Fakultät Informatik Institut für technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur

Digitale Signalprozessor - Architekturen im Überblick

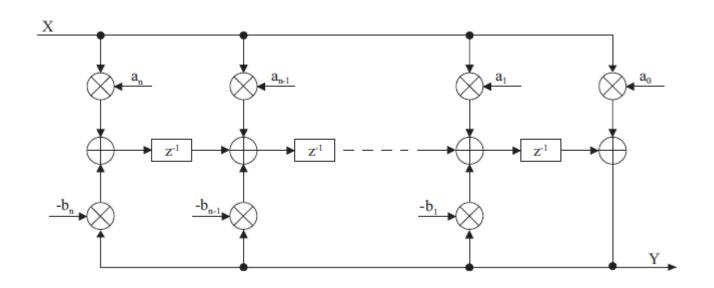
Dresden, 3. Februar 2010 Dirk Schulze s7468461@inf.tu-dresden.de

Gliederung

- 1. Definition
- 2. Algorithmen der Signalverarbeitung
- 3. Anwendungsgebiete
- 4. Arbeitsweise
- 5. Einordnung von DSPs zu anderen Technologien
- 7. DSPs im Überblick
- 8. Ausblick

1. Was ist ein DSP?

- "DSP's sind spezielle Mikroprozessoren, die Algorithmen der Digitalen Signalverarbeitung effektiv und schnell abarbeiten"
- "DSP's sind Mikroprozessoren deren Befehlssatz und Architektur für die Implementierung von Algorithmen der Digitalen Signalverarbeitung optimiert werden"

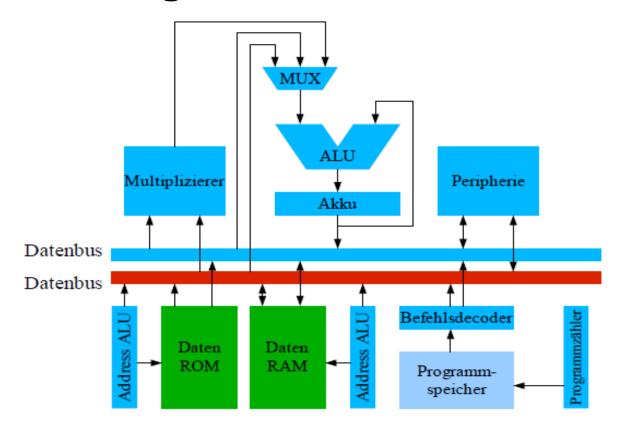


2. Algorithmen der Signalverarbeitung

FIR
$$y(n) = \sum_{k=0}^{N} a_k x(n-k)$$
 IIR
$$y(n) = \sum_{k=0}^{M} a_k x(n-k) + \sum_{k=1}^{N} b_k x(n-k)$$
 DFT
$$x(k) = \sum_{k=0}^{N-1} X(n) e^{j2\pi \frac{kn}{N}}$$
 Faltung
$$y(n) = \sum_{k=0}^{N} x(k) \cdot h(n-k)$$

Kanonische Realisierung von Filtern

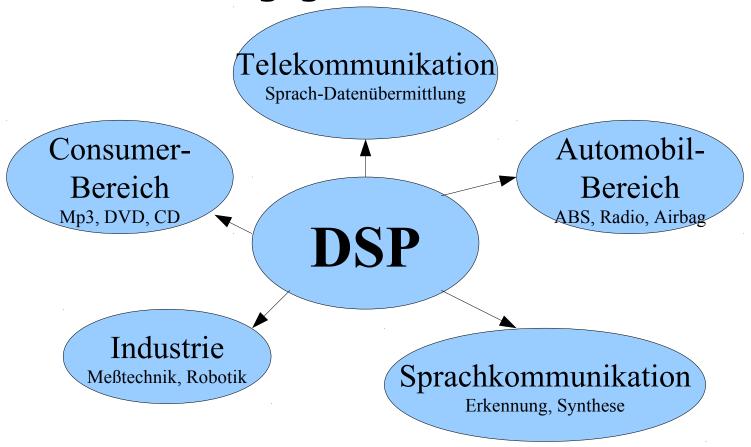
Gemeinsamkeit von Algorithmen der DSV


• Summe-von-Produkten Operationen

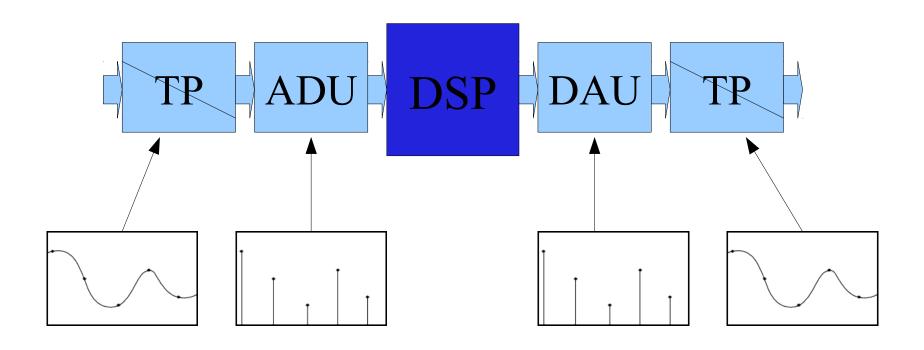
$$Y = \sum_{i=0}^{N} c_i \cdot x_i$$

for
$$(k = 0; k < N; k++)$$

 $y[n] = y[n] + c[k] * x[n-k];$



Verarbeitungseinheit



3. Anwendungsgebiete

4. Arbeitsweise

5. Einordnung Digitaler Signalprozessoren zu anderen Technologien

DSP-Architekturen im Überblick

- DSP zu Analogtechnik
- DSP zu Standardprozessoren (GPP)
- DSP zu ASIC-Entwurf

Digitale SV zu Analogtechnik

- Digitale Signale sind
 - Reproduzierbar, verlustfrei vervielfältigbar
- Filterrealisierungen, die analog nicht/schwer umsetzbar sind
 - adaptive Filter
 - lineare Phasengänge
- Analoger Filter bestehen aus
 - Kapazitäten
 - Widerstände
 - Induktivitäten

Weitere Vorteile von DSPs

- Programmierbar damit flexibel
 - Verschiedene Verwendungszwecke
 - Nachträglich änderbar
- Robust gegen äußere Einflüsse wie
 - Temperatur
 - Witterung
 - Erschütterungen

DSP zu GPP

- Arithmetische Operationen in einem Zyklus
- Spezialisierte, komplexe Befehle im Gegensatz zu universellen Befehlen
- Sättigungsarithmetik
- Hardware Unterstützte Schleifen
- "Real time debugging" (JTag-Emulation)
- Mehrere Datenbusse

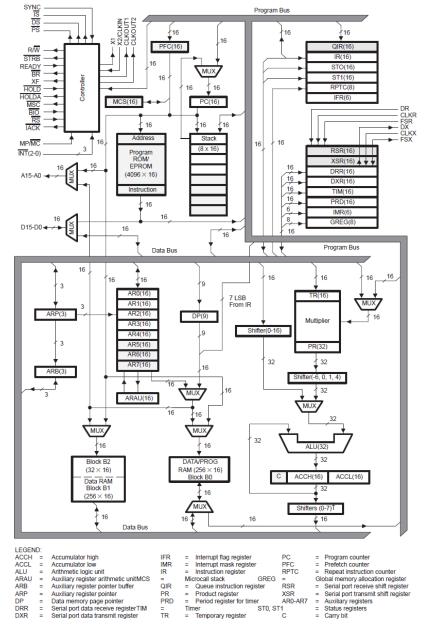
DSP zu ASIC Implementierung

- Vorteile ASIC-Entwurf:
 - Geringere Chipfläche
 - Anpassung auf speziellen SV-Algorithmus → schneller
 - Geringere Leistungsaufnahme
- Nachteile ASIC-Entwurf
 - Hohe Entwicklungskosten
 - Geringere Flexibilität
 - Große Zeitspanne vom Entwurf zum fertigen Produkt

Wann werden DSPs verwendet

- Kostenersparnis
- Geringe Größe
- Geringer Verbrauch
- Hochfrequente Signale

Programmierung


- Programmierung über Assembler
 - RPTK Anzahl N wiederhole N mal
 - MAC D Koeff, Daten Addresse Koeff, Daten
- Durch komplexere Aufgaben und Befehle nun oft Hochsprachen → Optimierung durch Compiler

7. DSPs im Überblick

- TI TMS320C25xx
- DSPs von TI
- DSPs von Freescale
- DSPs von Analog Devices

TI-DSP Linie

- TMS 320C2000 optimiert auf Steuerung
- TMS 320C5000 optimiert auf Leistungsaufnahme
- TMS 320C6000 High Performance

DSPs von FreeScale

- DSP 56000
 - 24bit Architektur
 - 56bit für Ergebnis der MAC → weniger Rücksicht bei Überläufen
- StorCore
 - 16bit Architektur
 - Hoch parallel: bis 4 M MACs
 - 4 ALU's parallel
- Symphony

DSPs von Analog Devices

- ADSP 21xx
 - 16bit Architektur
 - Auch mit ADU/DAU verfügbar
- Blackfin-DSPs
 - 16bit Multiplizierer
 - 40bit ALU
- SHARC-DSPs
 - 32bit Gleitkomma
 - Für Parallelisierung ausgelegt

8. Ausblick

- Zunehmende Verbreitung von DSP's vor allem im Consumer-Bereich
- Höherer Leistungsumfang
- Höherer Parallelisierung
- Bsp.: Simphony von Freescale
 - Integration von Peripherie für Audio-Anwendungen
 - SPDIF, I²S, ESAI
 - Unterstützung von Dekodieralgorithmen
 - Dolby, THX, DTS
 - Eigenes Betriebssystem

Vielen Dank für Ihre Aufmerksamkeit!

Quellen

- http://www.ruhr-uni-bochum.de/etdv/lehre/seminar/digi-filter/digi-filter.pdf
- http://www.freescale.com
- http://www.ti.com/DSP
- http://www.analog.com
- Boris H\u00e4berlein und Benjamin Martens: Eine Einf\u00fchrung in digitale Signalprozessoren(DSP)
- http://www.bores.com/courses/intro/index.htm