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1. INTRODUCTION
Understanding and predicting human mobility has been already

for a long time in the focus and interest of researchers and practi-
tioners [4, 2, 5]. Over the years, the potential sources of informa-
tion about human mobility, e.g., temporal data, calendar informa-
tion, or social ties, have been grown dramatically.

In the context of this extended abstract, we focus on the phone
context data, e.g., number of recently used applications or time
since the last received or made phone call. By considering this new
source of data, we analyze its influence on the performance of 4
state-of-the-art and 3 baseline predictors for 3 human mobility pre-
diction tasks. We capture the results of the potential influence by
considering 3 well-known performance metrics. Our results high-
light that our use of the phone context data does not lead to signifi-
cation performance improvements. Statistical information from the
data set shows that users used 7 applications, and made/received 5
phone calls, on average per day. This highlights the fact that the
phones have been used intensively by their owners.

Our contributions are two-fold: (1) we derive an extended list
of 28 phone context features, and (2) we analyze their potential
influence on all combinations of the considered 3 prediction tasks,
7 predictors, and 3 performance metrics.

2. METHODOLOGY AND BACKGROUND
In order to investigate the influence of phone context data on

the performance of several predictors for human mobility, we an-
alyze a rich data set – Nokia Lausanne Data Collection Campaign
(LDCC) [3] – that contains information from 141 users collected
over 18 months. We first derive a list of meaningful phone context
features based on the available information in the data set. After
that, we run feature selection to reduce the amount of derived fea-
tures for all combinations of predictors, prediction tasks, and met-
rics. We evaluate the performance of the resulting combinations of
a predictor and a set of features on well-known metrics – accuracy,
F1 score, and Matthews Correlation Coefficient (MCC).

2.1 Features
The human mobility predictors that are used throughout this work

need adequate input data to be able to compute the required predic-
tion. To this end, we derive a list of 51 features that contains 28
phone context features – indicated as set Fpc. Table 1 shows them
along with their corresponding description.

2.2 Prediction Tasks
In the context of this work, we consider 3 prediction tasks. The

Next-place (NP) prediction task only considers the next place vis-
1We consider calls and messages for both incoming and outgoing directions.
2We consider date of creation, status, title, location, type, and confidence class.

Table 1: List of phone-context features considered in this study.

Label Description

c_time_call1 Time since last call/sms made/received
c_calllog_type Last calllog type
c_calllog_direction Last calllog direction
c_sms_status Last sms status
c_last_call_duration Last call duration
c_last_cal2 Information about last calendar entry
c_next_cal2 Information about next calendar entry
c_time_last_app Time since last application used
c_last_app Last used application
c_phone_charging Current phone charging status
c_last_charge Time since last charge
c_battery Current phone battery status
c_ring Current ring profile
c_profile Current user profile
c_last_action Time since last phone interaction

ited and treats as irrelevant when the user moves to the next location
and how long she stays in each place. Timing information can eas-
ily be included in a prediction task by considering equally spaced
time slots of length s and computing a new next place prediction for
each time slot. We refer to this task as the Next-slot place (NSP)
prediction task. Finally, the Next-slot transition (NST) prediction
task consists of estimating, at time slot k, whether or not there will
be a transition at time slot k+1. A transition occurs when the user
moves between two places.

2.3 Predictors
In this study, we consider 7 predictors that rely on different basic

techniques, have different weaknesses and strengths, and require
different amounts of computational and memory resources. The 7
predictors include 4 well-known predictors – Support Vector Ma-
chine (SVM) [6, 1], k-Nearest Neighbor (k-NN) [6, 1], Classifica-
tion and Regression Trees (CART) [6], and Perceptron [1] – as well
as 3 baseline predictors – Random predictor (R), Distribution-based
predictor (DB), and 0-R predictor (0-R).

3. INFLUENCE OF PHONE CONTEXT DATA
ON PREDICTORS’ PERFORMANCE

For our analysis part, we adopt the Sequential Forward Floating
Selection (SFFS) algorithm to identify the best performing features
for all combinations of prediction tasks, metrics, and predictors. In
all these cases, we differentiate between using the entire feature set
F and using only a reduced feature set by excluding phone context
features (F\Fpc). We next present our findings.

3.1 Performance Results
The feature selection process returns an optimal feature subset

F ′ for each combination of user, predictor, prediction task, and
metric. Figure 1 shows the performance in terms of accuracy, F1
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(a) Next-slot place – Accuracy
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(b) Next-slot place – F1 score
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(c) Next-slot place – MCC
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(d) Next-slot transition – Accuracy
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(e) Next-slot transition – F1 score
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(f) Next-place transition – MCC
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(g) Next-place – Accuracy
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(h) Next-place – F1 score
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(i) Next-place – MCC

Figure 1: Performance results for all 3 considered prediction tasks, 3 performance metrics, and 7 predictors.

score, and MCC achieved by the predictors with or without the
feature selection (“FS” vs “No FS”). The markers indicate median
values and the whiskers indicate the 5th and 95th percentiles.

Figure 1a, Figure 1b, and Figure 1c show the median perfor-
mance for the NSP prediction task. The plots for the metrics ac-
curacy and F1 score reveal significant performance differences for
the extracted feature sets with phone context features (Fpc) and
those without. It holds for the predictors k-NN and CART. In these
cases, the performance after applying feature selection is higher for
the feature set F\Fpc than for F . It is also the case for MCC, but
with a lower performance difference in the case k-NN is used. Fur-
thermore, SVM shows similar performance for both feature sets (F
and F\Fpc) after applying feature selection. We observe that on
the one hand SVM is able to leverage SFFS to extract meaning-
ful subsets of features. On the other hand, SVM reveals dramatic
performance drops if no feature selection is applied. At the same
time, Perceptron does not outperform the distribution-based (DB)
and the 0-R predictors, which are both just baseline predictors.

For the NST prediction task, we observer in Figure 1d, Figure 1e,
and Figure 1f that all predictors achieve a high accuracy. It is not
surprising since the class of “No Transitions” dominates with al-
most 95%. Only Perceptron fails for a number of users to achieve
a high accuracy. In the case of the F1 score and MCC the pre-
dictors k-NN, CART, and SVM achieve similar performance after
applying feature selection to both sets – with and without the phone
context data. It is worth to note that for both metrics – F1 score and
MCC – the predictor CART tends to be much more robust in the
cases with no feature selection by achieving at least twice as high
performance than the next best performing predictor.

Last but not least, Figure 1g, Figure 1h, and Figure 1i demon-
strate results for the NP prediction task. For k-NN, CART, and
SVM we make two observations. First, the feature selection leads
to performance improvements in terms of all 3 metrics. Second, the
consideration of the phone context data does not show any signifi-
cation improvements in terms of the considered metrics.

4. CONCLUSIONS AND FUTURE WORK
We summarize our results and conclude that our use of the phone

context features does not lead to signification performance improve-
ments. However, phone context data is in general a rich informa-
tion source. Statistical information from the data set highlights the
presence of the potentially meaningful context data and the fact that
the phones have been used intensively by their owners. Thus, we
believe that instead of capturing temporal phone information, e.g.,
time since last action X, analysis on the correlation between the
appearance of phone data events, e.g., received a phone call, and a
corresponding mobility behavior may uncover additional potential
for prediction improvements. In the context of this work, we leave
the proof of this hypothesis as future work.
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