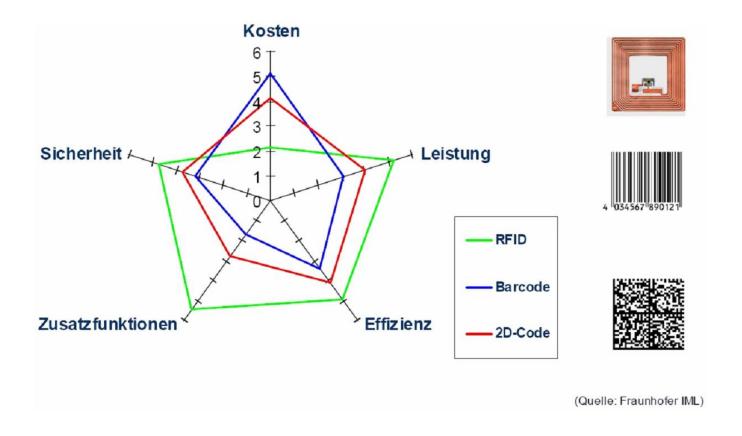
Fakultät Informatik, Technische Informatik, Professur für VLSI-Entwurfssysteme Diagnostik und Architektur

RFID-Chips aus dem Drucker – Herstellung von Tags mittels Nanopartikeln

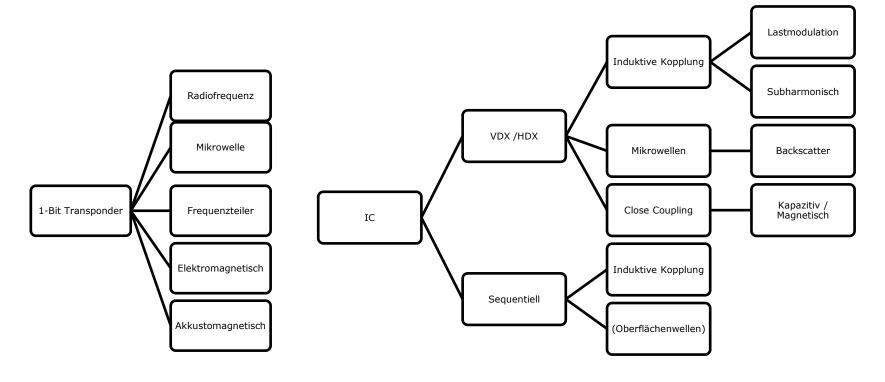
André Wuttig Dresden, 30. Juni 2010


Motivation

 "RFID" hat hohen Bekanntheitsgrad und betrifft viele Lebensbereiche (z.B.: Fußball – Chip im Ball zur Torerkennung)

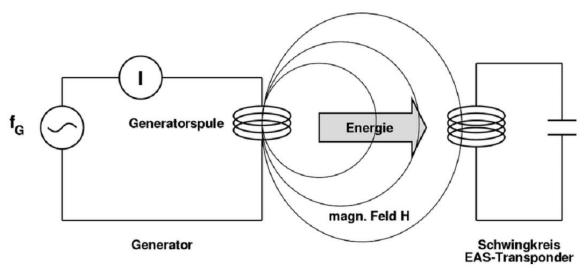
- Suche nach einer Alternative zum bisherigen Herstellungsverfahren für Transponder
- Gedruckte Polymerelektronik soll die Herstellung von RFID-Tags ermöglichen die nur 1 bis 2 % der bisherigen Silizium RFID-Tags kosten
- Polymerelektronik ermöglicht Erschliessung von Geschäftsfeldern, welche für die derzeitiger Siliziumelektronik undenkbar wären
- Markt für Polymerelektronik soll bis 2020 auf auf 100 Milliarden US-Dollar wachsen [c't 15/09]

Motivation

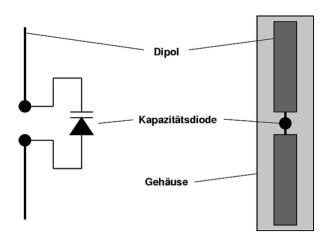


Überblick

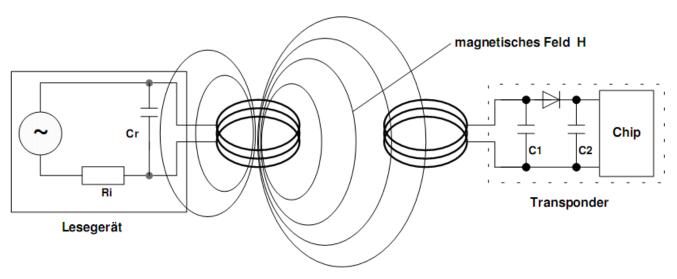
- 1. RFID-Transponder
- 2. Polymerelektronik
- 3. Gedruckte Elektronik
- 4. Ausblick


1. RFID TRANSPONDER

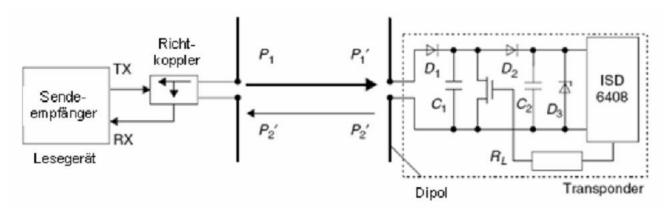
Arten nach Funktionsweise


RF-Transponder

- LC Schwingkreis
- Auf Folie geätzte Leiterbahnen (Leiterbahnen 50 μm, Kondensator: 10 μm)
- 8,2 MHz [fkz]
- Sicherungsetikett


Mikrowellen-Transponder

- Nutzen von Entstehung einer Harmonischen an Bauteilen wie Diode
- 2,45 oder 5,6 Ghz [fkz]
- Sicherungsetikett


IC-RF-Transponder- induktiv gekoppelt

- Großflächige Spule oder Leitschleife und Mikrochip
- Passive Stromversorgung des Chips
- 135 Khz und 13,56 Mhz [fkz]
- Reichweite: bis 1 m

IC-RF-Transponder- Backscatter-Kopplung

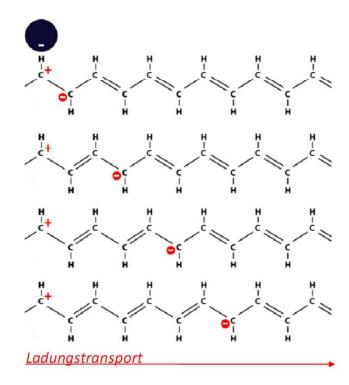
- Passive Stromversorgung des Chips
- Reflektion der Welle vom Transponder
- Modulation der Information in reflektierte Welle

Übersicht der verschiedenen Bauarten

Arbeits- frequenzen	LF (125 Khz)	HF (13,56 MHz)	UHF (856 - 960 MHz)	SHF (2,45 GHz)
Bauformen			B	
Funktionsrinzip	Induktive Kopplung		Backscatter Kopplung bzw. eigene elektromag. Wellen	
Energieversorgung	Passiv	Passiv u	nd Aktiv	Aktiv
Datenspeicherung	RO und RW		RO, RW, WORM	Überwiegend RW
Datenübertragung	64 / 128 Bit/s	26 / 53 / 106 64 Kbit/s Kbit/s		(bit/s
Reichweite	Bis 20 cm	Bis 1m	Passiv: bis 10m Aktiv: bis 100m	Bis 100m

2. POLYMERELEKTRONIK

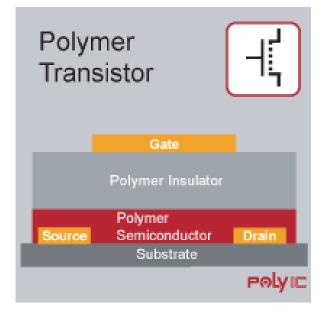
Grundlage


- Polymer
 - Chemische Verbindung aus verzweigten Molekülen
- Leitfähige Polymere
 - Nobelpreis für Heeger, MacDiarmid und Hideki Shirakawa (2000)
 - Grundgerüst bilden konjugierte Hauptketten
 - besitzen ein delokalisiertes Elektronensystem [jb]
- Grundzustand entspricht einem Halbleiter
 - erhöhte Leitfähigkeit bei höheren Temperaturen
 - Dotierung möglich

$$H_3C$$
 $SO_3^ H_3C$
 SO_3^-

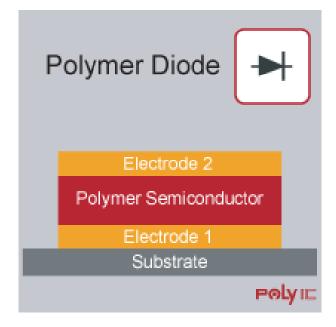
Quelle: Wikipedia - Polypyrrol

Grundlage


- Dotierung
 - (n-Type) Oxidation von Alkalimetallen [jb]
 - (p-Type) Reduktion von Halogenen [jb]
- Ladungstransport
 - Asymmetrisches Umklappen der
 - Bindungen in der Hauptkette

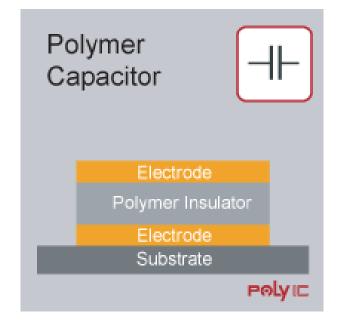
Quelle: [jb]

Bauteile - OFET

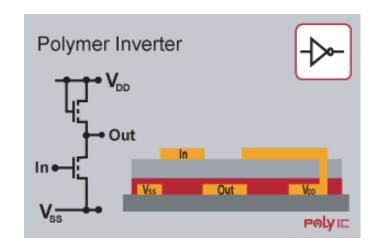

- Substrat (z.B.: Polyimidfolie) mit 2 Kontakten Source und Drain aus leitfähigen Polymer
- Werden von einen konjugierten (halbleitenden) Polymer abgedeckt (z.B.: Polypyrrol, Polyacethylen)
- Darüber ein Polymer-Isolator
- Darüber Gate aus leitfähigen Polymer

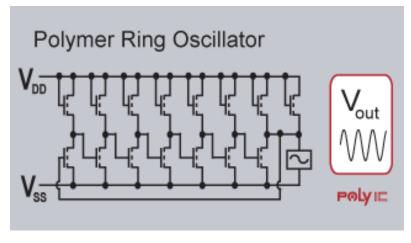
Quelle: PolyIC

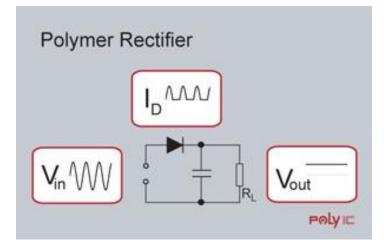
Bauteile - Diode


- 2 Elektroden (Anode und Kathode) aus leitfähigen Polymer
- Dazwischen organischer Halbleiter (konjugiertes Polymer)
- Beispiel: Schottky-Diode (Gleichrichter)

Quelle: PolyIC


2. Polymerelektronik Bauteile - Kondensator


- 2 Elektroden aus leitfähigen Polymer
- Dazwischen Dielektrikum (Isolator)



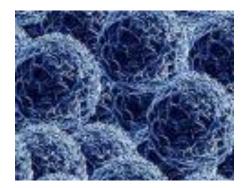
Quelle: PolyIC

Weitere Bauteile

Quelle: PolyIC

Vergleich mit Siliziumtechnologie

	Polymer- elektronik	Silizium- elektronik	
Schaltzeiten	Sehr Langsam (Hz – KHz)	Sehr Schnell (GHz)	
Komplexität	gering	Sehr hoch	
Herstellung	"einfach"	Schwierig und Aufwändig	
Haltbarkeit	Degeneration in Sauerstoff und Wasser	Lange Haltbarkeit	
Flexibilität	Biegsames Substrat, flexible Folien	Starres Substrat	
Herstellungs- fläche	Rolle (keine Grenzen)	30 cm Durchmesser	
Preis	< 2 Cent	> 20 Cent	
Umwelt	Biologisch Abbaubar, keine Giftstoffe	Recycling, wenig Giftstoffe	


3. GEDRUCKTE ELEKTRONIK

Herausforderungen

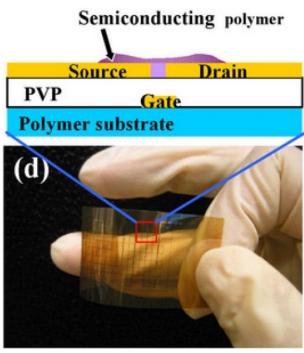
- Flüssige leitende und halbleitende Materialien werden als Tinte benötigt
- Höhere Auflösungen als bei "normalen" Druckern notwendig
 - Integrationsdichte
 - Funktionalität von Bauelementen
- Mehrere Schichten drucken
- Kompatibilität und Passgenauigkeit der übereinander gedruckten Schichten
- Da organische Elektronik andere Eigenschaften hat muss das Design der IC's angepasst werden

Materialien

- Organisch Elektronische Funktionsmaterielien (flüssig / pastös)
 - Konjugierte Polymere
 - Polyimid als Substrat
 - Isolator Polymere
- Anorganische Substrate
 - Silizium, Germanium
- Dispersion anorganische Materialen (wenn in flüssiger Form vorhanden)
 - Metallische Mikro- und Nanopartikel
 - Nanotinte (aus Silber- oder Goldpartikeln)

Quelle: Nanotine - RFID-Basis

Druckverfahren


- Kombination bekannter Druckverfahren wie (nach PolyIC):
 - Flexodruck (Hochdruckverfahren zum Bedrucken von Kunststoffsubstraten)
 - Offsetdruck (Flachdruck mit hoher Auflösung)
 - Gravurdruck (Tiefdruckverfahren)
 - Rotationssiebdruck (ermöglicht hohe Schichtdicken)
 - Beschichtungsverfahren zum Aufbringen dünner, homogener Ebenen
- PolyIC bietet Technologie und Verfahren (PolyIC) zum kompletten Ausdrucken von RFID-Tags an [Quelle: PolyIC]
- Tintenstrahldruck

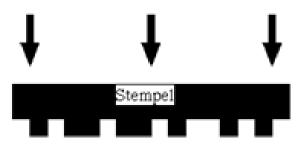
Vergleich der Druckverfahren für IC's

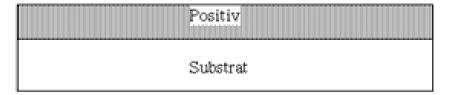
- Tief-, Offset- und Flexodruck
 - Hoher Durchsatz: 10.000 m² / h
 - Hohe Auflösung: 20 μm
 - Hohe Anschaffungskosten
 - 2007 kompletter IC hergestellt an TU Chemnitz
- Tintenstrahl- und Siebdruck
 - Flexibel
 - Im Vgl. niedrige Anschaffungskosten
 - Niedrigerer Durchsatz: 100 m² / h
 - Niedrigere Auflösung: 50 μm
 - 2001: vollständig im Siebdruck hergestellter OFET
 - 2005: vollständig im Tintenstrahldruck hergestellter OFET

3. Gedruckte Elektronik Spezielles Verfahren – Laserdruck (Quelle)

- Laserdruck mit Goldtinte
 - Nanotinte wird auf organisches Substrat (Polyimid) aufgebracht
 - Mit Argon-lonen-Laser werden die notwendigen Stellen beschrieben
 - Gold absorbiert Laser und h\u00e4rtet aus
 - Weitere Schichten aus Polyimid und Goldtinte möglich

Quelle: ETH - Life

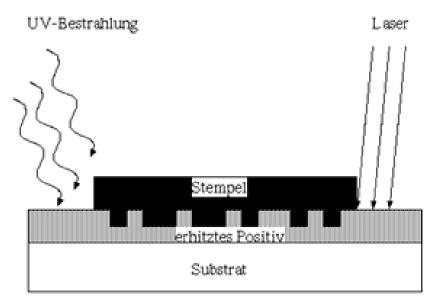

Spezielles Verfahren - Nanoprägelithografie


- NIL
- 1995 Stephen Y. Chou
- Schon 1995 wurden Strukturen von 25 nm realisiert
- Bis 2014 sollen 20nm möglich sein [Quelle: ITRS-HOME]
- In konventioneller Halbleitertechnik bisher 32nm möglich

Spezielles Verfahren - Nanoprägelithografie

Schritt 1 – Vorbereitung:

- Materialien
 - Substrat
 - Positiv ((leitendes bzw. halbleitendes Polymer oder Monomer)
 - Stempel (durch Ätzen oder NanoImprint selbst erzeugt)
- Positiv auf Substrat auftragen

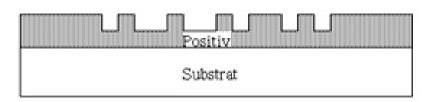


Quelle: Wikipedia - Nanoprägelithografie

Spezielles Verfahren - Nanoprägelithografie

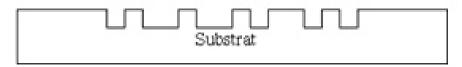
Schritt 2 - Erhitzen und Eindrücken:

- Positiv mittels UV-Strahlung oder Laser erhitzen bis es flüssig wird
- Stempel eindrücken
- Durch Abhäsion bleibt Positiv in Zwischenräumen des Stempels



Quelle: Wikipedia - Nanoprägelithografie

Spezielles Verfahren - Nanoprägelithografie


Schritt 3 – Stempel entfernen und aushärten:

- Nachdem das Positiv abgekühlt ist wird Stempel entfernt
- Spezielle Legierung auf Stempel
 - -> besseres Ablösen

Quelle: Wikipedia - Nanoprägelithografie

Schritt 4 – (optional) Ätzen des Tiefenprofils in Substrat:

Quelle: Wikipedia - Nanoprägelithografie

Spezielles Verfahren - Nanoprägelithografie

Hersteller und Produkte:

Imprio 300:

- 32 nm Auflösung
- 10 nm Schichtdicke
- 3 Wafer pro Stunde

NX-3000

EVG®620

• 50 nm Auflösung

4. AUSBLICK

4. Ausblick

- RFID-Tags auf allen Konsumgütern, Chips von der Rolle, Billigelektronik, Wegwerfelektronik, OLED-Tapete, Sensorik
- Technology Review wertet NanoImprint als "eine der zehn aufkommenden Technologien, die die Welt verändern werden" [Quelle: Technology Review"]

Quelle: IHK- Braunschweig

Literatur

- [fkz] Klaus Finkenzeller RFID Handbuch
- [jb] Julia Baum und Sebastian Standop Organische Solarzellen
- http://www.acht35.de/main/files/Photovoltaik.pdf
- http://www.polyid.de/
- http://www.nanonex.com/
- http://www.pm.tu-chemnitz.de/uploads/publ_pdf/274_2.pdf
- http://www.polytronik.fhg.de/inhalt/06materialien/praesentationen/hueblerdrucken.pdf

Literatur

- http://www.nanoproducts.de/index.php?mp=news&file=pdf_info&news_id=5
 3
- http://www.itwissen.info/definition/lexikon/Tintenstrahldruck-inkjetprint.html
- http://www.ethlife.ethz.ch/archive_articles/070906-nanotinte/index
- http://www.pm.tu-chemnitz.de/uploads/pressfiles/idx/196.pdf
- http://www.braunschweig.ihk.de/veranstaltungen/10_e_becker.pdf
- http://www.acht35.de/main/files/Photovoltaik.pdf

»Wissen schafft Brücken.«