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Introduction
We discuss automated techniques for supporting ontology engineers with:

Debugging:

• Determine the axioms responsible for an error, e.g., inconsistency

• Suggest ways of fixing the error

• Repair alignments, make them consistent and coherent

Modularization:

• Split the ontology into modules that have smaller vocabularies

• Improve performance of reasoning when restricted to a module

• Reuse modules in other ontologies

• Compute alignments for modules first, combine them later
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4.1 Debugging
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Finding Errors
Inconsistency and incoherence of an ontology O are easy to detect:
Check whether O entails > v ⊥ or A v ⊥ for any concept name A ∈ C.

Other errors are less obvious:

An old version of SNOMEDCT (350,000+ axioms) entailedAmputationOfFinger v AmputationOfHand.
Such errors are often found while using the ontology.

What to do once an error is found? Look at all 350,000+ axioms?
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Justifications
We want to find out the axioms responsible for an (erroneous) entailment:

Given an ontology O and an axiom α with O |= α, a justification for α
in O is a subset J ⊆ O such that
• J |= α and
• J is a minimal set with this property, i.e., for every J′ ⊂ J it holds
that J′ 6|= α.

We denote by JustO(α) the set of all justifications for α in O.

{A ≡ B u ∃r.C, B v C, ∃r.> v D, D v ¬C, A v ¬D, C u ∃r−.B v ⊥}
has two justifications for A v ⊥:
{A ≡ B u ∃r.C, ∃r.> v D, A v ¬D }
{A ≡ B u ∃r.C, C u ∃r−.B v ⊥}

Each justification provides an explanation for the error α.
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Justifications for Incoherence
Given an incoherent ontology O, a justification for incoherence of O is
a minimal subset J ⊆ O that is incoherent.
We denote by JustO(⊥) the set of all justifications for incoherence
of O.

Each J ∈ JustO(⊥) explains the unsatisfiability of at least one A ∈ C:
JustO(⊥) ⊆

⋃
O|=Av⊥

JustO(A v ⊥)

In general, not every justification for A v ⊥ is a justification for incoherence:

O = {A v B, B v ⊥}
JustO(A v ⊥) = {{A v B, B v ⊥}}

JustO(⊥) = {{B v ⊥}}

Algorithms to compute JustO(A v ⊥) can often be easily adapted to
compute JustO(⊥).
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Diagnoses
We also want to find out which axioms have to be removed to fix the error:

Given an ontology O and an axiom α with O |= α, a diagnosis for α
in O is a subsetD ⊆ O such that
• O \D 6|= α and
• D is a minimal set with this property, i.e., for everyD′ ⊂ D it holds
that O \D′ |= α.

We denote by DiagO(α) the set of all diagnoses for α in O.

{A ≡ B u ∃r.C, B v C, ∃r.> v D, D v ¬C, A v ¬D, C u ∃r−.B v ⊥}
has three diagnoses for A v ⊥:
{A ≡ B u ∃r.C }
{ ∃r.> v D, C u ∃r−.B v ⊥}
{ A v ¬D, C u ∃r−.B v ⊥}
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Justifications vs. Diagnoses
There is a close connection between justifications and diagnoses: To fix the

error, we need to remove at least one axiom from every justification.

{A ≡ B u ∃r.C, B v C, ∃r.> v D, D v ¬C, A v ¬D, C u ∃r−.B v ⊥}

Justifications:

{A ≡ B u ∃r.C, ∃r.> v D, A v ¬D }
{A ≡ B u ∃r.C, C u ∃r−.B v ⊥}

Diagnoses:

{A ≡ B u ∃r.C }
{ ∃r.> v D, C u ∃r−.B v ⊥}
{ A v ¬D, C u ∃r−.B v ⊥}
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Minimal Hitting Sets
Given a finite universe U and a collection of subsets S = {S1, . . . , Sn}
of U, a hitting set for S in U is a subset H ⊆ U such that H ∩ Si 6= ∅ for
all i ∈ {1, . . . , n}.
A hitting set is minimal if no proper subset of it is a hitting set.

We denote by MHSU(S) the set of all minimal hitting sets for S in U.

For us, the universe is O and S is the set of all justifications.

Lemma (Minimal Hitting Sets of Justifications)

Given an ontology O and an axiom α with O |= α, we have
DiagO(α) = MHSO(JustO(α)).

Proof: Blackboard.

Exercise: Prove that JustO(α) = MHSO(DiagO(α)).
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Hitting Set Trees
To efficiently compute MHSO(JustO(α)), we construct a hitting set tree (HST):

JustO(α) =
{{A ≡ B u ∃r.C, ∃r.> v D, A v ¬D}, {A ≡ B u ∃r.C, C u ∃r−.B v ⊥}}

{A ≡ B u ∃r.C, C u ∃r−.B v ⊥}

X

A ≡ B u ∃r.C

{A ≡ B u ∃r.C, ∃r.> v D, A v ¬D}

C u ∃r−.B v ⊥

×

A ≡ B u ∃r.C

X

∃r.> v D

X

A v ¬D
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Hitting Set Trees
To efficiently compute MHSU(S), we construct a hitting set tree (HST):
• Nodes of the tree are labeled with S ∈ S , edges are labeled with e ∈ U.
• Given a node v, the set of edge labels on the path from the root node to v
is denoted by H(v) ⊆ U.

• The root node is labeled with an arbitrary S ∈ S.
• Every node labeled with some S ∈ S has an outgoing edge labeled with e,
for every e ∈ S.

• Every new node v has a label S ∈ S such that S ∩ H(v) = ∅.
If there is no such S, then H(v) is a hitting set for S in U.

Optimizations:

• If the tree already contains a node label S that is disjoint with the current
H(v), then reuse S as the label for v. This avoids unnecessary access to S.

• Explore the tree breadth-first to find smaller hitting sets first.
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The Hitting Set Tree Algorithm
Algorithm (HSTAlgorithm (Reiter, 1987))
Input: Universe U, collection of sets S
Output: The set MHSU(S)
• Initialize a tree T with a single, unlabeled root node
• While there is an unlabeled node v in T :
– Choose such a node v of minimal depth in T
– If there is a node w in T labeled withX such that H(w) ⊆ H(v),
then label v with ×

– Otherwise, if there is a set S ∈ S such that S ∩ H(v) = ∅, then
– Label v with S
– For each e ∈ S, create a successor w of v in T and label the
edge from v to w with e

– Otherwise, label v withX
• Return the set of all sets H(v) for which v is labeled withX
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Correctness of the HST Algorithm
The algorithm is nondeterministic: For each node x, there may be
several possible labels S ∈ S with S ∩ H(x) = ∅.
This is “don’t care” nondeterminism: We can choose any such S.

Lemma (Correctness of HSTAlgorithm)
Given a set U, and a collection of its subsets S , we have

HSTAlgorithm(U,S) = MHSU(S).

Proof: Blackboard.

We can use this algorithm to compute DiagO(α) from JustO(α)
(or JustO(α) from DiagO(α)).
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Computing Justifications
How can we compute JustO(α) in the first place?

Black-box algorithms: Use a reasoner for deciding O |= α as a “black
box”, and construct justifications by a series of calls to the reasoner.

Such a black-box approach is built into Protégé, and can be used with any

reasoner.

Glass-box algorithms: Extend an existing reasoning algorithm for

checkingO |= α to “trace” the axioms fromO that are used to derive α.

This is generally faster, but requires deep knowledge of the reasoning

algorithm, and has to be implemented for each reasoner separately.
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Black-Box Algorithms
A naive black-box algorithm for computing JustO(α):
Check for all subsets J ⊆ O whether they entail the error α (using the
black-box reasoner), and then remove the non-minimal ones.

This algorithm needs exponentially many calls to the reasoner.

Can we do better?

No. In general, there are exponentially many justifications, so verifying all of

them already takes exponential time:

{A v B1 u C1, B1 v B2 u C2, . . . , Bn−1 v Bn u Cn, Bn v D
C1 v B2 u C2, . . . , Cn−1 v Bn u Cn, Cn v D}

has 2
n
justifications for A v D.

Note: Justifications are sensitive to the syntactical shape of the axioms! The

following equivalent ontology has only one justification for A v D:

{A v B1uC1, B1 t C1 v B2uC2, . . . , Bn−1 t Cn−1 v BnuCn, Bn t Cn v D}
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A Black-Box Algorithm for Single Justifications (I)
“Binary search” for a justification for α in O: SingleJustification(∅,O,α)
Algorithm (SingleJustification)
Input: Ontologies O1,O2, axiom α such that O1 6|= α and O1 ∪ O2 |= α
Output: A minimal subset O′

2
⊆ O2 such that in O1 ∪ O′2 |= α

• If |O2| = 1, then return O2
• Split O2 into Ol and Or

• If O1 ∪ Ox |= α for x ∈ {l, r}, return SingleJustification(O1,Ox,α)

• O′l := SingleJustification(O1 ∪ Or,Ol,α)

• O′r := SingleJustification(O1 ∪ O′l ,Or,α)

• Return O′l ∪ O′r

(Horridge, Parsia, Sattler, 2009)
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A Black-Box Algorithm for Single Justifications (II)
• The algorithm recursively splits O into two halves Ol,Or , and tries to find
a justification in each half separately.

• If none of the halves entails α, it first finds a minimal subset of Ol that,
together with Or , still entails α, and afterwards minimizes Or.

• The intuition is that justifications are usually much smaller than the
whole ontology. So usually one half of the ontology stills contain a whole

justification, and we can discard the other half.

Lemma (Correctness of SingleJustification)
Given an ontology O and an axiom α with O |= α, we have

SingleJustification(∅,O,α) ∈ JustO(α).
Proof: Blackboard.
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A Black-Box Algorithm for All Justifications (I)
Computing a single justification for α is not enough for repairing the

error, because there may be other causes for the entailment of α.

An efficient algorithm to compute all justifications in JustO(α) based onHSTAlgorithm (Horridge, Parsia, Sattler, 2009):
• To find all hitting sets (diagnoses), it has to enumerate all justifications
• Needs method to compute a single justification for a subontology of O
– Either black-box or glass-box

– Optimizations reduce the number of calls to this subprocedure

We instantiate the general HSTAlgorithm for justifications and diagnoses:
• Nodes v are now labeled with justifications J
• Edges are labeled with axioms α′

• D(v) denotes the set of all edge labels on the path from the root to v
• We are not interested in diagnoses, but in justifications
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A Black-Box Algorithm for All Justifications (II)
Algorithm (AllJustifications)
Input: Ontology O, axiom α such that O |= α
Output: The set JustO(α)

• Initialize a tree T with a single, unlabeled root node
• While there is an unlabeled node v in T :
– Choose such a node v of minimal depth in T
– If there is a node w in T labeled withX such thatD(w) ⊆ D(v),
then label v with ×

– Otherwise, if O \D(v) |= α, then
– Label v with SingleJustification(∅,O \D(v),α)
– For each axiom α

′ ∈ J, create a successor w of v in T and label
the edge from v to w with α′

– Otherwise, label v withX
• Return the set of all node labels in T (exceptX and ×)
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A Black-Box Algorithm for All Justifications (III)
Lemma (Correctness of AllJustifications)
Given an ontology O and an axiom α with O |= α, we have

AllJustifications(O,α) = JustO(α).
Proof: Blackboard.

• If the tree already contains a justification J withD(v) ∩ J = ∅, it can be
reused as the label for v

• SingleJustification is then only called once for each justification
J ∈ JustO(α)

• A plugin that implements AllJustifications is included in Protégé
(“Explanation Workbench”)
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A Glass-Box Approach: Pinpointing
Glass-box approaches extend existing reasoning algorithms to “trace”

the axioms from O that are used to derive α.

One class of techniques produces so-called pinpointing formulas:

formulas in propositional logic that use propositional variables to represent

the axioms in O, and encode which combinations of axioms entail α.

A labeling function lab for O assigns each axiom β ∈ O a unique label
lab(β). The set of all labels of axioms in O is lab(O).

{A ≡ B u ∃r.C, B v C, ∃r.> v D, D v ¬C, A v ¬D, C u ∃r−.B v ⊥}7→ 7→ 7→ 7→ 7→ 7→

{ p1, p2, p3, p4, p5, p6 }
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Monotone Boolean Formulas
A monotone Boolean formula φ over lab(O) is a propositional formula
that uses the labels lab(O) as propositional variables, and uses only
the connectives ∧, ∨, and true (no negation).

A monotone Boolean formula over {p1, . . . , p6}: p1 ∧
(
(p3 ∧ p5) ∨ p6

)
A valuation over lab(O) is a subset V ⊆ lab(O).
It satisfies φ if φ evaluates to true after replacing all variables in V
by true, and replacing all variables in lab(O) \ V by false.
A minimal satisfying valuation of φ is a valuation V that satisfies φ, and
for which there exists no valuation V ′ ⊂ V that also satisfies φ.

The valuation {p1, p3, p5, p6} satisfies p1 ∧
(
(p3 ∧ p5) ∨ p6

)
.

{p1, p6} is a minimal satisfying valuation of p1 ∧
(
(p3 ∧ p5) ∨ p6

)
.
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Pinpointing Formulas
Given two monotone Boolean formulas φ,ψ over lab(O), we say that
φ implies ψ if all valuations over lab(O) that satisfy φ also satisfy ψ.

Valuations correspond to subontologies of O:

Given a valuation V over lab(O), we define OV := {β ∈ O | lab(β) ∈ V}.
We say that OV is induced by V .

We have Olab(O′) = O′ for all O′ ⊆ O.

Given an axiom α with O |= α, the monotone Boolean formula φ over
lab(O) is a pinpointing formula for α in O if, for all valuations
V ⊆ lab(O), it holds that V satisfies φ iff OV |= α.
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Example: Pinpointing Formula
Recall O and lab(O):

{A ≡ B u ∃r.C, B v C, ∃r.> v D, D v ¬C, A v ¬D, C u ∃r−.B v ⊥}7→ 7→ 7→ 7→ 7→ 7→

{ p1, p2, p3, p4, p5, p6 }

p1 ∧
(
(p3 ∧ p5) ∨ p6

)
is a pinpointing formula for A v ⊥ in O with minimal satisfying valuations

V1 = {p1, p3, p5} and V2 = {p1, p6}.

These valuations induce the two justifications

OV1 = {A ≡ B u ∃r.C, ∃r.> v D, A v ¬D} and
OV2 = {A ≡ B u ∃r.C, C u ∃r−.B v ⊥}.
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From Pinpointing Formulas to Justifications
Recall:

Given an axiom α with O |= α, the monotone Boolean formula φ over
lab(O) is a pinpointing formula for α in O if, for all valuations
V ⊆ lab(O), it holds that V satisfies φ iff OV |= α.

Lemma (Pinpointing Formulas)

If φ is a pinpointing formula for α in O, then the justifications for α
in O are exactly the subontologies of O that are induced by the
minimal satisfying valuations of φ.

Proof: Exercise.
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Pinpointing Formulas in ELH
We now extend a reasoning algorithm for ELH to compute all justifications
via the pinpointing formula.

(Baader, Peñaloza, Suntisrivaraporn, 2007)

To simplify the description, without loss of generality we

• consider as consequences only subsumptions A v B between concept
names A,B ∈ C

• assume that the ABox is empty
• assume that the TBox is in normal form:

An ELH TBox is in normal form if all its GCIs have one of the forms
A1 u · · · u An v B A v ∃r.B ∃r.A v B

where n ≥ 1 and A, A1, . . . , An,B ∈ C.

In the following, we consider an ELH ontology O = (∅, T ,R), where T
is in normal form.
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A Classification Algorithm for ELH
We discuss the reasoning algorithm for ELH, in preparation to extend
it to compute pinpointing formulas.

The classification algorithm for ELH exhaustively applies the following rules
to complete the TBox, where A,B, C,D, A1, . . . , An ∈ C(O) and r, s ∈ R(O):

(CR1)A v A (CR2)A v >

A v A1 . . . A v An A1 u · · · u An v B
(CR3)A v B

A v ∃r.B B v C ∃r.C v D
(CR4)A v D

A v ∃r.B r v s
(CR5)A v ∃s.B

If the premises are in O and the conclusion is not already in O,
then add the conclusion to O.
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A Classification Algorithm for ELH
Lemma (ELH classification algorithm)
The classification algorithm for ELH terminates in time polynomial in
the size of O. For all A,B ∈ C(O), the resulting ontology O′ contains
the GCI A v B iff O |= A v B.

Proof: (Baader, Peñaloza, Suntisrivaraporn, 2007)

We extend this algorithm by labeling all axioms with monotone

Boolean formulas over lab(O), with the goal of computing pinpointing
formulas for all GCIs A v B between concept names A,B ∈ C(O).

We denote a labeled axiom by α
φ
, where α is an axiom and φ is a

monotone Boolean formula over lab(O).

Initially, the labeled ontology O` contains all labeled axioms β
lab(β)

,

where β ∈ O.
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The Pinpointing Algorithm for ELH
(CR1)

(A v A)true
(CR2)

(A v >)true

(A v A1)φ1 . . . (A v An)φn (A1 u · · · u An v B)φ
(CR3)

(A v B)φ1∧···∧φn∧φ

(A v ∃r.B)φ1 (B v C)φ2 (∃r.C v D)φ3
(CR4)

(A v D)φ1∧φ2∧φ3

(A v ∃r.B)φ1 (r v s)φ2
(CR5)

(A v ∃s.B)φ1∧φ2

For a new conclusion α
φ
:

• if O` does not already contain a labeled axiom α
ψ
,

then add α
φ
to O`

• if O` already contains α
ψ
and φ does not imply ψ,

then replace α
ψ
in O` with α

ψ∨φ
.
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Example of Pinpointing for ELH
Ontology O:

A v ∃r.A A v Y ∃r.Y v B Y v B

Labeled ontology O`:

(A v ∃r.A)p1 (A v Y)p2 (∃r.Y v B)p3 (Y v B)p4

Rule applications:

(A v Y)p2 (Y v B)p4
(CR3)

(A v B)p2∧p4

(A v ∃r.A)p1 (A v Y)p2 (∃r.Y v B)p3
(CR4)

(A v B)(p2∧p4)∨(p1∧p2∧p3)

(p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3) is a pinpointing formula for A v B in O.
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Correctness of Pinpointing for ELH
Lemma (ELH Pinpointing Algorithm)
The pinpointing algorithm for ELH terminates in time exponential in
the size of O.
For all A,B ∈ C(O), the resulting labeled ontology O′` contains a
labeled GCI (A v B)φ iff O |= A v B.
Moreover, if O |= A v B, then the label of A v B in O′` is a pinpointing
formula for A v B in O.

Proof: Blackboard.
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Dealing with Normalization (I)
The ELH pinpointing algorithm can only deal with TBoxes in normal
form.

If the TBox is not in normal form, it can be normalized (modulo AC):

Ĉ v D̂ −→ Ĉ v A, A v D̂

B v C1 u · · · u Cn −→ B v C1, . . . , B v Cn
B1 u · · · u Bn u Ĉ v D −→ Ĉ v A, B1 u · · · u Bn u A v D

B v ∃r.Ĉ −→ B v ∃r.A, A v Ĉ
∃r.Ĉ v D −→ Ĉ v A, ∃r.A v D

where Ĉ, D̂ are not concept names, and A is a fresh concept name.

In the following, let O be an ontology, and O′ be obtained from O by
exhaustive application of the normalization rules.
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Dealing with Normalization (II)
Lemma (Correctness of Normalization)

For all A,B ∈ C(O), we have O |= A v B iff O′ |= A v B.

Proof: (Baader, Lutz, Horrocks, Sattler, 2017)

A pinpointing formula φ
′
over O′ refers to axioms that are not in O,

so φ
′
cannot directly be used to find justifications in O!

Remedy: Find out which original axioms produced each normalized axiom:

The sources of β ∈ O′ are all axioms of O from which β was obtained.

O = {A v B1 u B2, A v B2 u B3, A v C}
O′ = {A v B1, A v B2, A v B3, A v C}
The sources of A v B2 are A v B1 u B2 and A v B2 u B3.
The only source of A v C is A v C itself.
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Dealing with Normalization (III)
Lemma (Pinpointing and Normalization)

Let A,B ∈ C(O), and φ′ be a pinpointing formula for A v B in O′.
Let φ be obtained from φ

′
by replacing each lab(β), β ∈ O′, by

lab(α1) ∨ · · · ∨ lab(αn), where α1, . . . ,αn are all sources of β in O.
Then φ is a pinpointing formula for A v B in O.

Proof: Blackboard.
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Complexity of Computing all Justifications
Computing all justifications still requires exponential time:

{A v B1 u C1, B1 v B2 u C2, . . . , Bn−1 v Bn u Cn, Bn v D
C1 v B2 u C2, . . . , Cn−1 v Bn u Cn, Cn v D}

Exponentially many justifications

= exponentially many minimal valuations of a pinpointing formula

An algorithm runs in output polynomial time if its runtime is bounded

by a polynomial function in the size of the input and the output.

Problem (EnumerateAllJustifications)
Input: Ontology O, axiom α with O |= α
Output: The set JustO(α)

Is there an output polynomial algorithm for EnumerateAllJustifications?
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Enumerating vs. Checking Justifications
Problem (CheckJustification)
Input: Ontology O, axiom α with O |= α, set J ⊆ 2O

Output: “yes” if J = JustO(α), otherwise “no”

Lemma

If EnumerateAllJustifications can be solved in output polynomial
time, then CheckJustification can be decided in polynomial time.

Proof: Blackboard.

CheckJustification cannot be decided in polynomial time, unless P = NP:

Lemma

CheckJustification is CO-NP-hard in ELH.
Proof: Blackboard. (Peñaloza, Sertkaya, 2017)

Logic-Based Ontology Engineering, Part 4: Ontology Maintenance

Chair of Automata Theory // © Stefan Borgwardt Slide 35 of 67



Final Remarks on Justifications
• EL2MUS: Implementation for ELH via encoding into SAT
• Justifications are used in non-monotonic reasoning and for measuring
the “degree of inconsistency” of ontologies.

• Justifications may not be enough to explain the error, even to DL experts:

{Cow v Mammal, Mammal v Animal,Cow ≡ ∀eats.Grass, Dom(eats) v Animal} |= Grass v Animal
because it entails ¬∃eats.> v Cow, ∃eats.> v Animal, and > ≡ Animal.
To explain the error, it needs to be further explained why the axiom

follows from the justification.

• Removing Cow ≡ ∀eats.Grass to repair the error may be too much:
We could instead weaken the first axiom to Cow v ∀eats.Grass, or
replace it with Cow ≡ Mammal u ∀eats.Grass.
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4.2 Modularization
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Reuse of Ontologies
We want to develop a new ontology

P = {LogicCourse ≡ Course u ∃focus.Logic, ∃focus.> v Course,
DLSeminar ≡ Seminar u ∃focus.DL, Seminar v Course}

and reuse the knowledge from an existing ontology

O = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,
FOL ≡ Language u ∃semantics.FOStructure, FOL v Logic,
Language u ∃quantifier.Forall v FOL,
OWL v W3CStandard u ∃basedOn.DL}

but are interested only in the characterization of Logic and DL from O, e.g.,
O |= DL v Logic.
For convenience, we only consider ALC in this section.
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Modular Reuse of Ontologies
P = {LogicCourse ≡ Course u ∃focus.Logic, ∃focus.> v Course,

DLSeminar ≡ Seminar u ∃focus.DL, Seminar v Course}
O = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,

FOL ≡ Language u ∃semantics.FOStructure, FOL v Logic,
Language u ∃quantifier.Forall v FOL,
OWL v W3CStandard u ∃basedOn.DL}

We consider only a subvocabulary Σ ⊆ C(O)∪ R(O)∪ I(O), e.g., {DL, Logic}.
We want to use the relevant partM of O together with new axioms P :
• M completely describes the names in Σ (it is a Σ-module of O).
• P does not affect the semantics of the names in Σ (it is Σ-safe).

(Konev, Lutz, Walther, Wolter, 2009)

(Cuenca Grau, Horrocks, Kazakov, Sattler, 2009)
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Conservative Extensions
Modules and safety are defined based on conservative extensions.

A signature is a subset of C ∪ R ∪ I that contains > and ⊥.
For an ontology O or axiom α, sig(O)/sig(α) is the signature of O/α, i.e., the
set of concept, role, and individual names occurring in O/α.
For two interpretations I,J , we write I|Σ = J |Σ ifΔI = ΔJ and XI = XJ
for all X ∈ Σ, i.e., I and J agree on the interpretation of the names in Σ.

Let O1 ⊆ O2 be two ontologies and Σ be a signature.
Then O2 is a Σ-conservative extension (Σ-CE) of O1 if,
for every model I ofO1, there is a model J ofO2 such that I|Σ = J |Σ.

The axioms in O2 \ O1 do not affect the semantics of the names from Σ.

Note that O1 can contain more names than those in Σ, and their
semantics is allowed to change.

Logic-Based Ontology Engineering, Part 4: Ontology Maintenance

Chair of Automata Theory // © Stefan Borgwardt Slide 39 of 67



Safety and Modules
Let O1 ⊆ O2 be two ontologies and Σ be a signature.
Then O2 is a Σ-conservative extension (Σ-CE) of O1 if,
for every model I ofO1, there is a model J ofO2 such that I|Σ = J |Σ.

Suppose we want to import the knowledge about Σ from O into P .

P is Σ-safe if,
for all ontologies O with sig(P) ∩ sig(O) ⊆ Σ,
P ∪ O is a Σ-CE of O.

P does not affect the semantics of the names in Σ given by O.

A subsetM⊆ O is a Σ-module of O if,
for all ontologies P with sig(P) ∩ sig(O) ⊆ Σ,
P ∪ O is a Σ-CE of P ∪M.

When we are only interested in Σ, we can importM instead of O.
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Robustness under Replacement
Before we look at some examples, we first simplify the definitions of safety

and modules, by using the following property of Σ-CEs:

Lemma (Replacement)

Let O,O1,O2 be three ontologies and Σ a signature with
sig(O) ∩ sig(O1 ∪ O2) ⊆ Σ.
If O2 is a Σ-CE of O1, then O ∪O2 is a Σ-CE of O ∪O1.

Proof: Blackboard.

Lemma (Characterization of Safety)

P is Σ-safe iff P is a Σ-CE of ∅.

Lemma (Characterization of Modules)

M is a Σ-module of O iff O is a Σ-CE ofM.

Proof: Exercise.
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Example: Safety
P = {LogicCourse ≡ Course u ∃focus.Logic, ∃focus.> v Course,

DLSeminar ≡ Seminar u ∃focus.DL, Seminar v Course}
Is P Σ-safe for Σ = {>,⊥,DL, Logic}? Yes! (see blackboard)
P2 = {LogicCourse ≡ Course u ∃focus.Logic, ∃focus.> v Course,DLSeminar ≡ Seminar u ∃focus.DL, Seminar v Course,

Course u (Logic u DL) v ⊥,
∀focus.DL v ∃focus.Logic}

is not Σ-safe (see blackboard).
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Example: Modules
O = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,

FOL ≡ Language u ∃semantics.FOStructure, FOL v Logic,
Language u ∃quantifier.Forall v FOL,
OWL v W3CStandard u ∃basedOn.DL}

What are the (minimal) Σ-modules of O for Σ = {DL, Logic}?
All justifications of DL v Logic! (see blackboard)
M1 = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,FOL ≡ Language u ∃semantics.FOStructure, FOL v Logic}
M2 = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,Language u ∃quantifier.Forall v FOL, FOL v Logic}
Σ-modules for O are related to justifications for all possible axioms
over Σ.
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Example: “Depleting”Modules
The remaining axioms in

O \M1 = {Language u ∃quantifier.Forall v FOL,OWL v W3CStandard u ∃basedOn.DL}
can still influence the interpretation of sig(M1) =
{DL, Logic, Language, FOStructure, Forall, FOL, semantics,quantifier}!
To avoid this, we consider so-called depleting modules of O:

M3 = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,FOL ≡ Language u ∃semantics.FOStructure, FOL v Logic,
Language u ∃quantifier.Forall v FOL}

M3 contains all axioms relevant for its signature.

O \M3 = {OWL v W3CStandard u ∃basedOn.DL} is
[Σ ∪ sig(M3)]-safe.
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Properties of Σ-Conservative Extensions
Before we formally define depleting modules, we introduce some important

properties of Σ-CEs:

Lemma (Monotonicity)

Let O2 be a Σ-CE of O1.
a) If Σ

′ ⊆ Σ, then O2 is a Σ′-CE of O1.
b) If O1 ⊆ O′2 ⊆ O2, then O′2 is a Σ-CE of O1.

Lemma (Transitivity)

If O2 is a Σ-CE of O1 and O3 is a Σ-CE of O2, then O3 is a Σ-CE of O1.

Lemma (Reflexivity)

For every ontology O and signature Σ, O is a Σ-CE of itself.

Proof: Exercise.
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Depleting Modules
M is a depleting Σ-module of O if O \M is [Σ ∪ sig(M)]-safe.

Lemma (Depleting Modules are Modules)

IfM is a depleting Σ-module of O, thenM is a Σ-module of O.

Proof: Blackboard.

Lemma (Depleting Modules Contain All Minimal Modules)

Every depleting Σ-module of O contains all minimal Σ-modules of O.

Proof: Blackboard.

• A (minimal) depleting moduleM can be very large, because it includes all

axioms relevant for the semantics of Σ ∪ sig(M).

• A depleting moduleM can be maintained separately from O \M, since
one does not have to worry about changes inM interacting with the

remaining axioms in O \M (as long as the signature remains the same).
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Complexity of Σ-Conservative Extensions
In EL, deciding whether O2 is a Σ-CE of O1 is
• undecidable, even if O1 = ∅
• CO-NEXPTIME

NP
-complete if Σ ⊆ C

• in P if O1 = ∅ and Σ ⊆ C
Due to this high complexity, we consider approximations.

Goal: Find another definition of Σ-conservative extensions that has better

complexity, but still retains the nice properties (monotonicity, reflexivity,

transitivity, robustness under replacement).

First idea: Instead of looking at all models, we consider only the relevant

entailments (e.g., DL v Logic).
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First Approximation: Deductive CE
Let O1 ⊆ O2 be two ontologies and Σ be a signature.
Then O2 is a deductive Σ-conservative extension (d-Σ-CE) of O1 if,
for every GCI α with sig(α) ⊆ Σ,
O2 |= α implies O1 |= α.

• The previous definition of Σ-CE is also called model-based Σ-CE (m-Σ-CE).

• In contrast to m-Σ-CEs, d-Σ-CEs only consider consequences that can be

formulated in a given description logic, e.g., ALC.

d-Σ-safety and d-Σ-modules are defined as before, by replacing

m-Σ-CE with d-Σ-CE.
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Deductive vs. Model-Based CE
Lemma

If O2 is an m-Σ-CE of O1, then it is also a d-Σ-CE of O1.

Proof: Exercise.

In particular, finding an axiom α with sig(α) ⊆ Σ, O2 |= α, and O1 6|= α
proves that O2 is not an m-Σ-CE of O1.

The other direction does not hold:

M = {> v ∃r.> u ∃s.>} is a d-Σ-module of
O =M∪ {> v ∃r.A u ∃s.¬A} for Σ = {r, s}.
But there are models ofM that cannot be extended to models of O
when the interpretation of r and s is fixed.

This means that the sets of minimal modules for the two (model-based and

deductive) definitions are incomparable.
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Flashback: Examples
P2 = {LogicCourse ≡ Course u ∃focus.Logic, ∃focus.> v Course,DLSeminar ≡ Seminar u ∃focus.DL, Seminar v Course,

Course u (Logic u DL) v ⊥,
∀focus.DL v ∃focus.Logic}

entails Logic u DL v ⊥, which is not entailed by ∅. Thus, it is not d-Σ-safe,
and therefore not m-Σ-safe.

All d-Σ-modules (and all m-Σ-modules) of

O = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,
FOL ≡ Language u ∃semantics.FOStructure, FOL v Logic,
Language u ∃quantifier.Forall v FOL,
OWL v W3CStandard u ∃basedOn.DL}

must entail DL v Logic.
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Properties of d-Σ-CE
The following properties also hold for d-Σ-CEs (Exercise):

• Monotonicity

• Transitivity

• Reflexivity

• (Depleting modules are modules)

The following properties do not hold:

• Robustness under replacement

• Characterizations of safety and modules

O2 = {A v ∃r.B} is a d-Σ-CE of ∅, for Σ = {A,B}.
For O = {A ≡ >,B ≡ ⊥}, we have O ∪O2 |= > v ⊥, but O 6|= > v ⊥,
i.e., O ∪O2 is not a d-Σ-CE of O.
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Complexity of d-Σ-CE
Deciding d-Σ-CE:

• undecidable for SROIQ, i.e., OWL 2 DL
• 2-EXPTIME-complete for ALC
• EXPTIME-complete for EL

Deciding d-Σ-modules:

• undecidable for ALC with nominals

These complexities are better, but still quite high.

New idea for approximation: Concentrate on minimal depleting modules,

i.e., on (approximately) deciding safety.
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Second Approximation: Locality-Based CE
Can we find a new definition of Σ-conservative extensions for which

we can efficiently check whetherM is a depleting module of O,
i.e., whether O \M is [Σ ∪ sig(M)]-safe?

Locality: Individually check each axiom to see whether it affects the

semantics of symbols from Σ (i.e., whether it is Σ-safe or not).

An interpretation I is ∅-Σ-local if XI = ∅ for all X ∈ (C ∪ R) \ Σ.
An axiom α is ∅-Σ-local if it is satisfied in every ∅-Σ-local interpretation.
An ontology O is ∅-Σ-local if all axioms α ∈ O are ∅-Σ-local.

• We only need to check each axiom α ∈ O separately.
• To test locality, we can replace all concept names outside of Σ with ⊥
(because in ∅-Σ-local interpretations they are equivalent to ⊥),
and similarly for role names.
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Testing Locality
For GCIs and concept assertions α, the axiom α|Σ is obtained from α
by replacing subconcepts as follows:

• every A ∈ C \ Σ with ⊥;
• every ∃r.C, where r ∈ R \ Σ, with ⊥;
• every ∀r.C, where r ∈ R \ Σ, with >.
If α is a role assertion (a, b) : r with r ∈ R \ Σ, then α|Σ is defined as
> v ⊥ (since it can never be satisfied by a ∅-Σ-local interpretation).

Lemma (Testing ∅-Locality)
An axiom α is ∅-Σ-local iff ∅ |= α|Σ.

Proof: Exercise.
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Example for ∅-Locality
Σ =
{DL, Logic, Language, FOStructure, Forall, FOL, semantics,quantifier}
OWL v W3CStandard u ∃basedOn.DL is replaced by ⊥ v ⊥ u⊥,
which is entailed by the empty ontology ∅.
Thus, the axiom is ∅-Σ-local.
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∅-Σ-Conservative Extensions
Let O1 ⊆ O2 be two ontologies and Σ be a signature.
Then O2 is an ∅-locality-based Σ-conservative extension (∅-Σ-CE) of O1
if O2 \ O1 is ∅-[Σ ∪ sig(O1)]-local.

∅-Σ-CEs also satisfy all the nice properties we wanted:
monotonicity, transitivity, reflexivity, and robustness under

replacement, and hence the results about depleting modules and

simplifying characterizations of safety and modules.

If we define safety and modules as before, we obtain:

P is ∅-Σ-safe iff it is ∅-Σ-local.

M is an ∅-Σ-module of O iff O \M is ∅-[Σ ∪ sig(M)]-local.

By definition, all ∅-Σ-modules are depleting.
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∅-Locality-Based vs. Model-Based CE
Lemma

If O2 is an ∅-Σ-CE of O1, then O2 is an m-Σ-CE of O1.

Proof: Blackboard.

Again, the other direction does not hold:

M1 = {DL ≡ Languageu∃semantics.FOStructureu∃quantifier.Forall,FOL ≡ Language u ∃semantics.FOStructure, FOL v Logic}
is an m-Σ-module of O for Σ = {DL, Logic}, but it is not depleting.
The axiom Language u ∃quantifier.Forall v FOL is not
∅-[Σ ∪ sig(M1)]-local.

Thus,M1 is not an ∅-Σ-module of O.
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Complexity of ∅-Σ-CE
The complexity of the locality test is the same as for axiom entailment:

• 2-NEXPTIME-complete for SROIQ, i.e., OWL 2 DL
• EXPTIME-complete for ALC
• P-complete for EL

Can we compute “useful” (small, depleting) modules even faster?
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Third Approximation: Syntactic-Locality-Based CE
Idea: To check that ∅ |= ⊥ v ⊥ u⊥, we do not need a SROIQ reasoner.
We can instead use a simple syntactic check on the axiomOWL v W3CStandard u ∃basedOn.DL to determine that it is local.

Intuition: We collect in C⊥
Σ
(C>
Σ
) all concepts for which it is “easy to

prove” that they are equivalent to ⊥ (>). For example, if C ∈ C⊥
Σ
and D

is another concept, then C u D also belongs to C⊥
Σ
.

C⊥
Σ

::= ⊥ | A⊥ | ¬C> | C u C⊥ | C⊥
1
t C⊥

2
| ∃r⊥.C | ∃r.C⊥

C>
Σ

::= > | ¬C⊥ | C t C> | C>
1
u C>

2
| ∀r⊥.C | ∀r.C>

where A⊥ ∈ C \ Σ, C⊥(i) ∈ C⊥Σ , C>(i) ∈ C>Σ , r⊥ ∈ R \ Σ, r ∈ Σ, and C is a
concept.

An axiom α is ⊥-Σ-local if it is of the form C v C>, C⊥ v C, or a : C>.
An ontology O is ⊥-Σ-local if all axioms α ∈ O are ⊥-Σ-local.
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⊥-Locality-Based vs. ∅-Locality-Based CE
We can define ⊥-Σ-CE, ⊥-Σ-safety, and ⊥-Σ-modules as we did for ∅-locality.
⊥-Σ-CEs are monotone, transitive, reflexive, and robust under replacement.
Lemma

If O2 is a ⊥-Σ-CE of O1, then O2 is an ∅-Σ-CE of O1.

Proof: Blackboard.

As usual, the other direction does not hold:

∃r.¬A v ∃r.¬B is ∅-{r}-local since ∅ |= ∃r.¬⊥ v ∃r.¬⊥,
but it is not ⊥-{r}-local.

Σ =
{DL, Logic, Language, FOStructure, Forall, FOL, semantics,quantifier}
OWL v W3CStandard u ∃basedOn.DL is ⊥-Σ-local since it is of the
form C⊥ v C, because OWL /∈ Σ.
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Overview of Conservative Extensions
Name synt. locality⇒ sem. locality⇒model-based⇒ deductive

Symbol ⊥ ∅ m d

Monotonicity,

Transitivity,

Reflexivity

X X X X

Robustness

under

Replacement

X X X ×

All Modules

are Depleting
X X × ×

Complexity

(for ALC) P EXPTIME undecidable 2-EXPTIME
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Extracting Depleting Modules
• Instead of deciding whetherM is an x-Σ-module of O, we want to extract
a minimal x-Σ-module from O (for some x ∈ {m,d, ∅,⊥}).

• For depleting modules, we only need to ensure that O \M is

x-[Σ ∪ sig(M)]-safe.

• To do this, we start from the empty setM = ∅, and iteratively add all
axioms toM that cause O \M to violate the safety property.

• For this, we only need a black-box that can check x-Σ-safety.
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An Algorithm for Extracting Depleting Modules
Algorithm (Black-Box Module Extraction)

Input: Ontology O, signature Σ, x ∈ {m,d, ∅,⊥}
Output: A depleting x-Σ-module of O
• M := ∅;W := ∅
• WhileM∪W 6= O:
– Choose an axiom α ∈ O \ (M∪W)
– W :=W ∪ {α}
– IfW is not x-[Σ ∪ sig(M)]-safe, then

– M :=M∪ {α};W := ∅
• ReturnM

When extendingM, we need to resetW since the signature ofM has

changed, and henceW (even without α) may not be
x-[Σ ∪ sig(M)]-safe anymore.
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Correctness
Lemma (Correctness of Black-Box Module Extraction)

If x-safety is decidable, the black-box module extraction algorithm

computes a depleting x-Σ-module of O.

Proof: Blackboard.

The runtime of the algorithm is only polynomially larger than that of

the x-safety test.

Lemma (Uniqueness of Depleting Modules)

If x-CE are monotone and robust under replacement, then there is a

unique minimal depleting x-Σ-module of O, which is computed by the
black-box module extraction algorithm.

Proof: Blackboard.
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Extracting Locality-Based Modules
For locality-based notions of safety, the safety check forW can be
replaced by a safety check for α.

Algorithm (Locality-Based Module Extraction)

Input: Ontology O, signature Σ, x ∈ {∅,⊥}
Output: The unique minimal (depleting) x-Σ-module of O
• M := ∅;W := ∅
• WhileM∪W 6= O:
– Choose an axiom α ∈ O \ (M∪W)
– W :=W ∪ {α}
– If α is not x-[Σ ∪ sig(M)]-local, then

– M :=M∪ {α};W := ∅
• ReturnM

Logic-Based Ontology Engineering, Part 4: Ontology Maintenance

Chair of Automata Theory // © Stefan Borgwardt Slide 65 of 67



Correctness
Lemma (Correctness of Locality-Based Module Extraction)

The locality-based module extraction algorithm computes the unique

minimal (depleting) x-Σ-module of O.

For ⊥-locality, the safety check can be done in polynomial time, which
implies the following:

Corollary

The unique minimal (depleting) ⊥-Σ-module of O can be computed in
polynomial time in the size of O.
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Extracting Modules in Practice
• m-Σ-modules can only be computed in special cases,
e.g., for EL and Σ ⊆ C

• ⊥-Σ-modules can be computed much faster, even for large and
expressive ontologies

• Minimal ⊥-Σ-modules are also m-Σ-modules, but not necessarily
minimal m-Σ-modules

• In an evaluation, minimal ⊥-Σ-modules differed from the minimal
depleting m-Σ-modules in 27% of the cases, with size differences up to

80% (varying with the structure of the ontology)

(Del Vescovo, Klinov, Parsia, Sattler, Schneider, Tsarkov, 2013)
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