

Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI Entwurfssysteme, Diagnostik und Architektur

Entwurf und Implementierung von parametrierbaren Filteralgorithmen für die digitale Ausleseelektronik des Flüssig-Argon-Kalorimeters des ATLAS-Detektors am CERN

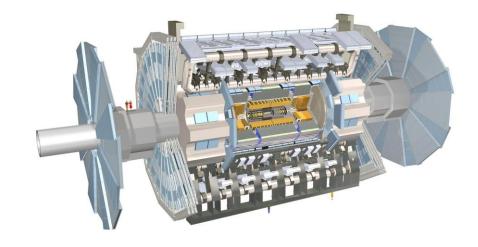
Diplomverteidigung

Max Köhler max.koehler@mailbox.tu-dresden.de

Dresden, 25.07.2012

Gliederung

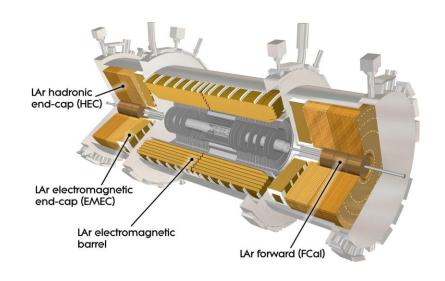
- (1) ATLAS-Experiment
- (2) Motivation
- (3) Filterentwurf
- (4) Implementierung
- (5) Zusammenfassung


LHC (Large Hadron Collider)

- größter und stärkster Teilchenbeschleuniger der Welt
- 26,7 km langer Tunnel
- 1232 Dipolmagnete für Formung des Ringes
- komplette Füllung: 2808 / 3564 Pakete
- Abstand zwischen Paketen: 25 ns
- 8 Oktanten für verschiedene Aufgaben
- 4 große, 2 kleine Experimente

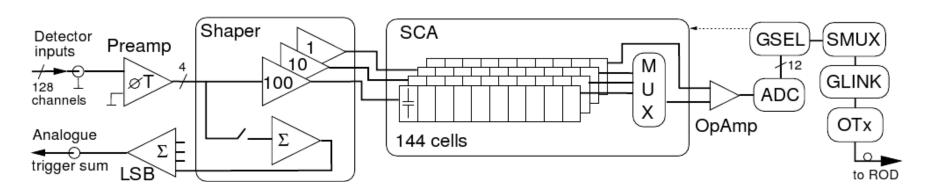
ATLAS (A Toroidal LHC ApparatuS)

- Vielzweck-Detektor
- zylindrische Anordnung um Interaktionspunkt
- Bestimmung von
 - Flugbahn
 - Ladung
 - Energie
- Datenauslese über mehrstufigen Trigger
- endgültige Auswertung im Rechenzentrum aus den aufgezeichneten Daten



[1] ATLAS Experiment © 2012 CERN

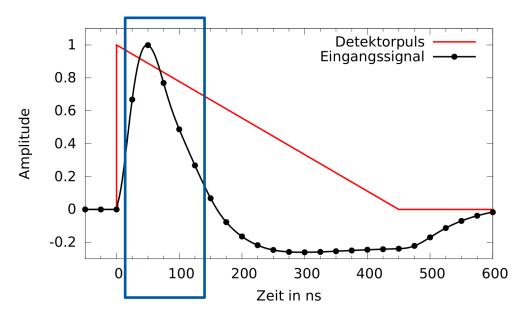
Flüssig-Argon-Kalorimeter


- Detektion von geladenen Teilchen
- Auslösen von Elektronenschauern aus Bleiplatten
- Ionisation von Argon durch Schauerelektronen
- Messung von Strom über Elektroden

[1] ATLAS Experiment © 2012 CERN

Ausleseelektronik

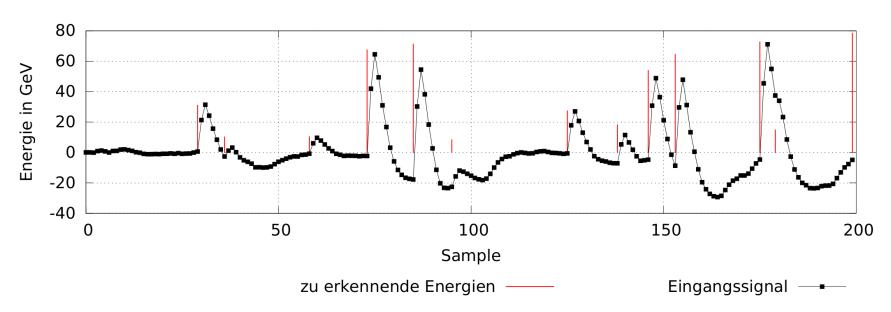
- 182.468 Zellen
- 1.524 Front End Boards
 im Detektor
- Abtastung mit 40 MHz
- optische Übertragung zu 192 RODs (Read Out Driver)



[2]

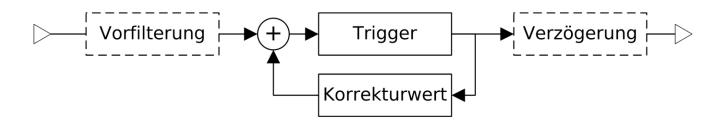
Zielstellung

- Erkennung des roten Maximums in den schwarzen Messwerten
- verschiedene
 Verzögerungszeiten
- Probleme
 - Überschneidung mehrerer Impulse
 - Impulse durch Pile-Up
 - Rauschen



aktueller FIR-Filter

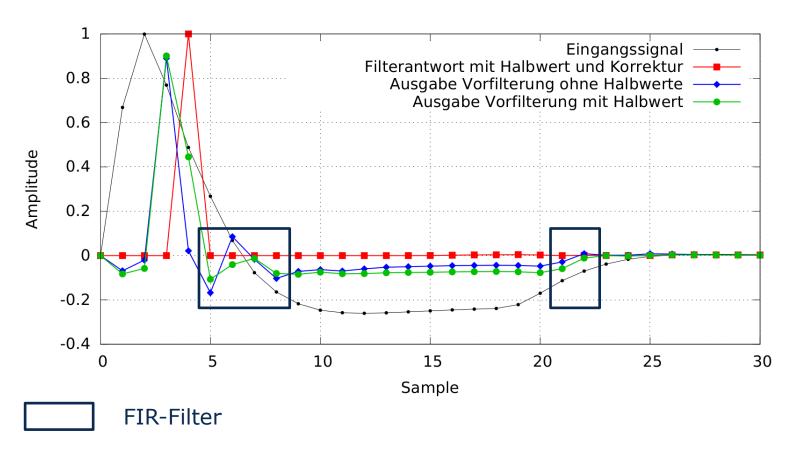
LHC Upgrade


- Erhöhung der Luminosität um eine Größenordnung
- mehr Überschneidungen und Pile-Up
- Austausch
 Messelektronik
- kontinuierliches
 Auslesen

Filterentwurf

- Erkennung des Impulses mittels weniger Samples
- Vermeidung von Beeinflussung der Energierekonstruktion überlagerter Ereignisse
- möglichst wenige Multiplikationen
- stabil auch bei Fehlerkennungen
- Latenz von höchstens 6 Kollisionen (150 ns)

Wiener-Filter


- Einsatzgebiete: Signalrekonstruktion, Kanalkompensierung [4]
- vergrößert Signal-Rausch-Abstand
- Realisierung als FIR-Filter der Länge P

$$\tilde{x}(m) = \sum_{k=0}^{P-1} a_k y(m-k) = a^T y$$

- Vorgabe eines Signales x(m)
- Berechnung über mittlere quadratische Abweichung $E[e^2(m)] = E[x(m) a^T y]$
- Simulationsdaten als Basis für Berechnung

Wiener-Filterantwort

Güte

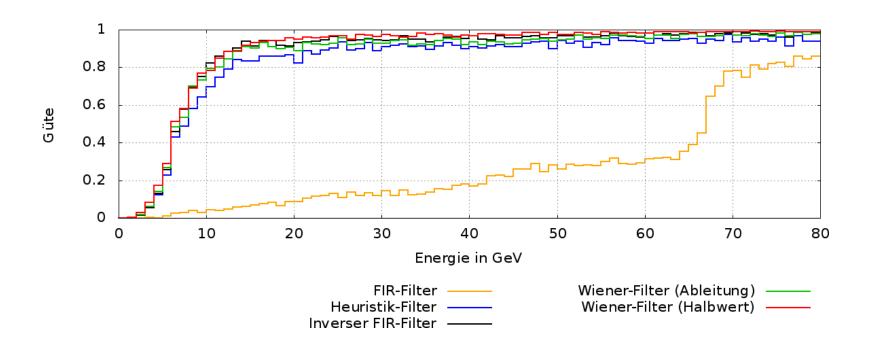
Definition eines Qualitätsfaktors (skaliert auf [0,1])

$$G = L \cdot R \cdot F$$

mit den Teilgrößen:

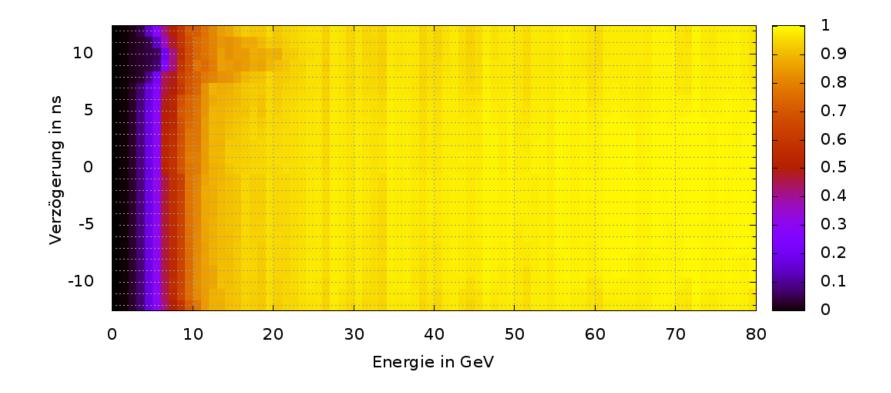
Erkennungsrate

$$L = \frac{e}{N}$$

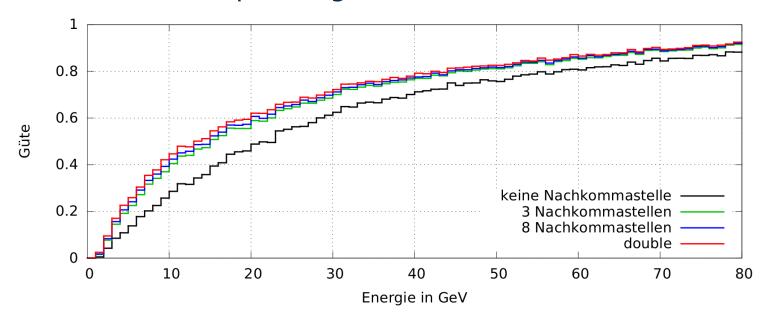

Energierekonstruktion

$$R = 1 - \left| \frac{E_{Filter} - E_{Test}}{E_{Test}} \right|$$

inverse Falsch-Positiv-Rate $F = 1 - \frac{f}{f + N}$

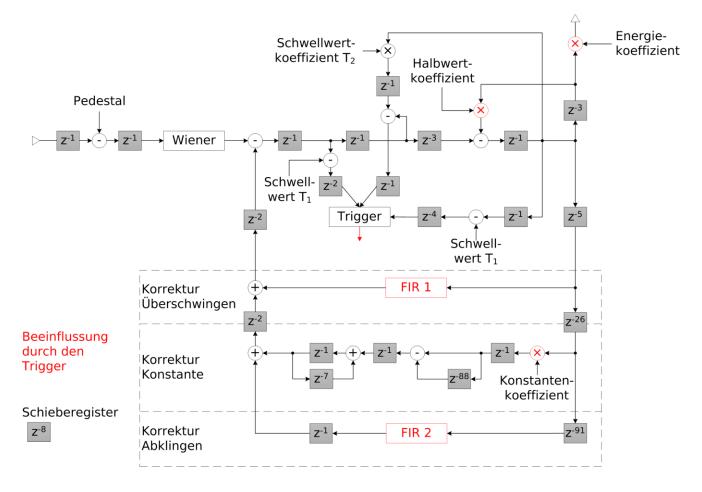

$$F = 1 - \frac{f}{f + N}$$

Übersicht Filteransätze

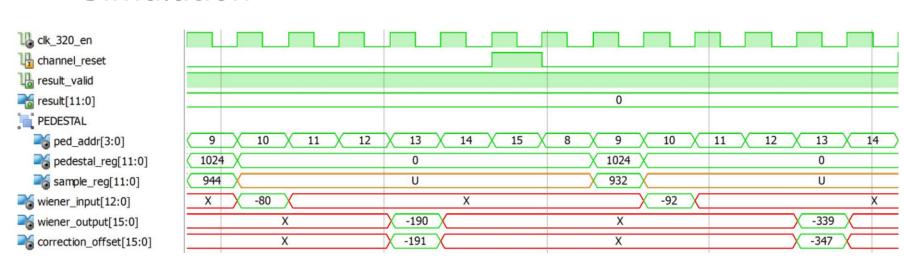

Verzögerungszeiten Wiener-Filter (Halbwert)

Festkommaformat

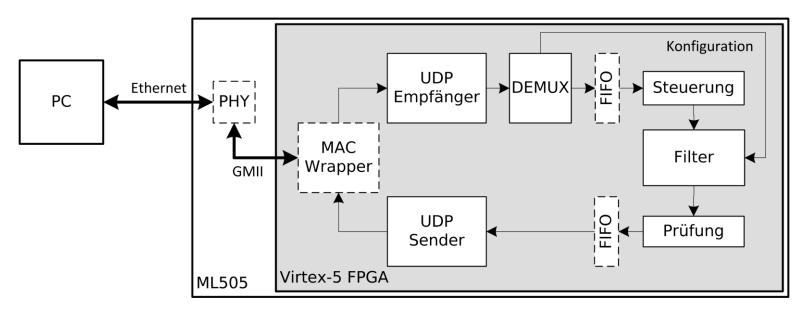
- Test durch Nachbildung in Software
- Auswertung bei h\u00f6herer Signalrate 0,2 (alle 5 Samples)
- Festlegung f
 ür Zwischenwerte und Faktoren
- Stabilitätsanpassungen



Parallelverarbeitung


- Pipelining des Festkommaformates in Hardware
- deutlich höhere Verarbeitungsgeschwindigkeit gegenüber LHC-Taktsignal
- Multiplexing von acht Kanälen
- Verschränkung des Datenstromes
- Steuerung über separates channel_reset Signal

Implementierung Wiener-Filter mit Halbwert-Trigger


Simulation

- serielle Konfigurationskette (Controller)
- Zuordnung von Koeffizienten zu Kanälen
- überschneidungsfreies Multiplexing
- gleiche Testdaten wie für Auswertung der Güte

Testplattform ML505

- Minimalimplementierung UDP/IP
- Empfangen von Konfiguration und Samples
- Senden der Filterantworten

Ressourcenbelegung Wiener-Filter (Halbwert)

	Virtex-5 (XC5VLX50T)				Virtex-6 (XC6VLX240T)			
Anzahl Filter	1		3		1		48	
Anzahl Register	1.076	(3%)	3.190	(11%)	1.046	(1%)	49.434	(16%)
Anzahl LUTs	792	(2%)	2.295	(7%)	768	(1%)	36.280	(24%)
LUTs als Speicher	393	(5%)	1.177	(15%)	418	(1%)	20.064	(34%)
belegte Slices	470	(6%)	1.450	(20%)	338	(1%)	14.243	(37%)
genutzte LUT-FF Paare	1.194		3.523		965		42.997	
LUTs ohne Flipflop	118	(9%)	333	(9%)	166	(17%)	7.013	(16%)
Flipflops ohne LUT	402	(33%)	1.228	(34%)	197	(20%)	6.717	(15%)
LUT-FF Paare	674	(56%)	1.962	(55%)	602	(62%)	29.267	(68%)
18k BlockRAM/FIFO	5	(4%)	15	(12%)	3	(1%)	144	(17%)
DSP48Es	16	(33%)	48	(100%)	16	(2%)	768	(100%)

Ausblick und Zusammenfassung

Ausblick

- Anbindung Kommunikation mit Ausleseelektronik und Trigger
- Optimierung der Filterantwort des Wiener-Filters
- generischer Gesamtfilter

Zusammenfassung

- erhöhte Ereignisrate führt zu mehr Überschneidungen
- Wiener-Filter als guter Kompromiss
- integrierte Pile-Up-Unterdrückung
- rekonfigurierbares, kompaktes Filterdesign
- Einhaltung der Zeitvorgaben

Quellen

[1]	ATLAS-Experiment Photos http://www.atlas.ch/photos/
[2]	Buchanan, N J. u.a.: ATLAS liquid argon calorimeter front end electronics. In: Journal of Instrumentation 3 (2008) Nr. 9
[3]	Reinhardt, Tobias Peter: Simulation der digitalen Ausleseelektronik des Flüssigargonkalorimeter des ATLAS Detektors bei HL_LHC. Diplomarbeit, TU Dresden, 2011.
[4]	Vaseghu, Saeed V.: Adcanced Signal Processing and digital noise reduction. Stuttgard; Leipzig: Teubner, 1996.
[5]	The ATLAS Collaboration: The ATLAS Experiment at the CERN Large Hadron Collider. In: Journal of Instrumentration 3 (2008) Nr. 8
[6]	The ATLAS Collaboration: ATLAS Fact Sheet http://www.atlas.ch/fact-sheets.html