

Studying cancer cell invasion in Glioblastoma

Simone P. Niclou, PhD

Director, Department of Oncology Group leader, NORLUX Neuro-Oncology Laboratory

Luxembourg Institute of Health

Population: 615,000 GDP/capita: 125,000 \$

Overview

> Modes and routes of glioma cell invasion

> Identification of novel invasion essential genes

Conclusion & Perspectives

Biological and Clinical Challenges of Glioblastoma

- Aggressive, \succ fast growing tumor
- > Hypoxia and necrosis

Abnormal vessels and \triangleright neo-angiogenesis

- No clear boundary \geq Invasion of brain \geq
 - parenchyme

Genetic instability: \triangleright mutations and CNAs

Immunologically cold tumor \geq

Thorsson et al. Immunity 2018

Classification of Malignant Gliomas (= Diffuse Gliomas)

Adapted from Louis et al. Acta Neuropathol 2016

IHC for mIDH

Glioma: 'a disease of the whole brain'

Andreas von Deimling, Dianova

Invading tumor cells are not removed by surgery

GBM in patient

Patient GBM in mouse brain (PDOX)

T1 + contrast MRI

radiotherapy

Visualization of tumor cells on brain section

Invading tumor cells

Factsheet about glioma invasion

- ✓ Glioma cells do not metastasize to other organs (although CTCs can sometimes be detected in blood)
- ✓ However they 'metastasize' **within the brain** concept of Diffuse Glioma
- ✓ Invading glioma cells are largely **shielded from current therapeutic interventions**:
 - Surgical resection removes the tumor core, but not the invasive front
 - **Radiotherapy** focuses on the tumor core & limited margin
 - Systemic therapy often does not reach invading glioma cells, which are hidden in normal brain tissue and protected by an intact blood brain barrier
- ✓ Hence recurrence is inevitable
- ✓ Targeting invading glioma cells is like **guerilla warfare**

LUXEMBOURG

INSTITUTE OF HEALTH **RESEARCH DEDICATED TO LIFE**

Single Cell Invasion vs Collective Invasion

Collective and Single Cell Invasion Through the Collagenous Extracellular Matrix

① Collective Invasion: Sheets, Strands, and Clusters

② Single Cell Motility: Ameoboid and Mesenchymal

Collective invasion through cellular networks in GBM (Tumor microtubes)

Tumor microtubes: thin cellular protrusions between glioma cells

- Facilitate invasion
- Increase tumor cell resistance

Protrusions extending into the brain parenchyma

Travel of nuclei after nuclear division in cellular protrusions of migrating cells

Osswald et al. Nature 2015

Molecular mechanisms of glioma cell invasion

Ca²⁺ signaling and role of cytoskeleton

- Intracellular Ca²⁺ increase leads to opening of channels (Cl⁻, K⁺ channels, aquaporins) and water efflux, volume loss allowing to squeeze into small spaces
- Followed by regain of volume through ion influx

Tumor microtubes at the invasive front (similar to growth cones during axon elongation)

> Cuddapah et al. Nature Rev Neurosci 2014 Jung et al. Nature Neurosci 2019

Overview

> Introduction to *Diffuse Glioma*

> Modes and routes of glioma cell invasion

> Experimental models to study glioma invasion: *in vitro, ex vivo, in vivo*

> Identification of novel invasion essential genes

> Conclusion & Perspectives

In vitro invasion assays in 2D format

Transwell assay

Scratch assay

- Easy and straightforward
- > Monolayer cultures
- Control for proliferation required!

Invasion assay in 3D format: tumor spheroids

Goplen et al. AJP 2010 Schuster at al. under review

Glioma invasion assays within ex vivo brain tissue

Organotypic brain slice cultures

Colonized area

Single cell velocity

n=8

Brain organoids

Schuster et al. under review Fabian, Bjerkvig et al. unpublished

Glioma invasion in vivo

Immunohistochemistry

Highly invasive GBM

Invasive GBM

Non-invasive GBM

Intravital microscopy

а

Endpoint: 20 weeks

Endpoint: 8 weeks

Endpoint: 5 weeks

Overview

> Introduction to *Diffuse Glioma*

> Modes and routes of glioma cell invasion

> Experimental models to study glioma invasion: *in vitro, ex vivo, in vivo*

> Identification of novel invasion essential genes

Conclusion & Perspectives

RNA interference screen to identify invasion essential genes

Anne Schuster

Data analysis of shRNA screen

> Metabolic enzyme: Methylene Tetrahydrofolate Dehydrogenase 1like (MTHFD1L)

> Novel transcriptional regulator: Zinc finger AN-type protein 3 (ZFAND3)

Serine One-Carbon Metabolism

FIGURE 1 | One-carbon metabolism as a cellular process integrating nutrient status and availability. Glucose and amino acids input to the folate and methionine cycles (green) contributing with one-carbon units which can be used in anabolic synthesis of many building blocks, reducing species and co-factors (yellow). These synthesis products support a variety of cellular functions (gray) including synthesis of biomolecules, redox control and post-translational modification, sustaining cellular homeostasis. *Rosenzweig et al. 2018*

SCIENCE ADVANCES | RESEARCH ARTICLE 2016

HEALTH AND MEDICINE

Serine one-carbon catabolism with formate overflow

Johannes Meiser,¹ Sergey Tumanov,^{1,2} Oliver Maddocks,² Christiaan Fred Labuschagne,¹ Dimitris Athineos,¹ Niels Van Den Broek,¹ Gillian M. Mackay,¹ Eyal Gottlieb,¹Karen Blyth,¹ Karen Vousden,¹ Jurre J. Kamphorst,^{1,2} Alexei Vazquez¹*

ARTICLE

2017 doi:10.1038/nature23481

Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism

Guillermo Burgos-Barragan¹, Niek Wit¹*, Johannes Meiser²*, Felix A. Dingler¹, Matthias Pietzke², Lee Mulderrig¹, Lucas B. Pontel¹, Ivan V. Rosado³, Thomas F. Brewer⁴, Rebecca L. Cordell⁵, Paul S. Monks⁵, Christopher J. Chang⁴, Alexei Vazquez² & Kettan J. Patel^{1,6}

A novel route for serine catabolism coupled to ATP synthesis and formate release

Meiser et al., Science Adv. 2016

LUXEMBOURG

OF HEALTH

MTHFD1L knockdown leads to reduced invasion, which is rescued by formate

SHMT: Serine hydroxymethyltransferase MTHFD: Methylene TetraHydroFolate Dehydrogenase

Serine catabolism is increased in tumors in vivo

in vivo Metabolic Flux Analysis in GEMMs Increased formate in tumors

Increased formate in blood

Novel role of metabolism in tumor cell invasion

- MTHFD1L activity promotes glioma invasion through formate release
- Formate accumulates in tumors and in plasma of tumorbearing mice – role in metastatic process remains to be elucidated
- Tumor metabolism not only regulates proliferation, but also invasion (energy driven processes)
- MTHFD1L is localized to mitochondria, which may provide local ATP production at the migratory tip of tumor cells (cf tumor microtubes)

Data analysis of shRNA screen

Metabolic enzyme: Methylene Tetrahydrofolate Dehydrogenase 1like (MTHFD1L)
Putative transcription factor: Zinc finger AN-type protein 3 (ZFAND3)

8 family members

ZFAND3: Zinc Finger AN1-Type containing 3 domain

ZFAND3 (or testis expressed sequence 27, *TEX27*)

- AN1 and A20 domain
- essential for spermatogenesis in mice
- associated with development of Diabetes Type II
- exact function remains unkown

ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules

Integrated bioinformatics analysis reveals role of the LINC01093/miR-96-5p/ZFAND5/NF-κB signaling axis in hepatocellular carcinoma

YAHUI ZHENG $^{*},\, {\rm KANGKANG}\, {\rm YU}^{*},\, {\rm CHONG}\, {\rm HUANG},\, {\rm LU}\, {\rm LIU},\,$ HAO ZHAO, MEISI HUO and JUBO ZHANG

Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China

Received February 24, 2019; Accepted August 19, 2019

ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation

Donghoon Lee^a, Shinichi Takayama^b, and Alfred L. Goldberg^{a, 1} ^aDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; and ^bResearch Division, Chugai Pharma USA, Berkley Heights, NJ 07922

SCIENTIFIC REPORTS

OPEN Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis

Accepted: 18 April 2016 Published: 03 May 2016 Keyi Ma¹, Minghui Liao¹, Feng Liu¹, Baoqing Ye¹, Fei Sun¹ & Gen Hua Yue^{1,2,3}

- ✓ Glioma invasion is a major **clinical challenge**
- ✓ Specific routes and modes of glioma invasion in the brain microenvironment
- ✓ RNA interference screen reveals multiple genes regulating glioma cell invasion
- ✓ MTHFD1L activity promotes GBM invasion through formate release
- ✓ **ZFAND3:** a novel transcriptional regulator of GBM invasion
- Therapeutic targeting remains a challenge, but may become feasible with tumor-specific targets

Is there a role for **mathematical modeling**?

≻ ...

- > Modeling invasion in the brain taking into account different parameters
- Predict potential of recurrence at distant sites?
- > Is invasion in mouse and human brain comparable?

Does size matter?

Acknowledgements

NORLUX Neuro-Oncology Laboratory, LIH

Anna Golebiewska Anne Dirkse Ann-Christin Hau Anais Oudin Virginie Baus Vanessa Barthelemy Monika Dieterle Amandine Bernard Virginie Neirinckx Anne Schuster Sabrina Fritah Andrés Cano Carina Fabian Yahaya Yabo Hugo Dosquet Eliane Klein

Rolf Bjerkvig Luxembourg Institute of Health & University of Bergen, Norway

Fonds National de la <mark>Recherche</mark> Luxembourg

Fondation Cancer

Johannes Meiser

Tumor Metabolism Group, Luxembourg Institute of Health

Petr V. Nazarov, Arnaud Muller, Tony Kaoni Biostatistics/Bioinformatics, LIH, Luxembourg

Alexei Vazquez Beatson Institute, Glasgow, UK

Bjarne Winther Kristensen Department of Pathology, Odense Universitetshospital, Odense, Denmark

Barbara Klink, Michel Mittelbronn Laboratoire national de santé, LNS, Luxembourg

Frank Hertel

Neurosurgery Department, Centre Hospitalier de Luxembourg, Luxembourg

Christel Herold-Mende

Department of Neurosurgery, University Hospital Heidelberg, Germany

Hakan Hedman

Radiation biology, University of Umeo, Sweden

