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Characterizing the mode

of tumour evolution



Figure adapted from Davis et al. BBA Reviews on Cancer (2017)

Potential modes of tumour evolution



• Stochastic, agent-based model

• Flexible spatial structure

• Either unconstrained growth or tissue invasion

• Evolution of cell division or dispersal rate

• Tracks all passenger mutations

Modelling tumour evolution

https://github.com/robjohnnoble/demon_model

https://github.com/robjohnnoble/demon_model
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Semi-automated image analysis
of invasive glandular tumours

50% of cases between 53 and 387 cells 
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Four types of spatial structure



Model parameters

Fixed:
• Driver mutation rate (10-5 per division)
• Multiplicative driver fitness effect (mean 0.1)

Varied:
• Dispersal process (migration or deme fission)
• Deme carrying capacity

Dispersal rate adjusted for similar growth times



Four oncoevotypes

Plotting package: https://CRAN.R-project.org/package=ggmuller

https://cran.r-project.org/package=ggmuller
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In Brief
A multi-center prospective study on 101

patients with clear-cell renal cell

carcinoma resolves the evolutionary

features and subtypes underpinning the

diverse clinical phenotypes of the disease

and suggests these features as potential

biomarkers for guiding intervention and

surveillance.
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BACKGROUND
Among patients with non–small-cell lung cancer (NSCLC), data on intratumor 
heterogeneity and cancer genome evolution have been limited to small retrospec-
tive cohorts. We wanted to prospectively investigate intratumor heterogeneity in 
relation to clinical outcome and to determine the clonal nature of driver events 
and evolutionary processes in early-stage NSCLC.
METHODS
In this prospective cohort study, we performed multiregion whole-exome sequenc-
ing on 100 early-stage NSCLC tumors that had been resected before systemic 
therapy. We sequenced and analyzed 327 tumor regions to define evolutionary 
histories, obtain a census of clonal and subclonal events, and assess the relation-
ship between intratumor heterogeneity and recurrence-free survival.
RESULTS
We observed widespread intratumor heterogeneity for both somatic copy-number 
alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were 
almost always clonal. However, heterogeneous driver alterations that occurred 
later in evolution were found in more than 75% of the tumors and were common 
in PIK3CA and NF1 and in genes that are involved in chromatin modification and 
DNA damage response and repair. Genome doubling and ongoing dynamic chro-
mosomal instability were associated with intratumor heterogeneity and resulted in 
parallel evolution of driver somatic copy-number alterations, including amplifica-
tions in CDK4, FOXA1, and BCL11A. Elevated copy-number heterogeneity was associ-
ated with an increased risk of recurrence or death (hazard ratio, 4.9; P = 4.4×10−4), 
which remained significant in multivariate analysis.
CONCLUSIONS
Intratumor heterogeneity mediated through chromosome instability was associ-
ated with an increased risk of recurrence or death, a finding that supports the 
potential value of chromosome instability as a prognostic predictor. (Funded by 
Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601.)

A BS TR AC T

Tracking the Evolution of Non–Small-Cell 
Lung Cancer

M. Jamal-Hanjani, G.A. Wilson, N. McGranahan, N.J. Birkbak, T.B.K. Watkins, 
S. Veeriah, S. Shafi, D.H. Johnson, R. Mitter, R. Rosenthal, M. Salm, S. Horswell, 
M. Escudero, N. Matthews, A. Rowan, T. Chambers, D.A. Moore, S. Turajlic, H. Xu, 

S.-M. Lee, M.D. Forster, T. Ahmad, C.T. Hiley, C. Abbosh, M. Falzon, E. Borg, 
T. Marafioti, D. Lawrence, M. Hayward, S. Kolvekar, N. Panagiotopoulos, S.M. Janes, 
R. Thakrar, A. Ahmed, F. Blackhall, Y. Summers, R. Shah, L. Joseph, A.M. Quinn, 

P.A. Crosbie, B. Naidu, G. Middleton, G. Langman, S. Trotter, M. Nicolson, 
H. Remmen, K. Kerr, M. Chetty, L. Gomersall, D.A. Fennell, A. Nakas, S. Rathinam, 
G. Anand, S. Khan, P. Russell, V. Ezhil, B. Ismail, M. Irvin-Sellers, V. Prakash, 
J.F. Lester, M. Kornaszewska, R. Attanoos, H. Adams, H. Davies, S. Dentro, 

P. Taniere, B. O’Sullivan, H.L. Lowe, J.A. Hartley, N. Iles, H. Bell, Y. Ngai, J.A. Shaw, 
J. Herrero, Z. Szallasi, R.F. Schwarz, A. Stewart, S.A. Quezada, J. Le Quesne, 

P. Van Loo, C. Dive, A. Hackshaw, and C. Swanton, for the TRACERx Consortium*  

Original Article

The New England Journal of Medicine 
Downloaded from nejm.org at ETH ZUERICH on April 27, 2017. For personal use only. No other uses without permission. 

 Copyright © 2017 Massachusetts Medical Society. All rights reserved. 

A R T I C L E S

NATURE MEDICINE VOLUME 21 | NUMBER 7 | JULY 2015 751

Driver mutations occur in single cells and are associated with subse-
quent clonal expansion. Consequently, a given patient’s breast tumor 
comprises a complex patchwork of genetically related competing 
clones1–3. Genome sequencing has enabled analysis of clonal evolution 
in breast cancer through sequencing of primary tumor and metasta-
sis pairs in a few cases4,5, sequencing of single cells2,6 and xenograft 
models7, and deep sequencing for subclonal mutations1,3. These stud-
ies have revealed that subclonal evolution occurs in breast cancer, 
although the findings are based on relatively small sample sizes.

Most breast cancers are localized at first presentation and managed  
with curative intent by surgery, often in combination with radio-
therapy and systemic therapies. Therapies targeting the estrogen and 
HER2 receptors improve survival, and benefit may extend to cases 
where the targetable alteration is subclonal8,9. Therapies directed 
against a wider range of biological targets are currently in early-phase 
trials, but heterogeneity could complicate study design and confound 
analysis10,11. The optimal therapy may be directed against mutations 
shared by all cells in a cancer, but subclonal mutations may become 
important later in therapy if they enable subclones to resist treatment 

or confer metastatic capacity. In colon, pancreatic and hematological 
cancers, preferred temporal orders of somatic mutation accumulation 
may predominate12–15, but whether this applies to breast cancer has 
not been evaluated. In renal, pancreatic, colon and prostate tumors, 
geographical stratification of clonal structure is common, with  
subclones containing driver mutations expanding locally16–21. 
Whether early breast cancers show similar patterns is unknown.

RESULTS
Multiregion sequencing of breast cancer
To determine the patterns of spatial evolution in primary breast can-
cer, we sequenced multiregion samples from 50 invasive cancers (27 
positive for estrogen receptor (ER) expression but negative for HER2 
expression (ER+HER2−); 3 ER+HER2+; and 20 negative for expres-
sion of ER, progesterone receptor (PgR) and HER2 (‘triple negative’; 
ER−PgR−HER2−); Supplementary Table 1). We sequenced the can-
cers in two cohorts. Cohort 1 contained prospective, systematic nee-
dle biopsy samples of 12 primary, treatment-naive, surgically excised 
cancers (Fig. 1a,b). In cohort 2, we studied multiple treatment-naive 

1Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK. 2Department of Oncology, The University of Cambridge, Cambridge, UK. 3Section of Oncology, 
Department of Clinical Science, University of Bergen, Bergen, Norway. 4Department of Oncology, Haukeland University Hospital, Bergen, Norway. 5Breast Cancer 
Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium. 6Department of Human Genetics, University of Leuven, 
Leuven, Belgium. 7Department of Surgery, Haukeland University Hospital, Bergen, Norway. 8Theoretical Division, Los Alamos National Laboratory, Los Alamos,  
New Mexico, USA. 9Department of Pathology, Haukeland University Hospital, Bergen, Norway. 10The Gade Laboratory for Pathology, Department of Clinical Medicine, 
University of Bergen, Bergen, Norway. 11Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 12Brigham and Women’s Hospital, Harvard Medical School, 
Boston, Massachusetts, USA. Correspondence should be addressed to P.J.C. (pc8@sanger.ac.uk).
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Subclonal diversification of primary breast cancer 
revealed by multiregion sequencing
Lucy R Yates1,2, Moritz Gerstung1, Stian Knappskog3,4, Christine Desmedt5, Gunes Gundem1, Peter Van Loo1,6, 
Turid Aas7, Ludmil B Alexandrov1,8, Denis Larsimont5, Helen Davies1, Yilong Li1, Young Seok Ju1,  
Manasa Ramakrishna1, Hans Kristian Haugland9, Peer Kaare Lilleng9,10, Serena Nik-Zainal1, Stuart McLaren1, 
Adam Butler1, Sancha Martin1, Dominic Glodzik1, Andrew Menzies1, Keiran Raine1, Jonathan Hinton1,  
David Jones1, Laura J Mudie1, Bing Jiang11, Delphine Vincent5, April Greene-Colozzi11, Pierre-Yves Adnet5, 
Aquila Fatima11, Marion Maetens5, Michail Ignatiadis5, Michael R Stratton1, Christos Sotiriou5,  
Andrea L Richardson11,12, Per Eystein Lønning3,4, David C Wedge1 & Peter J Campbell1

The sequencing of cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a 
particular patient’s tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand 
the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from 
each of 50 patients’ tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed 
spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common 
breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 
13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to 
chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. 
These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of 
primary breast cancer.

Comparing to data
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Invasive glandular model versus data
Driver mutation rate

Driver fitness effect
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Accepting this caveat, and considering all the tumors with R15
biopsies (n = 20) we calculated the stepwise change in driver
event discoverywhen using between 1 to 15 biopsies (Figure 6B).
On average, two biopsies were required to detect R50% of all
variants and seven were required to detectR75% of all variants
(Figure 6B). As expected, these values changed markedly based
on tumor ITH, with homogenous tumors (%median ITH index)
achieving R0.75 detection within four biopsies, as opposed to
eight biopsies required for heterogeneous tumors (>median
ITH) (Figure 6B). Splitting instead by evolutionary subtype,
fewest biopsies were needed to reach 0.75 driver detection in
the ‘‘multiple clonal driver’’ and ‘‘VHL monodriver’’ groups, and
largest number for ‘‘PBRM1 / SETD2’’ tumors (Figure 6C).

We considered the utility of a radiologically guided two-site
biopsy approach for primary tumors that present as an SRM,
or larger tumors without (M0) or with metastases (M1). We
down-sampled our dataset to two biopsies per tumor (STAR
Methods) and considered the mean results across all possible

A B

C

D

Figure 6. Intratumor Heterogeneity Index
and Saturation Analysis
(A) Number of tumor biopsies profiled (x axis)

versus the number of driver events (i.e. all gene

mutations and SCNAs shown in Figure 1A)

discovered (y axis) for densely sampled (20+

biopsies) cases.

(B) Saturation curves for all cases with R15 bi-

opsies, with biopsy number plotted on x axis and

proportion of the total driver events detected (from

all biopsies) on y axis, increasing with each addi-

tional biopsy taken. Data are shown for all cases

and tumors split based on low and high ITH

(above/below median).

(C) Boxplot summary of the absolute number (top)

of biopsies needed todetectR0.75of driver events

for tumors grouped by evolutionary subtype. Also

shown (bottom) is the proportion of biopsies

needed (out of the total number taken from each

tumor) to normalize for absolute biopsy count.

(D) Illustration of the potential errors arising from a

two-site biopsy approach: considering all pairs of

biopsies, plotted on the x axis is the mean number

of subclonal driver events misidentified as clonal

(illusion of clonality), on y axis is the number of

subclonal driver events missed entirely. Data are

shown for three clinical scenarios. Left: small renal

masses (size, <4 cm). Middle: tumors treated by

nephrectomy with curative intent. Right: tumors

treated by cytoreductive nephrectomy. The size of

points within a panel is proportional to the number

of biopsies available for that tumor and colors vary

only to distinguish overlapping points.

combinations to simulate how many sub-
clonal driver events would be missed and
how many subclonal events would be
misclassified as clonal (‘‘illusion of clonal-
ity’’). For the SRM group, 11/15 tumors
had a mean of %1 driver event missed
and %1 driver event misclassified as
clonal with a paired biopsy approach

(Figure 6D, panel 1). For larger tumors, whether metastatic or
not, performance was less favorable, with the majority suffering
from multiple missed subclonal drivers and/or events misclassi-
fied as clonal (Figure 6D, panels 2 and 3). For these tumors, our
data suggest that a range of four to eight biopsies is required to
capture the majority of events (R75% detection), although this
approach may still miss some important drivers.

Clonal Evolution and Clinical Significance
Association of the ITH index and disease progressionwas a pre-
defined endpoint of the TRACERx Renal study (Turajlic and
Swanton, 2017). We therefore assessed whether patients
whose tumors had high ITH index (>median value) had signifi-
cantly reduced progression free survival (PFS), compared to
those with low ITH index. While we detected this in a univariate
analysis (p = 0.0160 log-rank, hazard ratio [HR] [95% confi-
dence interval (CI)] HR = 2.4 [1.1–5.2]), the association was
not significant when adjusted for known prognostic variables

10 Cell 173, 1–16, April 19, 2018

Please cite this article in press as: Turajlic et al., Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal, Cell
(2018), https://doi.org/10.1016/j.cell.2018.03.043

Multi-region bulk sequencing
fails to detect rare subclonal drivers

Figure adapted from Turajlic et al. Cell (2018)
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(Figure 6D, panel 1). For larger tumors, whether metastatic or
not, performance was less favorable, with the majority suffering
from multiple missed subclonal drivers and/or events misclassi-
fied as clonal (Figure 6D, panels 2 and 3). For these tumors, our
data suggest that a range of four to eight biopsies is required to
capture the majority of events (R75% detection), although this
approach may still miss some important drivers.

Clonal Evolution and Clinical Significance
Association of the ITH index and disease progressionwas a pre-
defined endpoint of the TRACERx Renal study (Turajlic and
Swanton, 2017). We therefore assessed whether patients
whose tumors had high ITH index (>median value) had signifi-
cantly reduced progression free survival (PFS), compared to
those with low ITH index. While we detected this in a univariate
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Invasive glandular model versus data
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TRACERx Renal: Using ITH and GI
to predict survival

in a Cox proportional hazards model (p = 0.4800 adjusted) (Fig-
ure 7A; STAR Methods). As elevated wGII was consistently
enriched in the high risk evolutionary subtypes, we also consid-

ered its association with PFS. Patients in our cohort whose
tumors had high wGII (>median value) had a non-significant
trend towards shorter PFS compared to those with low wGII

A

B C

Figure 7. Clinical Endpoints
(A) Kaplan-Meier plots for progression free survival (PFS) in the TRACERx Renal cohort (three plots in top row) and for overall survival (OS) in TCGA KIRC cohort

(three plots in bottom row). Three groupings are plotted for each cohort. Left: high (>median) versus low ITH index. Middle: high (>median) versus lowwGII. Right:

four group high/low combination groupings of the two metrics. Log-rank and adjusted (for stage and grade as covariates in a Cox proportional hazard model)

p values are stated.

(B) Proportion of cases, within each of the high/low four groups, that progressed to disseminated versus solitary metastases, based on each patient’s first

progression event. Counts in the highest group ‘‘low ITH, high wGII,’’ were compared to all other groups through Fisher’s exact test.

(C) Cancer-related deaths OS analysis (as opposed to PFS shown in A) for the TRACERx Renal cohort, with patients grouped using the four-category high/low

ITH/wGII system. Log-rank and adjusted (for stage and grade as covariates in a Cox proportional hazard model) p values are stated.

See also Table S4.

Cell 173, 1–16, April 19, 2018 11
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Clonal diversity as a predictor in cohorts 
with identical parameter values:
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• In reality, even tumours of the same size and type 
vary in biological parameters because of intrinsic 
and microenvironmental factors

• Genomic instability and mutation burden are 
especially variable within cancer types 

• Therefore simulate cohorts of tumours with 
differing driver mutation rates 

Accounting for biological variation



Clonal diversity as a predictor in cohorts 
with diverse mutation rates:
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The predictive value of clonal diversity is 
robust to biopsy sampling error
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in a Cox proportional hazards model (p = 0.4800 adjusted) (Fig-
ure 7A; STAR Methods). As elevated wGII was consistently
enriched in the high risk evolutionary subtypes, we also consid-

ered its association with PFS. Patients in our cohort whose
tumors had high wGII (>median value) had a non-significant
trend towards shorter PFS compared to those with low wGII

A

B C

Figure 7. Clinical Endpoints
(A) Kaplan-Meier plots for progression free survival (PFS) in the TRACERx Renal cohort (three plots in top row) and for overall survival (OS) in TCGA KIRC cohort

(three plots in bottom row). Three groupings are plotted for each cohort. Left: high (>median) versus low ITH index. Middle: high (>median) versus lowwGII. Right:

four group high/low combination groupings of the two metrics. Log-rank and adjusted (for stage and grade as covariates in a Cox proportional hazard model)

p values are stated.

(B) Proportion of cases, within each of the high/low four groups, that progressed to disseminated versus solitary metastases, based on each patient’s first

progression event. Counts in the highest group ‘‘low ITH, high wGII,’’ were compared to all other groups through Fisher’s exact test.

(C) Cancer-related deaths OS analysis (as opposed to PFS shown in A) for the TRACERx Renal cohort, with patients grouped using the four-category high/low

ITH/wGII system. Log-rank and adjusted (for stage and grade as covariates in a Cox proportional hazard model) p values are stated.

See also Table S4.
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• Four oncoevotypes determined by mode of cell 
dispersal and range of cell-cell interaction

• Simple, mechanistic explanation for observations 
across human tumour types

• Appropriate modelling of spatial structure is 
essential for characterizing, forecasting and 
controlling tumour evolution

• Eco-evo prognostic biomarkers show promise but 
demand careful interpretation

Summary
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