
′
on concept and

role names is available.

Let CC(O) be the set of (complex) concepts that can be formulated
over the vocabulary of O, i.e., C(O), R(O), and I(O).
A concept similarity measure σ is a similarity measure between

CC(O1) and CC(O2).

σ is equivalence invariant if for all C,D ∈ CC(O1) and E, F ∈ CC(O2)
with C ≡O1 D and E ≡O2 F , we have σ(C, E) = σ(D, E) and
σ(C, E) = σ(C, F).
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A Simple Concept Similarity Measure
In general, many different concepts can be equivalent.

We consider a logic where any concept can be reduced to a unique

equivalent concept in reduced form, such that any two equivalent

concepts have the same reduced form.

When designing σ(∃r.B,∃s.D) as a function depending on σ′(B,D), then σ′
must already be equivalence invariant: If B ≡ C, then σ(∃r.B,∃s.D) should be
equal to σ(∃r.C,∃s.D).

We use σ itself to define the similarity of (some) concept names.

Cyclic equivalences like B ≡ ∃r.B and D ≡ ∃s.Dmean that σ(∃r.B,∃s.D)
depends on σ(B,D) = σ(∃r.B,∃s.D).

We allow only acyclic axioms.
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Acyclic TBoxes in ELH
EL is the fragment of ALC where concepts can be built only from
concept names, >, u, and ∃.
ELH extends EL by allowing (non-complex) role inclusions in addition
to GCIs and assertions.

An acyclic TBox T is a set of concept definitions A ≡ CA such that
• each concept name A has at most one definition CA in T , and
• the “depends on” relation between concept names is acyclic:

A depends on B (w.r.t. T ) if B occurs in the definition CA of A in T .

Concept names with definitions in T are called defined, all others are
called primitive.
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Concept Expansion
Lemma (Expansion)

Let O = (∅, T ,R) be an ELH ontology with an acyclic TBox T .
Every ELH concept C can be expanded into a concept Ĉ ≡O C that
does not contain defined concept names.

For two ELH concepts C,D, we have C vO D iff Ĉ v(∅,∅,R) D̂.

Proof: (Baader, Lutz, Horrocks, Sattler, 2017)

• The ABox is irrelevant for checking subsumptions (Exercise).
• We can also assume that the TBox is empty, which leaves only the RBox.
• We can assume that the RBox contains no cycles between role names:

Equivalent roles r ≡R s are replaced by a single role.

r vR s holds iff s can be reached from r by a sequence of role
inclusions inR. What about C vR D?

Logic-Based Ontology Engineering, Part 3: Ontology Integration

Chair of Automata Theory // © Stefan Borgwardt Slide 47 of 54



The Structure of ELH Concepts
We say that C and D are equal modulo ACU (C =ACU D) if D can be
obtained from C by reordering concepts inside conjunctions and
removing/adding > from/to conjunctions.
For example, A u B u C =ACU C u B u A.
ACU stands for associativity and commutativity of u, and the unit
property w.r.t. >.

An atom is a concept name (except >) or an existential restriction.
Every ELH concept C is equal (modulo ACU) to a concept of the form
C1 u · · · u Cn, where C1, . . . ,Cn are atoms.
C1, . . . ,Cn are the top-level atoms of C; we set At(C) := {C1, . . . ,Cn}.
The case C = > can be seen as the empty conjunction, with At(>) = ∅.
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Structural Subsumption
Let C,D be ELH concepts andR be an RBox.
C is structurally subsumed by D (written C vsR D) w.r.t.R if, for every
D′ ∈ At(D) there is a C′ ∈ At(C) such that
• C′,D′ ∈ C and C′ = D′, or
• C′ = ∃r.C′′, D′ = ∃s.D′′, r vR s, and C′′ vsR D′′.

This is well-defined, because the role depth is decreased in the recursion.

Lemma (Structural Subsumption)

Let C,D be ELH concepts andR be an RBox. Then C vR D iff C vsR D.

Proof: Blackboard.
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Reduced Form of ELH Concepts
Given an RBoxR, every ELH concept can be reduced (w.r.t.R) by
exhaustively applying the following rules to all subconcepts (modulo AC):

C u > −→ C
C u C −→ C

∃r.C u ∃s.D −→ ∃r.C if r vR s and C vR D

Lemma (Reduced Form)

Let C,D be ELH concepts and C′,D′ their reduced forms.
Then C ≡R D iff C′ =AC D′.

Proof: Blackboard.

• A concept C and its reduced form C′ are equivalent w.r.t.R.
• The reduced form of a concept C is unique (modulo AC).
• We can now assume concepts to be in reduced form.
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A Concept Similarity Measure for ELH
Given an RBoxR, two expanded ELH concepts C,D in reduced form,
and β ∈ [0, 1], the directed similarity of C and D is

σd(C,D) :=



min
D′∈At(D)

max
C′∈At(C)

σd(C′,D′) if |At(C)| > 1 or |At(D)| > 1

1 if At(D) = ∅
σ
′(C,D) if C,D ∈ C
σ
′(r, s)

(
β+ (1− β)σd(E, F)

)
if C = ∃r.E and D = ∃s.F

0 otherwise

• σd(C,D)measures “how much” C is subsumed by D.
• If D = >, then At(D) = ∅, which yields σd(C,D) = 1.
• σ′ is used to compare role names and primitive concept names.

• We could use other aggregation operators instead of min and max.
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A Symmetric Concept Similarity Measure for ELH
The undirected similarity of C and D is

σu(C,D) := σd(C,D)⊗ σd(D, C),
where ⊗ is a commutative aggregation operator.

Similarity of arbitrary concept names A ∈ C(O1) and B ∈ C(O2), where
O1 = (∅, T1,R1), O2 = (∅, T2,R2) are ELH ontologies with acyclic TBoxes:

• Expand A using T1 to Â, and expand B using T2 to B̂.
• Reduce Â usingR1 to A′, and reduce B̂ usingR2 to B′.
• Evaluate σu(A,B) := σu(A′,B′).

Lemma (Undirected Concept Similarity)

σu is symmetric and equivalence invariant.

Proof: Blackboard.
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Extensional Techniques
• Use instances to find correspondences between classes

If an alignment AI between individual names is available, one can
compare sets of instances IA := IA(O1 ∪ AI) and IB := IB(O2 ∪ AI),
where A ∈ C(O1) and B ∈ C(O2).

• (A,≡,B, c) if IA = IB or c = |IA∩IB|
|IA∪IB| ≥ τ ( Jaccard)

• (A,v,B, c) if IA ⊆ IB or c = |IA∩IB|
|IA| ≥ τ

• (A,w,B, c) if IA ⊇ IB or c = |IA∩IB|
|IB| ≥ τ

• (A,⊥,B, c) if IA ∩ IB = ∅ or c = 1− |IA∩IB||IA∪IB| ≥ τ
• (A, G,B, c) otherwise

If only a similarity measure σ
′
on individual names is available, one

can extend it to a set similarity between IA(O1) and IB(O2).
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Summary
• Most implementations combine several element- and structure-level
techniques.

• None of the presented techniques are perfect, all require manual
supervision.

• Interactive systems allow to correct alignments while they are

constructed.

• Systems are evaluated every year at the Ontology Matching workshop
against human-created alignments.

http://oaei.ontologymatching.org/

• What happens if created alignments are inconsistent or incoherent?
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